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Preface

This book was conceived to address the growing demand for
a practical, problem-oriented resource that guides learners
through advanced topics in modern computer vision. It was
written to build upon foundational knowledge and to offer
readers a hands-on journey through a diverse set of
techniques—from classical image processing to cutting-edge
deep learning and generative Al models.

A deliberate choice was made to follow a problem-first
approach, where real-world challenges are introduced and
then explored through a variety of methods. In computer
vision, there is rarely a single correct way to solve a
problem. Instead, solutions are often shaped by factors such
as application context, data constraints, and performance
needs. Thus, this book aims not to prescribe the most
optimal or efficient method in every case, but rather to
expose readers to a broad spectrum of techniques. The goal
is to help them develop the insight and flexibility to choose
—or even design—the best solution for their own unique
scenario.

Each chapter is structured to include the necessary
background theory, followed by well-explained Python code
demonstrations using widely adopted libraries such as
OpenCV, scikit-image, SimplelTK, PyTorch, TensorFlow,
Keras, and more. Readers are encouraged to treat the
hands-on examples not as fixed templates, but as
launchpads for experimentation, adaptation, and deeper
learning.



Given Python’s dynamic and ever-evolving ecosystem, it is
acknowledged that some functions or APIs used in this book
may be deprecated or modified in the future. However,
readers should not be discouraged by such changes. Once
the core concepts are understood, tweaking, debugging,
and adapting code to evolving libraries becomes not only
manageable but also an excellent learning opportunity. It is
in this iterative process of troubleshooting and discovery
that one’s true expertise begins to flourish.

This book assumes that readers are already comfortable
with Python programming and possess foundational
knowledge in image processing, machine learning, deep
learning, and mathematical disciplines such as linear
algebra, calculus, and probability. For readers who wish to
build or reinforce this foundation, it is strongly
recommended to explore the companion book Image
Processing Masterclass with Python, authored by the same
writer.

Ultimately, the aim of this book is to guide, inspire, and
empower. The solutions presented are stepping stones, not
finish lines. It is hoped that readers will not only gain
practical skills but also develop a sense of joy and
fascination in solving visual problems. The journey through
image processing and computer vision is rich, challenging,
and immensely rewarding—may you enjoy every step of it.

Welcome to the masterclass. Let the journey begin.

Chapter 1: Image Restoration and Inverse Problems
in Image Processing - This chapter introduces
fundamental concepts in image restoration and inverse
problems. It begins with the mathematical formulation of
degradation models and explores various denoising and
deblurring techniques, both classical and modern. Key
techniques include weighted median filtering, non-blind and
blind deconvolution (for example, Richardson-Lucy), total



variation minimization, wavelet-based denoising, non-local
means, bilateral filtering, MAP Bayesian estimation with MRF
priors, and kernel PCA-based denoising—all demonstrated in
Python.

Chapter 2: More Image Restoration and Image
Inpainting - Building on the previous chapter, this section
dives deeper into image restoration using neural
techniques. It covers autoencoder-based denoising, GAN-
based blind deblurring (DeblurGAN), and multiple
approaches to image inpainting. Topics include anisotropic
diffusion filtering, simple deep image painting using Keras,
and semantic inpainting using DCGANSs, with rich code
examples to reinforce learning.

Chapter 3: Image Segmentation - Segmentation is a
core problem in vision. This chapter introduces foundational
segmentation techniques, including gray-level and bitplane
slicing, thresholding methods, and clustering-based
segmentation. It also covers advanced algorithms like
MeanShift, watershed, GrabCut, RandomWalk, and
SLIC/NCut segmentation using Python libraries like OpenCV,
scikit-learn, and scikit-image.

Chapter 4: More Image Segmentation - This chapter
extends segmentation to more advanced and applied topics.
It covers human skin detection using classical binary
classifiers, labeling connected components, and video
background separation using Gaussian Mixture Models.
Deep learning-based segmentation techniques such as
DeeplLabV3+, ENet, and Detectron2 are explored, along with
practical tasks like background replacement in
images/videos and outlier detection with autoencoders.

Chapter 5: Image Feature Extraction and Its
Applications: Image Registration - Feature detection is a
critical building block for many applications. This chapter
reviews keypoint detection and description methods, and



focuses on feature-based image alignment and registration.
Topics include rigid and deformable registration with tools
like pystackreg, pyelastix, SimplelTK, and the deep learning-
based VoxelMorph model using TensorFlow/Keras.

Chapter 6: Applications of Image Feature Extraction -
This chapter showcases how feature extraction powers real-
world applications. Examples include image panorama
stitching with OpenCV, facial feature analysis using NMF,
LBPH, and Gabor filters, and pedestrian detection using HOG
and HAAR-Cascade features. Each use case is backed by
end-to-end Python code.

Chapter 7: Image Classification - Image classification
forms the foundation of many Al systems. This chapter
walks through the entire pipeline—from classical machine
learning approaches for classifying Fashion-MNIST to deep
learning models using TensorFlow/Keras. It also
demonstrates transfer learning with PyTorch and training
classifiers on custom datasets using pre-trained models.

Chapter 8: Object Detection and Recognition - Delve
into object localization with deep learning. Topics include
using pre-trained models, YOLOv4 with transfer learning,
instance-level tasks like selective coloring using Mask R-
CNN, face verification with DeepFace, and barcode/QR
detection. Hands-on examples provide a strong basis for
object detection projects.

Chapter 9: Application of Image Processing and
Computer Vision in Medical Imaging - Explore the rich
world of medical image analysis. This chapter covers
handling and visualizing DICOM and NIfTI formats using
libraries like pydicom, nibabel, and ITK. It includes
segmentation of brain MRIs, 3D rendering, CT
reconstruction, and pneumonia classification using deep
CNNs—highlighting the real impact of vision in healthcare.



Chapter 10: Application of Image Processing and
Computer Vision in Medical Imaging and Remote
Sensing - This dual-topic chapter covers both medical and
remote sensing applications. Medical topics include COVID-
19 detection, prostate segmentation, and brain tumor
segmentation using nnUNet and U-Net. Remote sensing
topics include segmentation of satellite images (for
example, FloodNet, SN7), and landcover classification using
ResNetl01 with Fastai. It illustrates how vision systems
solve problems beyond consumer devices.

Chapter 11: Miscellaneous Problems in Image
Processing and Computer Vision - This final chapter
brings together innovative and creative applications of
vision. Topics include deep dreaming, neural style transfer,
image colorization, visualizing CNN features with t-SNE,
generating 3D point clouds, AR with OpenCV, video editing
with MoviePy, image generation from text with GAN-CLS,
seamless cloning, and DALL-E-based generation—pushing
the boundaries of what is possible in computer vision.
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CHAPTER 1

Image Restoration and
Inverse Problems in Image
Processing

Introduction

Image restoration is the process of recovering a degraded
image to enhance its quality by reducing noise, blur, or
other distortions. The goal of image restoration is to undo or
compensate for the elements that corrupt or degrade an
image. Degradation can be caused because of sensor noise,
motion blur, defocus blur (camera misfocus), optical
aberrations, and environmental distortions. When an image
is corrupted with some kind of blur, the actual blurring
function — typically modeled as a Point Spread Function
(PSF) — can be estimated, and the blur can be undone to
restore the original image through deconvolution
techniques. Similarly, noise degradation—whether caused
by electronic interference, low-light conditions, or
compression artifacts—requires denoising methods such as
total variation regularization, wavelet-based filtering, or



deep-learning-based restoration to recover image details.

Recent advancements in Al-driven image restoration
leverage transformer-based models, generative
adversarial networks (GAN), and self-supervised learning
to enhance image quality beyond traditional techniques.
These methods have demonstrated superior performance in
handling complex degradations, blind restoration scenarios,
and real-world applications.

In this chapter, we shall explore and implement
fundamental and modern image restoration techniques,
analyzing their effectiveness for different types of
degradation while considering the latest developments in
image processing and computational imaging.

Structure

In this chapter we shall explore the following topics:
 Mathematical model for image restoration
* Inverse problems in image processing
* Denoising with weighted median filtering
* Non-blind deconvolution for image restoration
* Blind deconvolution with Richardson-Lucy algorithm
» Total variation denoising
* Image denoising with wavelets
* Denoising using non-local means with opencv-python
* Denoising with bilateral filter
* Denoising with MAP Bayesian with an MRF prior
* Denoising images with kernel PCA

Objectives



By the end of this chapter, we will be able to understand the
fundamental concepts of image restoration, including the
types of degradation (for example, noise, blur) that affect
images and how restoration techniques aim to reverse these
effects. We will also identify the difference between
denoising and deblurring problems in image restoration and
how these are handled by various algorithms, implement
non-linear spatial filtering techniques such as the weighted
median filter to effectively reduce noise in an image, apply
non-blind deconvolution techniques using Python libraries
(for example, opencv-python, SimplelTK) to restore
images affected by motion blur or defocus blur, leveraging
methods like the Wiener filter and inverse filter, explore
blind deconvolution methods, including the Richardson-Lucy
algorithm, to restore images when the blur kernel is
unknown, use total variation (TV) denoising to preserve
important features like edges while removing noise, using
Python libraries such as scikit-image or SimplelITK, and
implement wavelet denoising to remove noise at multiple
frequency levels using the pywt library. Understand and
implement non-local means (NLM) filtering and bilateral
filtering, which consider spatial and intensity differences for
efficient denoising while preserving edges. Additionally, we
will explore Bayesian denoising techniques with Markov
Random Field (MRF) priors for probabilistic image
restoration, utilizing kernel Principal Component
Analysis (PCA) for denoising, which applies dimensionality
reduction techniques to image restoration problems, and
use popular Python libraries like scikit-image, opencv-
python, SimplelTK, scipy.ndimage, and matplotlib to
implement these techniques and visualize the results.

By mastering these topics, you will have a strong grasp of
how to restore corrupted images using various modern
techniques and how to implement them effectively in Python



for practical applications.

Mathematical model for image
restoration

To formalize the image restoration process, let us begin by
examining its underlying mathematical model, which
describes how an observed image is formed through
degradation mechanisms. The general form of the image
degradation model is shown in the following figure:

n
noise
X !
.
Img F output

Lowpass Filter

Image Restoration: Given y find x

Figure 1.1: Schematic diagram for image restoration problem

Figure 1.1 represents the generative model g(x,y) = f(x,y) &
h(x,y) + n(x,y), where:
* f(x,y) is the original image (represented by x in the
aforementioned figure)
* h(x,y) is the PSF, a convolution kernel
* @ is the convolution operation
* n(x,y) is the noise signal
* g(x,y) is the convolved output image (represented by y in
the figure)

When the noise is not present in the preceding model, the
problem reduces to deblurring; there are several techniques
for non-blind and blind deblurring (a few of them we shall



implement).

When the blur kernel is absent, the problem reduces to
denoising, typically done by spatial / frequency domain
filters, let us start with a generalized form of one such non-
linear spatial filter.

Inverse problems in image processing

Inverse problems in image processing refer to the task of
estimating the original image from its degraded observation
by mathematically reversing the effects of distortions such
as blur, noise, and occlusions. It is called an inverse
problem because instead of directly observing the cause (for
example, motion blur), we infer unknown parameters from
the degraded image, essentially inverting the degradation
process. While image restoration is a subset of inverse
problems, inverse problems in imaging also encompass
tasks like super-resolution, image inpainting, and
tomography, making it a broader concept beyond just
restoring images. In this section, we shall focus on
restoration of a degraded image.

As discussed in the introduction section, image degradation
can be represented by a convolution of an image with a PSF,
combined with the addition of noise ™, so that it can be
mathematically modeled as g = Afiyue + 7, where A is
matrix that represents a two-dimensional convolution with a
Gaussian blur (with standard deviation o), and n represents
the additive noise (of standard deviation 0).

Here fi4e is the original image (not available to us), all we
have is the degraded image g and the convolution matrix A
(for non-blind convolution). We want to obtain an estimate

ﬁTHE *

The class of problems is often known as an inverse problem
in image processing, where we aim at the data estimation



from inadequate or noisy observations, and it is often
encountered in practice. It is an ill-posed problem, and the
solution is non-unique due to noise and lack of information.
Hence, we aim to obtain an approximate solution.

In this section we shall use normal equations (with
regularization) to obtain an estimate for the original
image.

Let us start by importing all the required libraries using the
following code snippet:

%matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

from scipy.ndimage.filters import gaussian_filter

from skimage.metrics import peak _signal noise _ratio as psnr
from scipy.sparse.linalg import LinearOperator, gmres
import warnings

warnings.filterwarnings('ignore')

Let us define the convolution process with Gaussian blur
kernel with variance g2, using the gaussian_filter()
function from scipy.ndimage.filters module.

Implement the degradation process with the function
degrade(), which first applies the convolution, followed by
addition of a standard normal noise of variance 82, as shown
in the following code block.

Initialize o and @ variables.

def A(f, sigma):
return gaussian_filter(f, sigma)
def degrade(f, sigma, theta):
g = A(f, sigma)
g += theta*np.random.randn(g.shape[0], g.shape[1])
return g
sigma, theta = 0.15, 0.075
f true = rgb2gray(imread(‘images/beans.jpg"))
g = degrade(f_true, sigma, theta)

From the degradation equation, we can see that it can be
represented as an optimization (minimization) problem
with the classic OLS loss function along with a Ridge (L,)



penalization term as:

min g-AN"(g-AN) +af'f

The true image is restored by solving the preceding normal
equation (prove it):

f=UTA+al) 1A4Tg
The process of reversing the degradation effects to restore
the true image f, from the observed degraded image 9, as a
solution to (ATA+ al)f, = ATg, is generally known as
deconvolution.

We can solve the preceding problem using a Krylov solver
such as the Generalized Minimal Residual Method
(GMRES).

Since the explicit matrix representation of A is infeasibly

large, pass the solver instead of a function that computes
(ATA + al)f,:

z=ATA(f,a)
It performs the following two-step process:

y = A(f)

z=A"(y) +af

The following code snippet solves the preceding equation
with the function gmres() from scipy.sparse.linalg module
and obtains an estimate for f for the original image. Invoke
gmres(ATA+ al, ATg), to use GMRES iteration for
solving the linear system of equations given by
(ATA + al)f = ATg, to find f,
def ATA(f, alpha=1e-2):

y = A(f, sigma)

z = A(y, sigma) + alpha*f

return z
h, w = g.shape




AL = LinearOperator((w*h,w*h), ATA)
ATg = np.ravel(A(g, sigma))
f hat = np.reshape(gmres(AL, ATg)[0], (h,w))

Plot the degraded image and the restored one with the
following code block:

plt.figure(figsize=(20,10))

plt.subplot(121), plt.imshow(g), plt.title('degraded, PSNR: {:.02f}" \
format(psnr(f_true, g)), size=20), plt.axis('off")

plt.subplot(122), plt.imshow(f hat), plt.title('restored, PSNR: {:.02f}" \
format(psnr(f_true, f hat)), size=20), plt.axis('off")

plt.tight_layout()

plt.show()

Once you run the aforementioned code snippet, you should
obtain the following figure:

PSNR: 22.50 restored, PSNR: 22.57

TR

degraded,

Denoising with weighted median
filtering

When an image (a 2D or 3D signal) is transmitted over some
distance over a communication channel, it frequently gets
contaminated by noise. The simplest model for the
acquisition of noise by a signal is additive noise, with the
form:



gxy) = fxy + nxy)

degraded signal  original signal = noisesignal

The basic assumptions for noise signal n(x,y) are the
following:

* Noise is additive.

* Noise is a random signal (with white Gaussian noise
having () mean).
* Noise is a high-frequency signal.
Again, our objective of denoising is to remove noise n(x, y)
from the noisy image g(x,y), while retaining most of the

important signal features. Here, we shall use a weighted
median filter to achieve the same.

A simple median filter is a nonlinear spatial filter that
replaces each pixel with the median from a set in a window
(patch) surrounding the pixel. This has the effect of
minimizing the absolute prediction error. The output of the
filter can be written as follows:

Y = argmin Z | X — 6|
kew(s)
Where w(s) is a window surrounding pixel s. It can be

i ini — median(X
shown that Y, is minimum when @ = REW(S} ( k)(see

question 1 in the exercise and reference [1]).

The median filter is particularly very useful for removing
the salt and pepper (s&p) noise (a type of image noise,
where random pixels are replaced with black or white
values, resembling scattered salt and pepper grains) from
an image. The weighted median filter generalizes the
median filter by allowing some pixels in the window to have
more influence on the output than others. Here, the output
is written as follows:



Y, = argmin Z sy | X} — 6|
kew(s)
Where as_j are weighting factors which determine the
relative influence pixels in w(s) have on the output. A
typical set of weights is shown as follows:
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Figure 1.3: Sample weights for a weighted median filter

This weight mask allows the pixels closer to the current
pixel to have a stronger influence on the output.

In this section, we shall implement the weighted median
filter function and apply it to denoise an Integrated
Circuit (IC) grayscale image, degraded with s&p noise.

Let us start by importing the required libraries by using the
following lines of code:

import cv2
from skimage.util import random_noise

Now, let us implement the function weighted median()
that applies the Weighted Median Filter (WMF) on an
image. The function accepts a (noisy) input image and a
weight mask for the WMF. The following is a step-by-step
breakdown of how the algorithm works:

1. It slides a kernel window across the image (a standard
way to implement a spatial filter).

2. Next, for each position of the window, it sorts the pixels
in the window in descending order. Then it places the
corresponding pixel weights in the same order as the
sorted pixels.



X1y X2y 0 X p)

A1), A2y 2 A(p)
3. Finally, it determines the weighted median X, by
incrementing the index i,, until the following holds true.

Im P
0= ) @
i=1

i=im+1

Let us implement the aforementioned algorithm using the
python function weighted _median(), as shown in the next
code snippet. The function np.argsort() is used to obtain
the sorted indices of the pixels in a window. The function
np.cumsum() is used to compute the cumulative sum of the
weight mask values in the following implementation.

def weighted _median(im, mask):

h, w = im.shape

sz = mask.shape[0]

iml = im.copy()

maskl = mask.ravel()

for iin range(h-sz+1):

for j in range(w-sz+1):

win = im[i:i+sz, j:j+sz].ravel()
indices = np.argsort(win)[::-1]
win, maskl = win[indices], maskl[indices]
csuml, csum2 = np.cumsum(maskl), np.cumsum(mask1[::-1])[::-1]

k=0
while csum1[:k].sum() < csum2[k:].sum():
k+=1
im1[i+sz//2, j+sz//2] = win[k]
return im1

Now, read the input gray-scale image. Add impulse (s&p)
noise to the input image wusing the function
random_noise() from skimage.util module to obtain the
noisy image.

Construct the weight mask aforementioned, using numpy
slicing, as done in the next code snippet. Subsequently,
apply the weighted median filter function to denoise
(smooth) the degraded image, by invoking the



weighted _median() function on the corrupted image:

im = cv2.imread('images/ic.jpg’, 0)

im = im / im.max()

noisy_im = random_noise(im, mode="s&p")

weight_mask = np.ones((5,5))

weight_mask[1:-1,1:-1] = 2

denoised_im = weighted_median(noisy_im, weight_mask)

Plot the original input image, the noisy (degraded) image,
and the denoised (restored) output image side-by-side. Use
skimage.util module’s peak_signal noise ratio() function
to compute the Peak Signal-to-Noise Ratio (PSNR, which
measures the quality of a reconstructed image by

comparing it to the original and computed using the formula

PSNR = 10 logq, (M) where MAX is the maximum

MSE
pixel value and MSE is the Mean Squared Error) of the

noisy and denoised images and observe that PSNR improved
a lot after restoration. You should obtain a figure as follows:

original noisy, PSNR: 17.81 restored, PSNR: 25.26

Figure 1.4: Image restoration with weighted median filter

Non-blind deconvolution for image
restoration
Deconvolution is an operation inverse to convolution, it is a

computationally intensive image processing technique for
image restoration. In general, the objective of deconvolution



is to find an (approximate) solution for f from a convolution
equation of the form: g=f® h+e¢€ given g and the
convolution kernel h. In this section, we shall discuss a few
deconvolution algorithms with the assumption that the
deconvolution is non-blind, i.e., the PSF, which describes
how a single point source of light is blurred by an imaging
system, modeling the system’s response to an ideal point
input, and the convolution kernel h(.) is known.

Image deconvolution with inverse
filter

The inverse filter is the most straightforward
deconvolution method. Considering that the convolution
of two images in the spatial domain is equivalent to
multiplication of the Fourier transforms of the two
images in the frequency domain (by the convolution
theorem), the inverse filter attempts to invert the
multiplication.

If in the spatial domain, the convolution operation is
represented as g(x,y) = f(x,y) ®h(x,y), in the frequency
domain it can be represented by a simple multiplication
G(u,v) =F(u,v) X H(u,v), where F,H and G represent the
2D Discrete Fourier Transform (DFT, which converts a
spatial-domain image into its frequency components,
computed in 2D as F(uv) =
L UX v

ﬁal ?’;01 f(x,y) E‘Z’“(E"‘iy) ) of f (the original M X N
image), h (the convolution kernel) and g (the convolved
image), respectively (note that we are ignoring the noise
here, the impact of noise on inverse filter is left as an
exercise). A naive approach for image restoration is to
multiply the DFT of the blurred image by inverse of H(u, v):



. G(u, H
F(u,v) = HE:: 2 = F(u,v) X HEH vg

= F(u,v)

The next step is to apply the 2D IDFT (Inverse Discrete
Fourier Transform, converts an image back to spatial
domain from its frequency domain representation, and it is
computed in 2D as:
fx,y) = t_ul 2}"" ﬂl F(u, v)ezﬂl( p.r)) to obtain the
restored 1mage f from its frequency domain representation.
The aforementioned method is called inverse filtering,

where is the inverse filter.

1
H(u,v)
However, the problem in this formulation is that

1
H(u,v) may
not exist / it may be computationally impossible to compute

Hn (or example, when H(u,v) =~ 0). The ideal (more

stable) inverse filter (also known as pseudo-inverse filter)
can be approximated as follows:

Gluw) .
-~ ! :} '.
Flu,v) = Huw)’ if IH{“J- }I 2 €
0, otherwise

Figure 1.5: Pseudo-inverse filter

Where € is a small threshold.

Another way to compensate for the values close to zero in H
is just to get rid of high-frequency components beyond a
cutoff threshold (for example, u? 4+ v? >1) with naive

inverse filtering with the deconvolution operator as

H(u,v)
follows:



) | 1
H(u.v) — -
- Hu.v)

Hup)= 0, if d+02>n

-

Flu,v) = Glu,0)H (u.p)

Figure 1.6: Another implementation of the inverse filter

Where 1 is a high frequency threshold.

In this section, we shall implement the pseudo-inverse filter
using the aforementioned two approaches and restore a
degraded image. Let us start by importing the required
libraries using the following lines of code:

from scipy import signal

import scipy.fftpack as fp

from skimage.io import imread

from skimage.color import rgb2gray

from mpl_toolkits.mplot3d import Axes3D

from matplotlib.ticker import LinearLocator, FormatStrFormatter

Let us implement the frequency domain convolution using
the function convolve2d(), notice that before performing
the convolution as multiplication in the frequency domain,
we must ensure that the PSF (convolution kernel) is
padded properly to have shape exactly equal to the image
shape. Let us also implement the pseudo-inverse filter and
use the post-processing cutoff, as shown in the next code
snippet:

def convolve2d(im, psf, k):
M, N = im.shape
freq = fp.fft2(im)
assert(k % 2 == 1 and k > 0 and k <= min(M,N))

psf = np.pad(psf, (M-k)//2,(M-k)//2+(1-M%2)), (N-k)//2,(N-k)//2+(1-
N%2))).\
mode='constant')
freq_kernel = fp.fft2 (fp.ifftshift(psf))
return np.abs(fp.ifft2 (freq*freq_kernel))

def inverse filter cutoff(y, h, eta):
Hf = fp.fft2 (fp.ifftshift(h))




M, N = Hf.shape

u, v = np.meshgrid(range(N), range(M))

indices = np.sqrt(u**2 + v**2) <= eta

Hf[indices] = np.ones((M,N))[indices] / Hf[indices]
Hf[np.sqrt(u**2 + v**2) > eta] = 0

Yf = fp.fft2(y)

I = Yf*Hf

im = np.abs(fp.ifft2(I))

return im, Hf

def pseudo_inverse _filter(y, h, epsilon):
Hf = fp.fft2 (fp.ifftshift(h))
M, N = Hf.shape
Hf[(np.abs(Hf)<epsilon)] = 0
indices = np.where((np.abs(Hf)>=epsilon))
Hf[indices] = np.ones((M,N))[indices] / Hf[indices]
Yf = fp.fft2(y)
I = YPHf
im = np.abs(fp.ifft2(I))
return im, Hf

Let us define the following functions to plot the frequency
spectrums, both in 2D (as heatmap) and 3D (as surface
plot):

def plot_freq filter(F, title, size=20):
plt.imshow(20*np.log10( 0.01 + np.abs(fp.fftshift(F))), cmap='inferno")
plt.title(title, size=size), plt.colorbar(orientation="'horizontal")

def plot_freq spec_3d(freq):
fig = plt.figure(figsize=(10,10))
ax = fig.gca(projection="'3d")
Y = np.arange(-freq.shape[0]//2,freq.shape[0]-freq.shape[0]//2)
X = np.arange(-freq.shape[1]//2,freq.shape[1]-freq.shape[1]//2)
X, Y = np.meshgrid(X, Y)
Z = (20*np.log10(0.01 + fp.fftshift(freq))).real
surf = ax.plot_surface(X, Y, Z, cmap=plt.cm.inferno, linewidth=0, \

antialiased=True)

ax.zaxis.set_major locator(LinearLocator(10))
ax.zaxis.set_major formatter(FormatStrFormatter('%.02f"))
plt.show()

Now, let us create a couple of degraded (grayscale) images
with two different types of blur kernels, first with a
Gaussian blur and then using a motion blur kernel, and
restore the degraded versions in each case using the



pseudo-inverse filters (using the functions
inverse filter cutoff() and pseudo_inverse filter()),
compare the quality of the denoised images with PSNR
metric and plot the frequency spectrums, using the
following code snippets.

Gaussian blur kernel

Gaussian blur kernel (in image processing) is a kernel (a
matrix or a 2D array) used to smooth (or blur) an image by
averaging pixel values with a Gaussian distribution,
reducing noise and detail. It applies a weighted average to
the surrounding pixels, with the center pixel having the
highest weight and decreasing weights for pixels farther
from the center, following the shape of a Gaussian (bell
curve).

Mathematically, a 2D Gaussian function is defined as:

x2+y2
= 202
G(x,y) omgZ€ 2°
Where:
* X,y are the pixel coordinates relative to the center of the
kernel

e g is the standard deviation (controls the extent of
blurring)

* G(x,y) gives the weight for each pixel based on its
distance from the center

The kernel values are derived from this Gaussian function
and normalized so that they sum to 1, ensuring no change in
image brightness. The image is convolved with this kernel
to produce the blurred effect. The following Python code
snippet shows how a degraded image (blurred with
Gaussian kernel is restored using an inverse filter):

V(M, N), k, sigma?2, nsigma2 = im.shape, 15, 0.125, 0.0025




im = rgb2gray(imread('images/house.jpg"))
kernel = np.outer(signal. windows.gaussian(k, sigma?Z2), \
signal. windows.gaussian(k, sigmaZ2))
im_blur = convolve2d(im, kernel, k)
im_cor = random_noise(im_blur, var=nsigma?2)
freq = fp.fft2(im_cor)
epsilon = 1e-3
eta = 1 / epsilon
kernel = np.pad(kernel, ((M-k)//2,(M-k)//2+1), ((N-k)//2,(N-k)//2+1)), \
mode='constant')
im_res_cutoff, F_cutoff = inverse_filter_cutoff(im_cor, kernel, eta)
im_res_pseudo, F_pseudo = pseudo_inverse filter(im_cor, kernel, epsilon)

The preceding Python code demonstrates image restoration
by applying an inverse filter to a degraded image. The
following is a breakdown of how it works:
* Defining image parameters:
o M, N: Dimensions of the image.
o k: Size of the blur kernel.

o sigma2: Standard deviation for generating the
Gaussian kernel (controls blur intensity).
o nsigma?2: Variance of the noise added to the blurred
image.
* Image loading and conversion: The image is loaded
and converted to grayscale using rgh2gray(imread(.)).

* Generating the blur kernel: A Gaussian blur kernel is
created wusing signal.windows.gaussian(), which
generates a 1D Gaussian, and np.outer() forms a 2D
kernel, by exploiting the separability of the Gaussian
function in 2D.

* Blurring the image: The image is blurred by
convolving it with the Gaussian Kkernel wusing
convolve2d(),  where convolution (in 2D) is
mathematically defined as: f® h)(xy) =
Yminf(mn)h(x —m,y —n), with f and h representing



the image and the kernel, respectively.

* Adding noise: Random noise with variance nsigma?2 is
added to the blurred image using random_noise(), to
simulate a noisy, degraded image.

* FFT of the corrupted image: The corrupted (blurred
and noisy) image is transformed into the frequency
domain using the Fast Fourier Transform (FFT) with
fp.fft2().

* Inverse filter application:

o Kernel padding: The kernel is padded to match the
image size using np.pad().

o Inverse filter: The following two variations of the
inverse filter are applied:

Cutoff inverse filter (inverse_filter cutoff()):
This applies a frequency domain cutoff to limit
high-frequency noise using the inverse of the
kernel (with a threshold eta).

Pseudo-inverse filter (pseudo_inverse filter()):
This uses a regularized pseudo-inverse approach to
stabilize the inversion, avoiding divisions by small
values using epsilon.

Both filters attempt to undo the blur and noise degradation,
thereby restoring the image. If you run the preceding code
snippet and plot the degraded and restored images (along
with the magnitude of the frequency spectrums) using the
aforementioned two implementations, you should obtain a
figure as follows:



Mosy blurred image: PSNR=23_301 Restored Image: PSNR=26.032 Restored image: PSNA=26.032
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Figure 1.7: Image restoration with (pseudo) inverse filter

If you plot the magnitude of frequency spectrums in 3D, you
will obtain a figure like the next one:

plot_freq spec_3d(fp.fft2(im_cor)) plot _freq spec 3d(fp.fft2(im_res_cutoff))

Figure 1.8: Frequency spectrum of the degraded vs. restored image

As we have seen in the last section, Gaussian blur kernel



applies a symmetric, isotropic smoothing effect to an image
by convolving it with a 2D Gaussian function, which assigns
higher weights to pixels closer to the center. It is commonly
used to reduce noise or create a soft-focus effect. In
contrast, a motion blur kernel simulates the effect of
object motion or camera shake by averaging pixel
intensities along a specific direction and distance. Unlike
Gaussian blur, motion blur is directional and anisotropic,
resulting in elongated streaks that mimic the perceived
motion. They serve distinct purposes: Gaussian blur focuses
on uniform smoothing, while motion blur captures the
directional nature of movement.

Motion blur kernel

A motion blur kernel in image processing is used to simulate
the effect of camera or object movement during exposure,
causing the image to appear smeared along the direction of
motion. It is a linear filter that averages pixel values along
a straight line in the direction of the blur, giving the
appearance of motion.

Mathematically, a motion blur kernel is often represented
as a 2D matrix where non-zero values form a line with equal
weights in the direction of the blur. For example, a simple
horizontal motion blur kernel of size NXN can be written as

the following matrix (with the first row as all ones and all
the elements of the rest of the matrix as zeros):

1 - 1

0 - 0
In the preceding example, the kernel has N non-zero

elements (all equal to 1/N) in the first row, simulating

uniform averaging along a horizontal path of length N. The
image is convolved with this kernel, which results in a
blurring effect along the specified motion direction.



For vertical or diagonal motion blur, the non-zero values in
the kernel would be arranged along a vertical or diagonal
line, respectively. The general motion blur can be extended
to other directions by adjusting the orientation of the
kernel.

Let us now degrade an image using motion blur and restore

(deblur) using the inverse filter, using the following code
snippet:

im = rgb2gray(imread('images/car.jpg'))

(M, N), k = im.shape, 21

kernel = np.zeros((k, k))

kernel[int((k-1)/2), :] = np.ones(k)

kernel = kernel / k

im_blur = convolve2d(im, kernel, k)

im_cor = im_blur

freq = fp.fft2(im_cor)

kernel = np.pad(kernel, ((M-k)//2,(M-Kk)//2+1), ((N-k)//2,(N-k)//2+1)), \
mode='constant')

epsilon = 10e-3

im_res_pseudo, F_pseudo = pseudo_inverse filter(im_cor, kernel, epsilon)

A couple of steps from the preceding code snippet demand
more explanation:
1. Creating the motion blur kernel:

a. A k x k matrix of zeros (kernel = np.zeros((k, k)))
is created.

b. The middle row of this matrix is filled with ones
(kernellint((k-1)/2), :]1 = np.ones(k)) to simulate
horizontal motion blur.

c. The kernel is normalized by dividing by k to ensure
that the sum of all elements is 1, ensuring proper
blurring.

2. Blurring the image:

a. The image is blurred by convolving it with the motion
blur kernel using convolve2d(). This simulates the
motion blur effect on the image.



b. In this case, no additional noise is added; the
corrupted image im_cor is simply the blurred image.

If you run the preceding code snippet and plot the motion-
blurred and the deblurred (restored) images in both the
spatial and frequency domains, you should obtain a figure

as follows:

Figure 1.9: Restoration of a motion-blurred image with pseudo-inverse filter
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If you plot the magnitude of frequency spectrums in 3D, you
will obtain a figure as follows:



plot_freq_spec_3d(fp.fft2(im cor)) plot_freq_spec_3d(fp.fft2(im_res_cutoff)) plot_freq spec 3d(fp.fft2(im_blur))

plot_freq_spec_3d(fp.fft2(im_res_pseudo)) plot_freq_spec_3d(F_pseudo)

Figure 1.10: Frequency spectrum of the image, blur kernel, blurred and
restored image

Simulating the bokeh blur

The bokeh effect is a pleasing visual artifact, and it often
enhances the aesthetics of a photograph. Let us understand
how the effect can be created. Light rays (from light
sources) get reflected by the objects in the scene, and the
camera lens focuses them onto the image plane. The points
that appear in focus are the ones that fall inside a certain
distance range, and the remaining ones appear out of focus
(being too far / too close). Among these points, the bright
spots (for example, light sources) create circles of confusion
that are more visible than the ones created by darker points
(by the contrast effect). This phenomenon is known as the
bokeh effect. In this section, you will learn how to simulate
this effect using Python code with 2D convolution.

Let us start by importing the required libraries using the



next line of code:

from skimage.color import rgb2gray, rgha2rgb

Consider a white pixel at the center of a black image. Let us
shift this image in all directions by a single pixel and
accumulate the results. It will smear the white pixel over its
neighbors.

Let us implement the function apply bokeh blur() to
simulate this effect. The function takes two arguments: an
input image and a binary mask image (a small white
star/hexagon/circle at the bottom left corner in a black
background) of the same shape. Start with a blank output
image where the smearing effects will get accumulated.

For each white pixel P(i,j) from the mask image, shift the
input color image by (i,j), using the function np.roll(),
strengthen the effect by using func() (for example, a cubic
function), and multiply it by the mask pixel value, and add
the result to the output image.

Finally, normalize the pixel values, as shown in the
following code snippet:

def func(x):
return x**3
def apply_bokeh_blur(img, mask):
h, w = mask.shape
out = np.zeros(img.shape)
total = 0
for iin range(h):
for j in range(w):
if maskI[i, j] !'= 0:
out += mask([i, j] * func(np.roll(img, (i,j), (0,1)))
total += mask([j, j]
out /= total
out /= out.max()
return out

Read the input RGB color image of an X-mas tree. Let us use
a black image with a small white star (mask) at the bottom
left corner as the mask image. Invoke the function



apply bokeh blur() with the input and the mask image to
obtain the output image with the desired effect.

mask = rgh2gray(rgba2rgb(imread('images/xmask.png")))
img = cv2.resize(imread(‘'images/xtree.png') / 255, mask.shape[::-1])
out = apply_bokeh blur(img, mask)

Plot the input image and the output image using bokeh
blur. Create visually interesting results by varying the
shape of the mask (for example, use a hexagonal mask
instead); you should get a figure as follows:

output with Bokeh Blur

Figure 1.11: Applying the bokeh blur to an image

Wiener deconvolution with opencv-
python

The inverse filter performs poorly when the noise level is
high. Wiener filter is an improved version of the inverse
filter, it works in the frequency domain and uses prior
regularization (penalization of high-frequency terms which
have a poor Signal-to-Noise Ratio). The regularization
parameter generally needs to be hand-tuned. Refer to the
following figure for an example of Wiener deconvolution:
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Figure 1.12: Wiener deconvolution

The frequency response of the Wiener filter can be
expressed as:

1 1
H(u,v)1+ 1/(|H(u,v)|2SNR)

W(u,v) =

Where SNR, or the Signal-to-Noise Ratio, is the ratio of
the frequency responses of the original image (signal) to
noise. Here is a brief explanation:

e First note that . lim SNR =04nq lim SNR = ¢,

N(uv)—oo N(u,»)—-0
some frequency (u, v).

e When the noise is () (i.e. SNR is o), the Wiener filter
simply reduces to an inverse filter, ie.,



. 1 1
N(EE}—mW(u U) H{uv} 1+0 H(u,v)'

 With the increase of noise at certain frequencies, which
results in a drop in the SNR ratio, the Wiener filter
attenuates frequencies according to their filtered SNR

. . —_ 1 [—
ratio, since Tllr?qmw(u ,V) = Huw) o = 0.

» The A parameter balances between the data and the
regularization term.

In this section, we shall implement the Wiener filter to
deblur a degraded image again, but this time using opencv-
python (cv2) library functions. It shows how DFT can be
used apply Wiener deconvolution to an image with a user-
defined PSF.

Let us first implement the function blur edge() to apply
Gaussian blur on an image. Also, implement the functions
motion_kernel() and defocus kernel() to create the
motion blur and defocus blur kernels, respectively. The
function deconvolve() implements the Wiener
deconvolution as follows:

def blur_edge(img, d=31):
h, w =img.shapel[:2]
img pad = cv2.copyMakeBorder(img, d, d, d, d, cv2Z.BORDER_WRAP)
img_blur = cv2.GaussianBlur(img_pad, (2*d+1, 2*d+1), -1)[d:-d,d:-d]
y, X = np.indices((h, w))
dist = np.dstack([x, w-x-1, y, h-y-1]).min(-1)
w = np.minimum (np.float32(dist)/d, 1.0)
return img*w + img_blur*(1-w)
def motion_kernel(angle, d, sz=63):
kern = np.ones((1, d), np.float32)
¢, s = np.cos(angle), np.sin(angle)
A = np.float32([[c, -s, 01, [s, ¢, 011)
sz2 =sz// 2
A[:,2] = (sz2, sz2) - np.dot(A[:,:2], ((d-1)*0.5, 0))
kern = cv2.warpAffine(kern, A, (sz, sz), flags=cv2.INTER_CUBIC)
return kern
def defocus_kernel(d, sz=63):
kern = np.zeros((sz, sz), np.uint8)
cv2.circle(kern, (sz, sz), d, 255, -1, cv2.LINE_AA, shift=1)




kern = np.float32(kern) / 255

return kern
def deconvolve(img, kern):

kern /= kern.sum()

kern_pad = np.zeros_like(img)

kh, kw = kern.shape

kern_pad[:kh, :kw] = kern

freq = cv2.dft(img, flags=cv2.DFT_COMPLEX OUTPUT)

kern_freq = cv2.dft(kern_pad, flags=cv2.DFT COMPLEX OUTPUT,

nonzeroRows = kh)

kern freq2 = (kern_freq**2).sum(-1)

kern_wiener = kern_freq / (kern_freq2 + noise)[...,np.newaxis]

res = cv2.mulSpectrums(freq, kern_wiener, 0)

res = cv2.idft(res, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT)

res = np.roll(res, -kh//2, 0)

res = np.roll(res, -kw//2, 1)

return res

Read the input image as a gray-scale image and apply the
Gaussian blur to the image as follows:

img = cv2.imread('images/barbara.jpg’, cv2.IMREAD _GRAYSCALE)
img = np.float32(img) / 255

img = blur_edge(img)

angle, d, snr = np.deg2rad(135), 22, 25

noise = 10**(-0.1*snr)

Defocus the image by applying the defocus blur kernel and
then restore the defocused image using the deconvolve()
function defined as follows:

kern_defocus = defocus_kernel(d)
img defocussed = cv2.filter2D(img,-1, kern_defocus)
res_defocussed = deconvolve(img _defocussed, kern_defocus)

Next, apply motion blur to the original image and then
restore the defocused image wusing the deconvolve()
function defined as follows:

kern_blur = motion_kernel(angle, d)
img_blur = cv2.filter2D(img,-1, kern_blur)
res_blur = deconvolve(img_blur, kern_blur)

Plot the original image, and the defocus and the motion blur
kernels. You should obtain a figure as follows:
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Figure 1.13: Input (Barbara) image with the defocus and motion blur kernel

Now, if you plot the defocused, blurred and restored
images, you should obtain a figure as follows:

Delocussed image

;

Deconvolved image

Deconvolved image

Figure 1.14: Restoring defocused/motion/blurred images using deconvolution
with the Wiener filter



Deconvolution with unsupervised
Weiner filter with scikit-image

The unsupervised Wiener algorithm uses a data learning
algorithm (based on an iterative stochastic Gibbs sampler)
to obtain self-tuned regularization parameters . The
algorithm is fast since it is based on linear models but may
not restore sharp edges like the non-linear methods (for

example, TV restoration, we shall explore later in this
chapter).

From the Bayesian perspective, the deconvolved
(estimated) image can be defined as the posterior mean
(defined by the sum of all possible images weighted by their
probability). But the exact sum being intractable, the
algorithm uses Markov Chain Monte Carlo (MCMC)
simulation to draw images under posterior law (drawing
highly probable images more often than the less probable
images) and then computes the empirical mean of the
samples.

In this section, we shall use skimage.resoration module’s
implementation of unsupervised Wiener filter to
deconvolve and restore an image degraded with noise (we
shall also scipy.signal’s implementation of the Wiener
filter, we shall leave the comparison of the restored image
qualities and parameter tuning for the Gibbs sampler for
unsupervised Wiener as an exercise for the interested
reader).

Let us start by importing all the required libraries as
follows:

from skimage import color, restoration
from scipy.signal import convolve2d

Read the cameraman grayscale image and degrade with
box-blur (for example, a 5x5 kernel of ones normalized by
25, to average each pixel with its 5x5 neighborhood), and



Gaussian noise, using the next code snippet:

im = rgb2gray(imread('images/cameraman.jpg’))

noisy = im.copy()

psf = np.ones((5, 5)) / 25

noisy = convolve2d(noisy, psf, 'same"’)

noisy += 0.1 * im.std() * np.random.standard_normal(im.shape)

Use the unsupervised wiener() function from
skimage.restoration to apply the unsupervised Wiener
deconvolution on the degraded image. The function
accepts the following arguments:
* image: The degraded input image.
 psf: The impulse function, 5x5 average kernel is used
here.

* reg: The regularization operator, the default of which is
Laplacian.

The function returns the deconvolved image (posterior
mean), and a dictionary with the keys noise and prior (we
are not using them here).

Use scipy.signal module’s wiener() function to apply the
classic Wiener deconvolution to the degraded image, and
compare the following output image with the previous one:

deconvolved_unsup, _ = restoration.unsupervised_wiener(noisy, psf)
deconvolved = scipy.signal.wiener(noisy, (5,5))
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Figure 1.15: Image restoration with scipy.signal implementation of Wiener
filter and its unsupervised version

Non-blind deconvolution with
Richardson-Lucy algorithm

The Richardson-Lucy algorithm, also known as Lucy-
Richardson deconvolution ¥, is an iterative procedure for
recovering an underlying image that has been blurred by a
known point spread function. It is an iterative Bayesian
algorithm for image restoration. The iterative updation step
of the algorithm is shown in the following figure:
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Figure 1.16: Iterative updation step of the Richardson-Lucy algorithm

Since the PSF g(x) is known, we can just focus on just
finding the restored f(x) by iterating over the preceding
equation until convergence. An initial guess is required for
the restored f,(x) to start the algorithm. In subsequent
iterations, large deviations of the estimate from the true
object are reduced rapidly during the early stages, while
finer details are recovered more gradually in later
iterations. Advantages of this algorithm include a
nonnegativity constraint if the initial guess fy(x) = 0, and
the conservation of total energy as the iteration proceeds.

Now, let wus deconvolve a degraded image using
Richardson-Lucy deconvolution algorithm, using
skimage.restoration module’s implementation. The
algorithm is based on a PSF, which is described as the
impulse response of the optical system. The blurred image
is progressively sharpened through a number of iterations,
the number of which (num_iter) needs to be hand-tuned.

First, read the input cameraman image, convert it to
grayscale. Then, convolve the image with a 5x5 box kernel
to blur it and add random Poisson noise with a rate
parameter A, using the function np.random.poisson(), and
obtain the degraded image, as shown in the following code
snippet:

im = color.rgb2gray(imread('images/cameraman.jpg'))

im_noisy = im.copy()

psf = np.ones((5, 5)) / 25

im_noisy = convolve2d(im_noisy, psf, 'same’)

im_noisy += (np.random.poisson(lam=25, size=im.shape) - 10) / 255.




Next, restore the image with the Richardson-Lucy
algorithm (with the non-blind version and a known PSF),
using the function richardson lucy() from scikit-image’s
restoration module, as shown in the next code snippet, try
different number of iterations (for example, 20, 50 etc.).

The function accepts the following arguments, and the
relevant ones are described as follows:

* image: The degraded input image.

» psf: The point spread function (blur kernel).

e num _iter: Specifies the number of iterations for the
update  process, acting as a regularization
hyperparameter.

The function returns the deconvolved (restored) image as:

deconvolved_RL = restoration.richardson_lucy(im_noisy, psf, num_iter=20)

Plot the restored images at different iterations, along with
the input and noisy image. You should get a figure as
follows:
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Figure 1.17: Restoring degraded cameraman image with (non-blind)
Richardson-Lucy algorithm

Blind deconvolution with Richardson-
Lucy algorithm

So far, we have discussed image restoration using non-
blind deconvolution techniques, where the PSF is known.
In such cases, image restoration reduces to an inverse
filtering problem. However, in blind deconvolution, where
the PSF is unknown, we need an iterative algorithm that
simultaneously estimates the PSF and the latent (true)
image. The Richardson-Lucy (RL) algorithm, initially



developed for Maximum Likelihood (ML) deconvolution
under a Poisson noise model, has been extended to handle
the blind case through an iterative PSF estimation
framework 191,

Mathematical foundation

In standard non-blind Richardson-Lucy deconvolution,
the image is estimated iteratively by fixing the known PSF.
For an observed degraded image c(x), the image update is
performed as:

FEDE) = FOD - (g * 97 9) (1)

Where we have:

« f)(x): estimate of the true image at iteration,

* g(x): PSF,

* x: convolution operator,

* g*(—x): flipped PSF.
In blind Richardson-Lucy, both the true image f(x) and
PSF g(x) are unknown and estimated by alternating steps:

* Image Update: Fix the PSF g, and update f using
Equation (1).

« PSF Update: Fix the image f, and compute g using a
similar update step:

9@ =900 (Fmm S 0) @

This alternation continues for a number of outer iterations.
The iteration indices:

* k: image update iteration
* j: PSF update iteration



Algorithm overview

At the k-th outer iteration, assuming the current estimate of
the image is f¥, the algorithm:
1. Uses the current PSF estimate g¥ to update f* using
the RL formula.
2. Then, using the updated image f¥, updates the PSF
gk+t,

3. This alternation is repeated for a fixed number of
iterations or until convergence.

Initial guesses are provided for both the image fP(x) and
the PSF gQ(x), and the aforementioned steps are repeated
iteratively.

Code implementation

Let us now implement the blind Richardson-Lucy
deconvolution using Python. Start by importing the
required libraries, as always:

from skimage import color, io

from scipy.signal import gaussian, convolve2d

from skimage.metrics import peak_signal noise_ratio as psnr
import numpy as np

import matplotlib.pyplot as plt

Define the function richardson_lucy blind(), it performs
blind image deconvolution using the Richardson-Lucy
(RL) algorithm. In blind deconvolution, both the latent
(true) image f(x), and the point spread function (PSF)
g(x) are unknown and must be estimated simultaneously
from a blurred and noisy observation b(x).
The function alternates between:

* Image update (fix PSF g, update f).

» PSF update (fix image f, update g).
This is done over n_psf updates outer iterations (i.e., blind
updates), and within each outer iteration, the image is



updated for n_image updates inner iterations (assuming
the current PSF is correct), as shown in the next code
snippet. The next table summarizes the algorithm steps
executed inside the function:

Step

Purpose

Equation

Image update

Refine latent image f using

current PSF g

FRED = f) (fig *g*)

PSF update

Refine blur kernel ¢ using
current image f

, . b
g(t+1) = g(t) . (f 3 *f~)

Normalization

Ensure PSF validity

Txg(x) =1, g9(x)=0

Table 1.1: Algorithm steps executed inside the function

The function returns the restored image and estimated PSF,
as shown in the following code snippet:

def richardson_lucy_blind(b, f init, g _init, \
n_psf updates=10, n_image_updates=10):

Blind Richardson-Lucy deconvolution (corrected version).
Parameters:
b : 2D np.ndarray
Blurred and noisy input image.
f init : 2D np.ndarray
Initial guess for the true image.
g_init : 2D np.ndarray
Initial guess for the PSF (must be normalized).
n_psf updates : int
Number of outer iterations (PSF updates).
n_image_updates : int
Number of inner iterations (image updates).

Returns:
f: 2D np.ndarray
Restored image.
g : 2D np.ndarray
Estimated PSF.

eps = le-7 # Small constant to prevent division by zero
f = f init.copy()
g = g_init.copy()




foriin range(n_psf updates):

for k in range(n_image_updates):
conv_fg = convolve2d(f, g, mode='same’, boundary='wrap")
relative_blur = b / (conv_fg + eps)
correction = convolve2d(relative _blur, \
np.flip(np.flip(g, axis=0), axis=1), \
mode='same’', boundary='wrap")
f *= correction

conv_fg = convolve2d(f, g, mode='same’, boundary='wrap')
relative_blur = b / (conv_fg + eps)
g *= convolve2d(f, relative_blur, mode='valid', boundary="'wrap")

g = np.clip(g, 0, None)

g /= np.sum(g)
returnf, g
Read the Lena grayscale image as input. Apply 5§ x5
Gaussian kernel (using the function gaussian_kernel()) to
blur the image and add Gaussian noise (using the function
np.random.randn()) to degrade the image, as shown in the
following code snippet:

def gaussian_kernel(size=5, sigma=1):

gld = gaussian(size, std=sigma)
kernel = np.outer(gld, gld)
kernel /= np.sum(kernel)
return kernel

im = io.imread(‘images/lena.jpg’, True)

psf_true = gaussian_kernel(5, 5)

blurred = convolve2d(im, psf true, 'same’, boundary='wrap")
noisy = blurred + 0.25 * np.random.randn (*blurred.shape)

Initialize the image estimate (f init) with the degraded
image itself, and the PSF estimate (g_init) with a flat box
kernel to start with. Invoke the function
richardson lucy blind() to apply the blind deconvolution
to the degraded image for simultaneous estimation of the
blur kernel (g_estimated) and restoration of the image



(f restored), as shown in the following code snippet:

# Initial guesses

f init = noisy.copy()

g_init = np.ones((5,5)) / 25 # flat guess

g_init = np.random.random((5, 5))

g_init /= np.sum(g_init)

# Perform blind deconvolution

f restored, g_estimated = richardson_lucy_blind(noisy, f init, g_init)

Plot the restored image along with the original and the
degraded images (compute the PSNR values), and you
should obtain a figure like the one shown as follows (note
the increase in PSNR in the restored image):

Image Restoration using Blind deconvolution with the Richardson-Lucy Algorithm

Restared, PSNR:26.311

Original Blurred + Noisy, PSNR: 24,549

Figure 1.18: Restoring degraded Lena image with (blind) Richardson-Lucy
algorithm

Total variation denoising

TV denoising is a classical image processing technique that
aims to restore images while preserving important features
like edges. It is based on the idea that natural images
typically have sparse gradients — meaning, they are mostly
piecewise smooth with sharp transitions at edges. TV
methods seek to exploit this property by minimizing the
total variation norm, promoting solutions that are smooth in
homogeneous regions while maintaining sharp



discontinuities.

TV denoising methods assume that the high total variation
in signals is caused by excessive/spurious detail. The goal is
to remove unwanted but preserve important details (for
example, edges) in the image by reducing the total variation
of the (degraded) image so that it remains a close match to
the original image. This is known as the Rudin-Osher-
Fatemi (ROF) model . The original TV regularization
method targeted image denoising under Gaussian noise,
nevertheless it has evolved into a more general technique
for inverse problems.

In this section we shall wuse functions from
skimage.restoration to implement TV denoising.

TV denoising with Rudin-Osher-Fatemi

algorithm

TV regularization is a technique that was originally
developed for Additive White Gaussian Noise (AWGN)
image denoising by Rudin, Osher, and Fatemi. They
proposed to estimate the denoised image u as the solution
of the following minimization problem:

min A 5
w ey v +3 | (60 —uo)?dx
where ] is a positive parameter, here the first term is for
regularization and the second term represents the data
fidelity term, which depends on the noise model. This L,-TV
the problem is referred to as the ROF problem.

Denoising is performed as an infinite-dimensional
minimization problem, where the search space is all
Bounded Variation (BV) images. BV(2) refers the family of
functions (with bounded variation) over the domain 0, TV(2)
is the total variation over the domain, and A is a penalty



term. When u is smooth, the total variation is equivalent to
the integral of the gradient magnitude:

lllzveay = [ IVaulldx
0

Where ||-|| is the Euclidean norm. Then, the objective
function of the minimization problem becomes:

u ETS@ ,L [”v“" +%(’f B “)E] dx

Using the Euler-Lagrange equation for minimization of
the preceding functional ® results in the following Partial
Differential Equation (PDE):
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Here is the time-dependent version of the ROF equation:

ou Vu
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In this section, you will learn how to denoise an image with
scikit-image implementation of TV denoising, using the
algorithm proposed by Chambolle, as shown in the
following figure:
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Figure 1.19: TV denoising algorithm by Chambolle

TV denoising tries to minimize the total variation of an
image (which is roughly equivalent to the integral of the
norm of image gradient) and often produces cartoon-like
(piecewise-constant) images.

Let us start by importing the required libraries, using the
following code snippet. Notice that the version of the scikit-
image library must be > (0.14.

import skimage
print(skimage. version_ )
from skimage.restoration import denoise_tv_chambolle

Read the image, convert it to a grayscale, and add Gaussian
noise to the image using the function
np.random.normal()as follows:

im = 255*rgb2gray(imread('images/cameraman.jpg’))
noisy = im + np.random.normal(loc=0, scale=im.std() / 4, size=im.shape)

Use the function denoise tv_chambolle() from scikit-
image restoration module to implement TV denoising.
The function accepts the following arguments:

* image: Input image to be denoised.

« weight: Denoising weight. Larger weight results in
more denoising (at the cost of fidelity to the input
image).



 n_iter max: Maximum number of iteration steps to be
run to optimize.

It returns the denoised image. The following code snippet
shows how the function can be used to denoise the noisy
cameraman grayscale image. The denoising strength is
controlled by the weight parameter; higher values result in
stronger smoothing. Different values of weight (10, 25, 50,
and 100) are tested to observe the effect on image quality:

for weight in [10, 25, 50, 100]:
tv_denoised = denoise_tv_chambolle(noisy, weight=weight)

The following figure shows the original, noisy, and TV-
denoised images with a couple of different weights:
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Figure 1.20: TV denoising of the noisy cameraman image (with scikit-image’s
Chambolle implementation)

As shown in Figure 1.20, as we go on increasing the
weights, we get more denoising effect, at the cost of

fidelity to the input image (for example, texture
flattening).

TV denoising with Chambolle vs.
Bregman

In this section, we shall implement total-variation denoising
with split Bregman optimization [5] using

J



skimage.restore module functions. As discussed, TV
denoising, also called TV regularization, seeks to recover a
denoised image (u) from a noisy image (f) by minimizing the
total variation energy (formulated by the ROF model) m&n%

lu—fN2+20Vul,

* The first term % fu—fI ; encourages similarity to the
observed image.

e The second term || Vu |l; penalizes large gradients,
preserving edges while smoothing out noise.

* A is a regularization parameter that controls the trade-
off between the two.

Difficulty

The mix of the €2 term (smooth, differentiable) and the €1
term (non-smooth) makes direct optimization difficult.

How the Split Bregman method helps

The Split Bregman method reformulates the problem by
introducing an auxiliary variable d =~ 7y, which splits the
problem into more manageable subproblems:

mdn% lu—fI2+210Vul,,subjecttod = Vu

This constraint is incorporated using Bregman iteration,
leading to the following iterative scheme and the
optimization problem is solved in an iterative fashion. The
Split Bregman method breaks the problem into easier parts:

1. It introduces a new variable d to split the gradient from
the image.

2. Then it solves the problem step by step, alternating
between:



a. Updating the image u (solving a smooth least-
squares problem).

b. Updating the gradient d (using a soft thresholding /
shrinkage rule).

c. Adjusting a helper variable b (Bregman variable)
that guides convergence.

This results in fast, stable optimization—ideal for
problems involving total variation and sparsity.

As described in the last section, Chambolle’s algorithm
solves the ROF TV denoising model. But instead of
introducing an auxiliary variable like Bregman, it directly
solves the dual problem. The method uses dual variable
projection to enforce the constraint, thereby avoiding the
¢ 1-non-differentiability directly. It works well and is simple
to implement for denoising tasks. The following table
compares these two methods:

Feature Chambolle’s method Split Bregman
Formulation Dual (solves dual ROF Primal with variable splitting
problem)
Handles Yes, via projection (dual Yes, via soft-thresholding +
constraints? norm < 1) penalty
Au)ghary No Yes (d, b variables)
variables?
Flexibility Mostly for TV denoising More general (inpainting,
CS, etc.)
Update tvoes Gradient descent + Alternating minimization
p yp projection (shrinkage + least squares)
Convergence Fast and stable for basic TV Fast, scalable to more
complex problems

Table 1.2: Comparison of Chambolle’s method and split
Bregman

Now, let wus use skimage.restoration module’s
implementation of the preceding algorithms to recover a



degraded image. Let us start by importing the required
libraries using the following line of code:

from skimage.restoration import denoise_tv_chambolle, denoise tv_bregman

Read the image, convert it to grayscale, and add Gaussian
noise to the image to create the degraded version, this time
using the random_noise() function from skimage.util as
follows:

img = img_as_float(imread('images/zelda.png'))
noisy = random_noise(img, var=0.02)
noisy = np.clip(noisy, 0, 1)

We shall use the function denoise_tv_bregman() from
scikit-image restore module for split-Bregman method.
This function accepts the following arguments:

* image: Degraded input image (converted to float with
pixel values in [0,1] using img_as_float).

» weight: Denoising weight, the regularization parameter
lambda is chosen as 2 * weight.

* isotropic: False if anisotropic TV denoising.

 channel axis: For color images, specify the color
channel (for example, the last channel, i.e., -1), TV
denoising is applied separately for each channel.
The function returns a denoised image.
The following code snippet shows how the function can be
used to denoise the RGB color image of Zelda, for different
weights and modes (isotropic vs. anisotropic), then
compares it with the one obtained by denoising with TV
Chambolle, and evaluates the quality of the restored
images using PSNR values (with the function
peak signal noise_ratio() from skimage.metrics
module):

def plot_image(img, title):
plt.imshow(img), plt.axis('off"), plt.title(title, size=20)



plt.figure(figsize=(20,22))
plt.subplot(331), plot_image(img, 'Original')
plt.subplot(332), plot_image(noisy, 'Noisy, PSNR: {}" \
format(np.round(psnr(img, noisy),3)))
i=23
for weight in [0.1, 0.25]:
tvd_out = denoise_tv_chambolle(noisy, weight=weight, channel axis=-1)
plt.subplot(3,3,i)
plot_image(tvd_out, 'TVD Chambolle (w={}), PSNR: {}' \
format(weight, np.round(psnr(img, tvd_out),3)))
i+=1
for weight in [10, 7]:
for isotropic in [False, True]:
tvd_out = denoise_tv_bregman(noisy, weight=weight, isotropic=isotropic,

channel axis=-1)
plt.subplot(3,3,i)
plot_image(tvd_out, "TVD Bregman (w={}), PSNR: {}, iso: {}'.format(weight,\
np.round(psnr(img, tvd_out),3), str(isotropic)[0]))
i+=1
plt.subplots_adjust(wspace=0.05, hspace=0.05, top=0.95, bottom=0, left=0,
right=1) plt.show()

If you run the preceding code snippet, you should obtain a
figure as follows:
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Figure 1.21: TV denoising of the noisy Zelda image (with scikit-image’s
Chambolle vs. Bregman method)

Image denoising with wavelets

Wavelets provide a powerful and general framework for
representing and analyzing multiresolution images. An
image can be reconstructed by summing over its Laplacian
pyramid levels. Wavelets extend this idea by offering a
mathematically grounded basis for such decomposition.

A wavelet is a localized wave-like oscillation with zero
mean and finite energy, defined over a finite duration.



Wavelets '] represent the scale of features in an image, as
well as their position. Unlike sinusoids in the Fourier basis,
wavelets decay rapidly and are capable of capturing both
spatial (or temporal) and frequency information. This
makes them especially effective in representing abrupt
transitions and localized features in signals and images.
Formally, wavelets form an orthonormal basis for L?(R),
the space of square-integrable functions, allowing a function
f(t) to be expressed as: f(t) = Xk cix¥ijx(t), where Pji(t) =
2//24(27t — k) is the scaled and shifted version of the mother
wavelet , with scale and translation k.

The key concepts in wavelets are:

* Scaling (dilation): Controls the resolution. A wavelet
scaled by a factor s> 0 is Y(t/s). Larger s captures
coarse features (low frequency); smaller captures fine
features (high frequency).

 Shifting (translation): Moves the wavelet along the

signal: l,b(t — k) enabling localization in space or

time.

 Dyadic scales and shifts (powers of 2): We do not
need continuous scale shifts—dyadic decomposition
suffices: ¥, (x) = 2//2p(2/x - k), j,k € Z.
We do not need to calculate wavelet coefficients at every
possible scale. We can choose scales based on powers of 2,
i.e., 2/ and translation as 2/yx, with j,x € {1,2,3,..} and get
equivalent accuracy.
In multiresolution analysis (MRA), which underpins the
wavelet transform:

* The signal space is decomposed into nested subspaces
Vj, each representing the signal at a particular
resolution or scale.

 The scaling function ¢(t) spans the approximation



space Vj. It captures the coarse (low-frequency)
components of the signal.

* The wavelet function y(t), on the other hand, spans the
detail space Wj, capturing the high-frequency or
detail components.

A discrete function f(n) thus be approximated as a sum of

scaled and translated wavelets y(n), plus a coarse
approximation ¢(n), as shown in the following figure ®:

f(n)= r_.Zu ok, () + I,—EZH (jsk)w,,(n)

4 .'
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Figure 1.22: Approximation of a function by wavelets

Here J, is an arbitrary starting scale, and n =0,1,2, ..., M.
The preceding represents x the DWT for a 1-D signal x, an
image being a 2D signal, we need a 2D DWT instead. The
concept extends naturally to 2D signals such as images
using tensor products of 1D wavelets.

The 2D DWT decomposes an image into four components at
each scale:

e LL: Approximation (¢ ® ¢)
 LH: Horizontal detail (¢ ® y)
 HL: Vertical detail (y ® ¢)

* HH: Diagonal detail (¢ ® y)

This is done by applying the 1D DWT along rows and then
columns of the image.

Mathematically, a 2D function f(x, y) can be expressed as:
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Where we have,
e 4k 1: Approximation coefficients (LL)

dfk',;; df‘fp de_E: Horizontal, vertical, diagonal detail

coefficients

Discrete wavelet transform

The basic ingredient in discrete wavelet transform
(DWT) is the MRA. The main point is that the wavelet
coefficients encode local information about the image in a
way that makes it possible to discard all coefficients with
absolute values below a given threshold and still be able to
reconstruct the signal (image) with acceptable accuracy
(allowing a sparse representation).

Again, an image, being a 2D function, can be represented by
a sum of approximation plus details. The 2D DWT
decomposes an image into approximation and details (for
example, horizontal, vertical, and diagonal details) at
different scales/levels (using downsampling at Nyquist rate)
recursively.

Similarly, IDWT reconstructs the images from the
approximate and detailed coefficients at different scales
(using upsampling), as shown in the following figure:
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Figure 1.23: Image reconstruction with 2D discrete wavelet transform and its
inverse

Thus, wavelet transforms enable sparse representation and



are widely used in denoising, compression, image
fusion, and feature extraction.

Summarizing, the general steps in wavelet-based image
processing include:

e Compute the 2D discrete wavelet transform (DWT).
» Modify the transform coefficients (for example, for
denoising or compression).
e Compute the inverse discrete wavelet transform
(IDWT) for reconstruction.
Wavelets come in different sizes and shapes; the following
figure shows a few well-known families of wavelet basis

functions (there are many others), they need to be chosen
carefully based on the application:
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Figure 1.24: Wavelet families
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The following figure shows how the function wavedec2()
(which implements 2D DWT) from the Python package

pywt works (at level = n):



wmwferé {ﬂﬂ‘fﬁn} I

C (3n+1 sections)

cA | cH, | eV, | €D, kHn ik VaiiikDn i1 cHy | ¢V, | D,

32 32

32 32

258 | 256

512 | 512 - X

5 Image
(n*2)X 2
Figure 1.25: The function wavedec2() from the python package pywt

In this section, we will see how an image can be denoised
and restored using wavelets (DWT), first using the DWT
implementation from the library pywt and then using the
corresponding implementation from skimage.restoration.

Wavelet-denoising with pywt

Thresholding is a nonlinear technique, yet it is very simple
because it operates on one wavelet coefficient at a time. The
key idea is to choose a threshold value (for example,
Donoho-Johnstone universal threshold) and zero out the
wavelet coefficients obtained from multilevel DWT below
the threshold, in order to remove noise from the degraded
input image.

In this section, you will learn how to use the functions from
the library pywt to denoise an image using thresholding
the wavelet coefficients of a degraded image. Wavelet
denoising has the following steps:

1. Perform a multilevel wavelet decomposition (use



wavedecn() from pywt).

2. Identify a thresholding technique (soft or hard
thresholding mode).

3. Threshold (using the threshold() function from pywt)
and reconstruct (use waverecn() from pywt).

Let us start by importing the pywt library:

import pywt

Read the grayscale input image of beans and degrade it by
adding Gaussian noise with:

noise_sigma = 0.1
im = rgb2gray(imread('images/a.jpg’))
noisy = im + np.random.normal(0, noise_sigma, size=im.shape)

Let us perform multilevel wavelet decomposition using the
function wavedecn(), which accepts the input image, the
name of the wavelet family (db1) and number of levels (=2
here) of decomposition. This function provides a generalized
implementation of DWT for n-dimensional data (including
2D, 3D, etc.), whereas wavedec2() performs 2D DWT on 2D
data (for example, grayscale images), also wavedecn()
returns more structured coefficient access.

Let us plot the approximate and detailed coefficients at
different scales by using the function coeffs to_array(), by
arranging the wavelet coefficients list obtained from
wavedecn() in a single array, using the next code snippet:

levels = 2

wavelet = 'db1’

coeffs = pywt.wavedecn(im, wavelet=wavelet, level=levels)

arr, _ = pywt.coeffs_to_array(coeffs)

plt.figure(figsize=(20,20))

plt.imshow(arr, cmap='gray')

plt.title('Discrete Wavelet Transform Coefficient for db1 Wavelet for level 3', \
size=20)

plt.show()

If you run the preceding code snippet, you should obtain a



figure like the following one:

Descrete Wavelel Transdcam Coefficient for dbl Wavelet for lewel 3
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Figure 1.26: Multilevel wavelet decomposition with db1l wavelet family

Implement wavelet denoising with thresholding: define
the denoise() function that accepts the degraded image,
the name of the wavelet basis to be used, the noise
standard deviation o, and the mode of thresholding
(hard or soft).

Threshold the detail (i.e., high frequency) coefficients using
a Donoho-Johnstone universal threshold ¢, = ¢,/2logn,
here n refers to the number of elements in the detail
coefficients.

Hard thresholding sets coefficients below the threshold to
zero, while soft thresholding shrinks all coefficients

toward zero by the threshold value. The following figure
demonstrates the difference between soft and hard



thresholding:
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Figure 1.27: Soft vs. hard thresholding for a signal

In soft thresholding with threshold value (t), the data (x) is
replaced by sgn(x)(]x| —t),, i.e., with python expression
data/np.abs(data) * np.maximum(np.abs(data) - value,
0) 181,

Invoke the function denoise() with appropriate arguments
to obtain a smoothed image with different types of wavelets,
starting from the degraded beans image, using the
following code snippet:

def denoise(img, wavelet, noise_sigma, mode='soft'):
levels = int(np.floor(np.log2 (img.shape[0])))
coeffs = pywt.wavedecn(img, wavelet, level=3) #/evels)
threshold = noise_sigma*np.sqrt(2*np.log2(img.size))
denoised_detail = [{key: pywt.threshold(level[key], value=threshold, \
mode=mode) for key in level} for level in coeffs[1:]]
denoised_root = pywt.threshold(coeffs[0], value=threshold, mode=mode)
denoised_coeffs = [denoised _root] + [d for d in denoised_detail]




out = pywt.waverecn(denoised_coeffs, wavelet)

return out
im = rgb2gray(imread('images/beans.jpg"))
noisy = im + np.random.normal(0, noise_sigma, size=im.shape)
im_denoised _haar = denoise(noisy, wavelet='haar', noise_sigma=noise_sigma)
im_denoised_haar hard = denoise(noisy, wavelet="'haar’,
noise_sigma=noise_sigma, \

mode='hard")

im_denoised_db6 = denoise(noisy, wavelet='db6', noise_sigma=noise_sigma)

Plot the restored image using different wavelet families of
basis functions (for example, haar, db6, bior2.8, coif2)
and different modes of thresholding (hard vs. soft), along
with the original and the degraded images. You should
obtain a figure like the following one:

denoised (haar, soft denoised (haar, hard

Fa® o

Figure 1.28: Image denoising using different wavelet families with hard vs. soft
thresholding

Wavelet-denoising with scikit-image
In this section, you will learn how to use wavelet-based

denoising functions from skimage.restoration module.
Similar to the frequency domain in DFT, the wavelet domain



is yet another domain corresponding to a sparse
representation of the image (with the majority of values
zero and true random noise represented using many small
values). For denoising, the usual approach is to set all
values below a threshold (tf) to 0. If the threshold used is
large, it can additionally remove the finer details in the
image. In a multichannel (3D) input image, wavelet
denoising is performed on each color plane separately.

Let us start by importing the required functions from scikit-
image library’s restoration module:

from skimage.restoration import (denoise wavelet, estimate_sigma)

Read the (RGB) color input image and degrade it with
Gaussian noise, using the random_noise() function, as
shown in the next code snippet.

Use the function estimate_sigma() from
skimage.restoration module to estimate noise standard
deviation (it estimates by analyzing high-frequency
components in the degraded image using a wavelet-based
approach) for different color channels.

The estimated standard deviation is expected to a bit
smaller than the specified , due to clipping in
random_noise().

Use the function denoise wavelet() to apply the wavelet
denoising on the degraded image. The following are few of
the arguments it accepts:

* image: Input image to be denoised.

 sigma: The noise standard deviation. It is used to
compute detail coefficient thresholds.

 wavelet: The algorithm (type of wavelet) to be used,
db1 being the default one.

* mode: Type of denoising, can be soft or hard. Soft
thresholding finds the best approximation of the original



image from the input noisy image, given the noise is
additive.

« convert2ycbcr: Set to True, to perform wavelet
denoising in YCbCr colorspace given multichannel (RGB
color) input image, yielding better results often.

* method: Refers to the thresholding method to be used,
which can be either of BayesShrink or VisuShrink.

The function denoise wavelet() applies BayesShrink
thresholding by default. Separate thresholds for each of
wavelet sub-bands are computed in this adaptive
thresholding method.

The VisuShrink thresholding, on the other hand, applies a
single universal threshold to all of the wavelet detail
coefficients. It removes all Gaussian noise with a given s.d. (
o) with high probability, but it is also prone to produce
overly-smooth images.

Use different scale factors (for example, 2, 3, 4) with
estimated o (sigma_est) to decrease the threshold by these
factors and observe the impact on the denoised image.
Compute PSNR as an indication of the denoised output
image quality, given the input noisy image.

Plot the denoised images using different methods and
thresholding modes, along with their psnr values as follows:

original = img_as_float(imread('images/cat.jpg"))

sigma = 0.12

noisy = random_noise(original, var=sigma**2)

sigma_est = estimate sigma(noisy, average sigmas=True, channel axis=-1)
print(f'Estimated Gaussian noise standard deviation = {sigma_est}')

im_bayes = denoise _wavelet(noisy, convert2ycbcr=True,
method='BayesShrink’, \
mode='soft', rescale_sigma=True, channel axis=-1)

psnr_noisy, psnr_bayes = psnr(original, noisy), psnr(original, im_bayes)
for sigma in [sigma_est/2, sigma_est/3, sigma_est/4]:

im_visushrink =
denoise_wavelet(noisy,convert2ycbcr=True,method='VisuShrink’, \

mode='soft', sigma=sigma, rescale_sigma=True, channel axis=-1)




psnr_visushrink = psnr(original, im_visushrink)
# plot the denoised output images im_visushrink and psnr_visushrink here
# TODO: your code here, by now you can write code to plot images.

If you plot the denoised output images, you should obtain a
figure as follows:

Wavelet denoising Wavelet denoising
(BayesShrink) (VisusShrink, @ = 0e./2)
PSNR=26.05 PSNR=24.56

Wavelet denoising Wavelet denoising
noisy (VisuShrink, 0= 0e./3) {VisuShrink, o = /)
PSNR=18.64 PSNR=25.32 PSNR=24.97

Figure 1.29: Wavelet denoising with BayesShrink vs. ViruShrink thresholding

scikit-image internally uses pywavelets for the
implementation. The thresholding methods assume an
orthogonal wavelet transform (for example, Daubechies -
db2, symmlet - sym2 families); they are desirable for the
following reasons:

* They ensure the white noise in the input remains white
noise in the subbands (as opposed to the biorthogonal



wavelets that produce colored noise in the subbands).

* In pywavelets, the orthogonal wavelets are also

orthonormal, and hence, the noise variance in the
subbands remains the same as that of input.

Denoising using non-local means with
opencv-python

The principle of the first denoising method suggests
replacing the color of a pixel with an average of the colors
of nearby (local) pixels. While simple local averaging
reduces noise, it also tends to blur important image details.
According to the law of variance of the mean in
probability theory, averaging n independent and
identically distributed (i.i.d.) random variables each with

2
variance 42 results in a mean with variance Z, and thus a
n

standard deviation of ‘% That is, averaging multiple

independent noisy observations reduces the variance—for
example, averaging nine independent pixels reduces the
standard deviation of the noise by a factor of three.

However, in real images, the most similar pixels to a given
pixel may not be spatially close to it. This insight is the
foundation of the non-local means (NLM) denoising
algorithm, which improves upon local methods by scanning
a larger region of the image to find all patches that closely
resemble the one centered around the target pixel.
Denoising is then done by computing the average color of
these most resembling pixels, weighted the similarity of
these pixels to the target pixel. It reduces the loss of detail
(blurring) in the denoised image (when compared to its
local counterpart), at the cost of more computation time.

Formally, a denoising method D;, applied to a noisy image v



can be defined as a decomposition v = Dyv + n(Dy, v),
where is a filtering parameter which usually depends on the
the noise variance g2. Ideally, D,V is smoother than v and
n(Dy,v) (i.e., the noise guessed by the method, defined as
the method noise) should look like the realization of a white
noise [20].

Given a noisy image v = {v(i)|i € I}, the estimated value
NL[v](i) for a pixel j, is computed as a weighted average:
NL[v](i) = Xjeyw (i,j))v(j), where the family of weights
{w(i,j)}; depend on the similarity between the
neighborhoods (patches) N; and Nj, centered at pixels i and j
. These weights satisfy the usual conditions: 0 < w(i,j) <1
and Y.jw (i,j) = 1. The similarity between two pixels i and j
depends on the similarity of the intensity gray level vectors
v(N;) and v(N;), where Nj denotes a square neighborhood
(patch) of fixed size and centered at a pixel k.

The similarity is usually measured as the Gaussian-

weighted Euclidean distance between the patches v(N;)
and v(N;), and the weights are computed as:

w0 = 7 ap (2= )
S T0)) h2

Where Z(i) is a normalizing constant to ensure that weights

sum to 1.

In summary, the NLM algorithm considers a patch around
each pixel, searches for similar patches throughout a larger
region, averages them using similarity-based weights, and
replaces the central pixel accordingly. Unlike local methods,
the residual noise in NLM tends to resemble white noise—
making it less visually distracting.

In this section, we explore how to apply OpenCV’'s
cv2.fastNIMeansDenoisingColored() function to perform
such denoising in practice. The function first converts the
image from RGB colorspace to CIELAB (Commission



Internationale de I’Eclairage Lab*, where L* represents
lightness, and a* and b* represent color-opponent
dimensions). It then denoises L and AB channels separately
using the function cv2.fastNIMeansDenoising(). The
function accepts the following arguments:

* src: The input image, here the Zelda RGB color image is
used.

 templateWindowSize: The template patch size (in
pixels) to be used to compute weights.

 searchWindowSize: Size of the window to be used to
compute the weighted average for a given pixel (the
larger the window, the slower the filter).

* h: Controls filter strength for L (luminance) channel.
Larger h removes noise along with image details.

* hColor: Same as h for color components. For most

images having hColor = 10 is enough to remove colored
noise without color distortion.

The function returns the denoised image.

Let us now proceed to use the aforementioned function to
denoise a noisy color input image. First load the RGB color
image of Zelda and degrade it with Gaussian noise, using
cv2.randn()as follows:

import cv2
img = cv2.imread(‘images/zelda.jpg’)
noisy = img + cv2.randn(np.copy(img), (0,0,0),(10,10,10))

The following code snippet demonstrates the use of the
function on the noisy color input image for different values
of parameters searchWindow (for example, 15, 21) and h
(for example, 7, 10, 15). Plot and compare the denoised
output image’s quality with PSNR and also compare the
time taken to denoise, you should obtain a figure like Figure
1.30:

Vfor szin [15, 21]:




forhin[7, 10, 15]:
start = time()
dst = cv2.fastNIMeansDenoisingColored (noisy, None, \
templateWindowSize=12, searchWindowSize=sz, h=h, hColor=10)
end = time()
# plot the denoised output image dst
# TODO: your code here

If you run the preceding code snippet, and plot the original,
noisy input and denoised output images, you should obtain a
figure as follows:

Denoised (NLMeans), PSNR: 31.044

Original wize: 15, h: 7, time taken: 0.666%

Denoised (NLMeans), PSNR: 30.082 Denocised (NLMeans), PSNR; 27.736 Denoised (NLMeans), PSNR: 30.373
wize: 15, h: 10, time taken: 0.657s wize: 15, h: 15, time taken: 0.6885 wize: 21, h: 7, time taken: 1.5195

Figure 1.30: Denoising the Zelda color image with non-local means algorithm
(opencv-python’s implementation)

Denoising with bilateral filter

A bilateral filter is a non-linear edge-preserving and noise-
reducing smoothing, commonly used in image denoising.
Like traditional spatial filters (for example, the average or
Gaussian filter), each pixel is replaced by a (weighted)
average of its neighbors (where weights can come from a
Gaussian distribution). However, unlike those filters, the
bilateral filter assigns weights based not only on the spatial



proximity of pixels but also on their radiometric
similarity (for example, intensity or color difference),
enabling it to preserve the sharp edges [19]. The filter relies
on two key parameters:
* 0s (spatial parameter): controls the influence of
neighboring pixels based on their Euclidean distance.

* or (range parameter): controls the influence of
neighboring pixels based on their intensity difference
Formally, for a pixel located at (i, j), and one of its

neighbors at (k, I), the weight assigned is:

w(i,j, k,1) = exp (—

Where we have:
* I(i,j) and I(k,l) are the intensity values at pixels (i, j) and
(k, D),
* 05 is the spatial standard deviation,
» 0y is the range standard deviation.

After computing all weights, the denoised pixel intensity
Ek.r,f{ki)w(i:f:ki]

Liaw(ijk,l)

(-K*+G-D* 11GH-1GD ||2)

202 2072

at (i,j) is computed as I (i,j) = where [j is

the denoised intensity of pixel (i, j).
The filter behavior depends on the values of 6, and 0g:

e As 0, increases, at Oy = @, the filter approaches a
standard Gaussian blur, losing edge-preservation.

» As 05 increases, the spatial neighborhood grows, leading
to smoother large-scale structures.

In this section, you will explore how to apply bilateral
filtering from the libraries SimpleITK and opencv-python
to denoise a corrupted image, while maintaining edge
sharpness.



Using SimplelTK

SimplelTK library’s BilaterallmageFilter() uses bilateral
filtering to blur an image using both spatial (also called
domain) and range neighborhoods. As described, the
pixels that are close to a pixel in the image domain and
similar to a pixel in the image range are used to calculate
the filtered value. Two Gaussian kernels (one in the image
domain and one in the image range) are used to smooth the
image.

The result is an image that is smoothed in homogeneous
regions yet has edges preserved. The result is similar to
anisotropic diffusion (refer to the one discussed in the
book Image Processing masterclass with python), but the
implementation is non-iterative. Another benefit to bilateral
filtering is that any distance metric can be used for kernel
smoothing the image range. Hence, color images can be
smoothed as vector images, using the CIE distances
between intensity values as the similarity metric (the
Gaussian kernel for the image domain is evaluated using
CIE distances).

Let us start by importing the required libraries, as usual:

import SimplelTK as sitk

Read the input Zelda image as a grayscale image,
instantiate the ShotNoiseFilter object to degrade the

image with shot noise. The shot noise follows a Poisson
distribution, using the following code snippet:

img = sitk.ReadImage('images/zelda.jpg’, sitk.sitkUInt8)
sf = sitk.ShotNoiselmageFilter()
noisy = sf.Execute(img)

Instantiate an object of the BilaterImageFilter class:

f = sitk.BilaterallmageFilter()

Use the methods SetDomainSigma() and



SetRangeSigma(), to set 04 and 0, parameters,
respectively. DomainSigma is specified in the same units

as the Image spacing. RangeSigma is specified in the units
of intensity.

Use the member function Execute() to apply the filter on
the noisy input image, to have the denoised output returned.

Use a few different values of 04 (same as Os defined above)
and o0,, to observe the impact of these parameters on the
denoised output.

Plot the images using the function show_image() the code
snippet shown as follows:

def show_image(img, title=None):
nda = sitk.GetArrayViewFromImage (img)
plt.imshow(nda, cmap='gray'), plt.axis('off")
if(title): plt.title(title, size=20)
plt.figure(figsize=(20,17))
plt.subplot(331), show_image(img, 'original’)
plt.subplot(332), show_image(noisy, noisy")
i=23
foro_din [5, 10]:
for o_rin [25, 50, 75]:
f.SetDomainSigma(o_d)
f.SetRangeSigma(o_r)

denoised = f.Execute(noisy)
plt.subplot(3,3,i), show_image(denoised, ‘'denoised (o _d={}, o _r={})" \
format(o_d, o_r))
i+=1
plt.tight_layout()
plt.show()

If you run the given code snippet, you should obtain a figure
as follows:



denoised (g d=5, 0 r=25)

Figure 1.31: Denoising the grayscale Zelda image with bilateral filter
(SimplelTK’s implementation)

Using opencv-python

As explained, bilateral filtering operates both in the range
and the domain of an image, unlike a traditional filter that
operates only on the domain. Two pixels in an image can be
close because of their spatial proximity or similarity in pixel
values (i.e., in some perceptually meaningful manner),
which is why bilateral filtering combines filtering in both
the domain and range space.

In this section, you will explore how to use opencv-python
implementation of a bilateral filter to clean a degraded



image and preserve the edges simultaneously. However,
bilateral filters are computationally expensive and can be
slow.

Let us start by reading the RGB color image of Zelda and
degrading the image by adding random Gaussian noise to
the image using the cv2.randn() function, with standard
deviation for each color channel, using the next couple of
lines of code:

img = cv2.imread(‘images/zelda.jpg’)
noisy = img + cv2.randn(np.copy(img), (0,0,0), (10,10,10))

Apply the  Dbilateral filter wusing the  function
cv2.bilateralFilter() that accepts the following
parameters:

* src: The (noisy) input image (can be grayscale or color).

* d: Diameter of pixel nbd (or the filter size). Large filters
(d >5) are very slow, let us use { =5 for real-time
applications.

* sigmaColor: 0. (same as 0 defined earlier), s.d. of the
Gaussian in color space (larger value implies mixing of
farther colors in the nbd, resulting in larger areas of
semi-equal color).

* sigmaSpace: 05 s.d. of the Gaussian in coordinate space
(larger value indicates farther pixels influencing each
other, provided their colors are close).

For simplicity, both the sigma parameters can be set to the
same value. Small (for example, < 10) values will not have
much effect, whereas large (for example, < 150) will have a
strong effect (the output image will be cartoonish).

Use a few different values for the parameters d (for
example, 9,15), sigmaColor, and sigmaSpace (for
example, both in ) to observe the impact on these
parameters on bilateral denoising and plot the denoised
output images:



fordin [9, 15]:
for o cin [75, 180]:
for o _sin [75, 180]:
dst = cv2.bilateralFilter(noisy,d=d,sigmaColor=0_c,sigmaSpace=0_s)
# plot the denoised output image dst here
# TODO: your code...

If you plot the denoised output images obtained using
bilateral filtering with different combination of parameter
values, by running the preceding code snippet, you should
obtain a figure as follows:

Denocised d=9, 0 ¢=75, 0 5=75

Original

01 e = .
. WP Ve - I = - =

Denoised d=9, 0 ¢=180, 0 s=75 Denoised d=9, 0 ¢=180, 0 5=180 penoised d=15, 0 c=180, @ 5=75

Figure 1.32: Denoising the Zelda color image with bilateral filter (opencv-
python’s implementation)

Denoising with MAP Bayesian with an
MREF prior

In Bayesian image denoising, the goal is to estimate the

optimal noiseless image X given an observed noisy image Y.
The optimal noiseless image is defined as the one that

maximizes the posterior probability given the observed
noisy image, using Bayes’ theorem:
P(Y)P(Y | X)

P(X)

P(X|Y)=



The Maximum A Posteriori (MAP) estimate of the clean
image X,,,p iS given by:

Xyap = argmaxP(X | Y) = argmaxP(Y)P(Y | X)P(X)
X X

Since P(Y) is constant with respect to X, this is equivalent to
minimizing the negative log-posterior:

Xyap = argmin(—logP(Y | X) — logP (X))
X

To compute the posterior probability and compute MAP
estimation, we need to first define the following two key
probabilistic terms:

e Likelihood term P(Y | X): Represents the noise model;
describes how the noisy how the noisy observation Y is
generated from the underlying clean image X, typically
modeled using a Gaussian distribution in the case of
additive white noise.

 Prior term P(X): Captures assumptions about the
smoothness or structure of the clean image using a
Markov Random Field (MRF). A 4-neighborhood MRF
prior is commonly used, which satisfies the Markov
property—meaning each pixel’s value depends only on
its four immediate neighbors (up, down, left, right).

Assumptions and noise model

Let us first define the following variable to formally define
the model:

* Y = {y,;} be the observed noisy image,
* X = {x;} be the unknown true image,

e X;j is modelled as an MRF, with 4-neighborhood
dependency,

e The noise is assumed to be i.i.d. Gaussian with
variance g2

Then the likelihood model becomes:



P(yi | x;) = N xi,0%) = —logP(y; | x;) < 0% (y; — x;)*
MRF prior: Image regularization

The MRF prior is defined using pairwise potential
functions over neighboring pixels:

P(X) x exp(— X pen V (xi %)) , with V(x;, x) = g(x; — x7)

Different choices of the function g(u) lead to different
smoothing characteristics:

* Quadratic prior (used here): g, (u) =| u |?

 Huber prior: Handles small variations quadratically and
large differences linearly (edge-preserving), here

iuz, if lulsy
.92(”*) = 1 2 -
ylul=cy®, if lul>y

. Discontinuity-adaptive log prior:

g,(w) =y lul —y?*log(1+| u |/y), good for sharp edges.

Combined MAP estimation objective
The MAP estimate is obtained by minimizing the negative
log-posterior (obtained by combining the likelihood and the
prior), which leads to minimization of the following energy
(or cost) function:

X = argminz a(y; —x)* + z g(x; — x;)
x5 JEN(D)
Where a = 6—12 is a parameter balancing fidelity (data) and
regularity (smoothness).

Now, let us implement a MAP Bayesian denoising algorithm
(221 that uses the aforementioned noise model coupled with
the MRF prior.

Optimizing with gradient-based solver



Let us start by importing the required libraries as follows:

from scipy.optimize import minimize

Implement the gradient function grad g() for the prior
chosen and use the L-BFGS-B optimization method from

scipy.

Define prior and gradient functions

The following code snippet defines the quadratic MRF
prior function g(u) = |u|? and the corresponding gradient
Vg(u) = 2u:
def g(u):

return np.sum(u**2)

def grad_g(u):
return 2*u

Define objective and gradient for optimization

For the chosen g(.) function, minimize the following
objective function (using the minimize() function from the
scipy.optimize module) to get the denoised image:

Ya(y; —x)* + g(x; — xi1) + g — x32) + 9(x; — x33) + g(x; — x34)

Where i1, i2, i3, i4 are the 4 neighboring pixels at position |,
and Yji, X; denote the noisy and clean pixel intensities at
position j, respectively.

Define the optimization objective (cost) function in
comp obj fun(), which accepts the input noisy image Y
and the output image X, along with a weight a.

The function g(-) is a regularizer; for example, g(u) = u?
(quadratic prior) enforces smoothness. This decomposition
reflects the Bayesian framework where the data fidelity
term (y; —x;)? arises from the likelihood, and the
neighborhood smoothness terms g(x; — x;;) arise from the



prior.

The role of g(.) is to promote edge preservation by
encouraging neighboring pixel values to be similar—except
at edges where large differences are permitted, while the
term (y; — x;)? enforces fidelity to the observed noisy image
and contributes to noise removal.

The constant a is to give weights to noise removal and edge

preservation (controls the weighting between the prior and
the likelihood).

Define the function compute grad() to compute the
gradient of cost, it uses the function grad_g() to compute
Vg(.), using the next code snippet:

def compute_grad(X,Y,alpha):
X, Y = X.reshape(im_size), Y.reshape(im_size)
X1, X2, X3, X4 = np.roll(X, -1, 0), np.roll(X, 1, 0), np.roll(X, -1, 1), \
np.roll(X, 1, 1)
grad = alpha*grad_g(X-Y) + grad_g((X-X1) + (X-X2) + (X-X3) + (X-X4))
return grad.ravel()
def compute_obj_fun(X,Y,alpha):
X, Y = X.reshape(im_size), Y.reshape(im_size)
X1, X2, X3, X4 = np.roll(X, -1, 0), np.roll(X, 1, 0), np.roll(X, -1, 1), \
np.roll(X, 1, 1)
cost = alpha*g(X-Y) + g(X-X1) + g(X-X2) + g(X-X3) + g(X-X4)
return cost

Apply optimization to restore the noisy image

Read the input grayscale image of a ship and add salt and
pepper noise to the image. Initialize the output image with
zeros before starting the iterative optimization, using the
following code snippet:

original = cv2.imread('images/ship.png’, 0)
original = original / original.max()

noisy = random_noise(original, mode="'s&p")
denoised = np.zeros_like(noisy)

im_size, alpha = original.shape, 1.5

If you plot the original and the noisy input images, along
with the initialization for the denoised (black) zero output



image and the difference image (computed as noisy -
denoised) at the very outset, you will get a figure as
follows:

Denocising with L-BFGS-B (Initialization)

Noisy, PSNR=1

8.4965 Denoised, PSNR=5.3426 Difference Image (Noise) Original
Pry r P == = S A=

Figure 1.33: Denoising image with iterative LFBGS-B optimization algorithm
(starting with zero image)

Minimize using L-BFGS-B

The minimize() function from scipy.optimize module is an
iterative solver that finds the minimum of a scalar function

using optimization algorithms like BFGS, CG or L-BFGS-B,
given an initial guess and optional gradient (jacobian). Here
we shall use the minimize() function to minimize the
objective function compute obj fun defined, and we shall
pass the gradient function compute _grad as the jacobian
argument to the minimize() function). The minimize()
function takes the following arguments, a few of the
relevant ones are listed as follows:
* func: Objective function we want to minimize.

* x 0: The initial guess (of the clean image) to start with
(we initialized with zeros).

 jac: Function to compute gradient.

» args: Extra arguments to be passed to objective function
and its derivative.

* method: Solver to be used (for example, L-BFGS-B).



* maxiter: Sets the maximum number of iterations
» gtol: Specifies the gradient norm tolerance for
convergence.
Let us use the maximum iteration (maxiter) as for the

iterative solver and tolerance (gtol) as 0.1, as shown in the
following code snippet:

res = minimize (func=compute_obj_fun, x0=denoised.ravel(), \
jac=compute grad, method='L-BFGS-B', args=(noisy.ravel(), alpha), \
options={'maxiter":4, 'gtol':0.1, 'disp": True})

Retrieve final output

Retrieve the solution (res) obtained and reshape it back into
the size of the original image, to obtain the denoised output
image:

denoised = res.x.reshape(im_size)

Visual and quantitative evaluation

Plot the denoised output image along with the difference
image and compute the PSNR to measure the quality of
image. The final output should be the one, as shown in the
next figure, note the increase in PSNR in the denoised
image:

Denoising with L-BFGS-B (iteration=4)

=25.6125 Difference Image (Noise)

£

Original

"
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Figure 1.34: Denoising image with iterative LFBGS-B optimization algorithm
(denoised image after 4 iterations)



To summarize, the aforementioned method uses a principled
Bayesian approach with an MRF prior to denoise images:

* Likelihood: Captures how likely the observed image is
given a denoised candidate.

* MRF prior: Encourages piecewise smoothness while
allowing discontinuities (edges).

 Optimization: Uses gradient-based techniques to
minimize the energy.

Denoising images with Kernel PCA

Kernel PCA (KPCA) is an extension of Principal
Component Analysis (PCA), a widely wused linear
dimension reduction technique. Unlike standard PCA, which
is limited to linear mappings, KPCA introduces non-linearity
through the use of kernel functions.

In kPCA we select a mapping function ¢ that conceptually
transforms the input data into a high-dimensional feature
space. However, instead of explicitly computing this
transformation, KPCA  uses a kernel function
K=k(xy) = (¢=(x),¢(y)) = @®(x)T®(y), which calculates
the inner product in the feature space indirectly. This
approach, known as the kernel trick, avoids the
computational cost of operating in the high-dimensional
(intractable) feature-space. 21,

Using the dual form, the kPCA never actually computes the
eigenvectors (the principal components) and eigenvalues of
the covariance matrix in the ¢(x)space. Instead, it uses the
kernel trick to compute the projections of the data onto the
principal components, as shown in the following figure:
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Figure 1.35: Image denoising with kPCA

While in standard PCA the number of Principal
Components (PC) is bounded by the number of input
features, in KPCA the number of components is bounded by



the number of samples (since it works in the dual space).
Many real-world datasets have large numbers of samples,
and hence, often, finding all the components with a full
kPCA is a waste of computation time, as data is mostly
described by the first few components (for example,
n_components < 100).

In this section, you will explore how to use sci-kit-learn's
decomposition module’s KernelPCA implementation to
denoise corrupted MNIST images (of handwritten digits).
The idea will be to learn a PCA basis (with and without a
kernel) on noisy images and then use these models to
reconstruct clean images using these learned
representations.

Let us start by importing the required libraries, modules
and functions, using the following code snippet:

import numpy as np

import pandas as pd

from sklearn.preprocessing import MinMaxScaler
from sklearn.model _selection import train_test_split
from sklearn.decomposition import PCA, KernelPCA

Download the mnist train data from Kaggle:
https://www.kaggle.com/oddrationale/mnist-in-csv as a
.csv file, where there are 60k rows, with each row having
785 columns: the last columns correspond to the pixel
values of a 28x28 handwritten digit image and the first
column represents the label (class) of the digit (0-9).

Read the .csv file using the function read_csv() from
pandas and display the first few rows as follows:

df = pd.read_csv('images/mnist_train.csv')
df.head()



https://www.kaggle.com/oddrationale/mnist-in-csv
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Figure 1.36: MNIST digits - Pandas DataFrame with 784 columns (each row
represents a 28 x 28 digit)

Convert the images data to a numpy array and scale the
pixel values in between - using the MinMaxScaler() from
the module sklearn.preprocessing, using the next code
snippet:

y = np.array(df.label.tolist())

X = df.drop(columns=['label']).values
X = MinMaxScaler().fit_transform (X)
X.shape, y.shape

# ((60000, 784), (60000,))

Use the function train_test_split() from
sklearn.model selection to split the dataset into a
training and a test dataset, with 1000 and 100 randomly
selected images, respectively. These images are noise-free,
and we will use them to evaluate the accuracy of the
denoising approaches.

In addition, let us create a copy of the original dataset and
add Gaussian noise to create noisy version of the training,
and test images separately, using the following code
snippet:

X train, X test, y_train, y_test = train_test_split(X, y, stratify=y, \
random_state=0, train_size=1 000, test_size=100)

rng = np.random.RandomState(0)

noise = rng.normal(scale=0.25, size=X_test.shape)

X_test_noisy = X_test + noise

noise = rng.normal(scale=0.25, size=X_train.shape)

X _train_noisy = X _train + noise

The goal here is to demonstrate that corrupted images can
be denoised by learning a PCA Dbasis from clean



(uncorrupted) images. We will compare the denoising
performances of PCA and kernel PCA (kKPCA).
Instantiate objects of PCA and KernelPCA classes from

sklearn.decomposition module to fit PCA and kPCA
models on the training images, respectively.

The KernelPCA constructor accepts the following
arguments, a few relevant ones are listed as follows:

e n_components: Number of components (we have
chosen first 30 PCs for PCA and first 400 PCs for kPCA,
out of 784 possible components).

e kernel: Kernel used for kKPCA (here the Radial Basis
Function (rbf) kernel is wused, it is defined as
k(x,y) = e~ Yix=yI?)

» gamma: Kernel coefficient ¥ for the rbf kernel.

* alpha: Hyperparameter of the ridge-regression that
learns the inverse-transform (when
fit_inverse_transform=True).

 fit_inverse transform: Learn the inverse transform
(used for reconstruction).

Use the fit() methods to fit the models on training images
for both models as follows:

pca = PCA(n_components=30)

kernel pca = KernelPCA(n_components=400, kernel="rbf", gamma=1e-3, \
fit_ inverse_transform=True, alpha=5e-3)

pca.fit(X_train_noisy)

_ = kernel_pca.fit(X_train_noisy)

pca.n_features_in_, kernel pca.n_features_in_

# (784, 784)

Now, let us project the noisy test images on the kernel
space (with the function transform()) and then reconstruct
(with inverse transform()) the images (note that
KernelPCA supports both transform() and
inverse_transform()). Since the number of components
used is less than the number of original features, it is not an



exact but an approximate reconstruction, i.e., an
approximation of the original test images will be obtained.
By discarding the components that contribute the least to
the overall variance in PCA (and similarly in kPCA), the aim
is to suppress noise and retain the most significant
structural information in the data.

For kPCA, a better reconstruction should happen since a
non-linear kernel is used to learn the basis, and a kernel
ridge is used to learn the mapping function as follows:

X reconstructed_kernel pca =
kernel pca.inverse_transform(kernel pca.transform(\
X_test_noisy))
X _reconstructed_pca = pca.inverse_transform(pca.transform(X_test_noisy))

Let us use the mean squared error (MSE) to
quantitatively assess the image reconstruction (for example,
compute MSE for PCA with np.mean((X test -
X _reconstructed_pca) ** 2)), and similarly compute for
compute MSE for kPCA.

Plot the original (uncorrupted) and the reconstructed test
digit images (obtained with PCA and kPCA) along with the
MSE values, using the plot_digits() function. You should
get a figure like the following one:

PCA reconstruction Kernel PCA reconstruction
Uncorrupted test images MSE: 0.02 MSE: 0.03
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Figure 1.37: PCA vs. kPCA reconstructions of noisy MNIST digits



From the preceding output, although it can be seen that
PCA has lower MSE than kPCA, observe that kPCA is able to
remove background noise better and provide a smoother
image.

Moreover, the results of the denoising with kPCA will
depend on the hyperparameters n_components, gamma,
and alpha (tune them and note the change in MSE).

Conclusion

In this chapter, we focused on solving quite a few problems
in image restoration and inverse problems in image
processing. By now, you should be able to apply non-linear
filters such as median and weighted median filters to
denoise an image, apply non-blind deconvolutions to restore
degraded images using Inverse, Wiener filters, blind and
non-blind deconvolution with RL algorithm, TV denoising
with Chambolle and Bregman algorithms, Wavelet
denoising, nonlocal and bilateral filters for image
restoration, Bayesian MAP estimation and Kernel PCA for
image denoising, using different Python libraries such as
scikit-image, scipy.ndimage, SimplelTK, opencv-
python, pywt, and matplotlib.

In the next chapter, we shall continue our discussion on
solving more image restoration and image inpainting
problems; we shall see how a few deep neural nets (such as
AutoEncoders and GANs) can be applied to solve problems
such as image deblurring and deraining.

Key terms

TV denoising, Richardson-Lucy, kernel PCA, Wiener, MAP
Bayesian, Wavelet, Deconvolution, ROF, Chambolle,



Bregman.

Questions

1. Prove that the solution to the optimization
(minimization) problem with the loss function

Iﬂssﬂidge =(g - Af)T(g —Af) + Hfo
is given by the following normal equation:

f=ATA+al) 1ATg
2. Rather than using the normal equations to solve inverse
problems, numerical analysis suggests that it is
preferable to solve the augmented equations, as shown
in the following equation, which can be done by a least
squares solver (Isqr).

(\lg. I) f= (ﬂ)

Compare the performance with the one you used in this
chapter to solve normal equations, in terms of the
number of iterations required to achieve convergence.

3. The sum of absolute deviations is minimum when it is
taken from the median: Let us § = {X4, X5, ..., X} be a set
of numbers st., X;<X,=<--=<2X,. Prove that
Yi=11Xy — 0| is minimum when 8 = median(S).

4. Start with the noisy beans image; visualize how the
DWT coefficients change when thresholded with
different threshold wvalues, along with plotting the
change in PSNR of the denoised image, with hard vs.
soft thresholding, and find the thresholds corresponding
to the peak PSNR values; you should get a figure that
looks like the one shown:
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Figure 1.38: Denoising the beans grayscale image with DWT (hard vs. soft
thresholding)

5. Use Savitzky-Golay filter (scipy.signal.savgol filter) to
denoise an image. Tune the window-length and
polynomial-degree parameters to understand the impact
on smoothing.

6. Impact of noise on Inverse Filter: Start with
G(u,v) =F(u,v)H(u,v) + N(u,v), where N(u,v) is the
frequency spectrum of the additive noise. Show that
restoration with an inverse filter gets impacted badly as
the additive noise gets stronger (demonstrate with an
example). Can the Wiener filter resolve the problem?

7. Compare the restored image quality (for example, with
PSNR) obtained with the Wiener deconvolution
implementations from scipy.signal and those obtained
using the Wiener-Hunt deconvolution and its
unsupervised version’s implementations from
skimage.restoration.

8. Use denoise nl means() and denoise bilateral()
functions from skimage.restoration to apply non-local
mean and bilateral denoising on a noisy image. Compare
the results with those obtained using opencv-python.

9. Use the code for non-local means denoising
implementation with opencv-python to visualize (in 3D)
how the PSNR and the time taken to denoise varies with
input parameters h and searchWindowSize, you should
obtain a figure as follows:
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Figure 1.39: 3D plot of PSNR w.r.t. parameters h and searchWindowSize

Try changing the value of the other parameters too, in
roddr to observe the impact on the denoised image
quality and the computational efficiency.

10. Anisotropic diffusion: Refer to the book Image
Processing Masterclass with Python (Chapter 5) to
implement the classic Perona-Malik algorithm to
restore a degraded image and compare the output
obtained with the other restoration methods.

11. Deep Inverse problems in Python: Implement deep
image reconstruction with the Python package deepinpy,
as explained in the following research paper
https://wwwl.icsi.berkeley.edu/~stellayu/publicatio
n/doc/2020deepInPyISMRM.pdf.
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CHAPTER 2

More Image Restoration and
Image Inpainting

Introduction

Image restoration and inpainting are crucial tasks in image
processing and computer vision, aimed at recovering degraded
or missing parts of an image. Restoration techniques enhance
image quality by removing noise, correcting blur, and
reconstructing lost information, while inpainting focuses on
filling in missing or damaged regions in a visually plausible
manner.

In this chapter, we shall continue with image restoration,
focusing on solving image inpainting problems, using both
traditional and deep learning-based approaches. As explained
in Chapter 1, Image Restoration and Inverse Problems in
Image Processing, inpainting is a restoration process where
damaged, missing, or corrupted parts of an image are
filled/replaced. We shall learn how to use variational methods
to solve image inpainting problems. However, our main focus
in this chapter will be to use recent advanced deep learning
models, such as autoencoders and GANs, to solve image
denoising and inpainting problems.



Structure

In this chapter, we will go over the following topics:
* Denoising with autoencoders
» Blind deblurring with DeblurGAN
* Image inpainting
 Image denoising with anisotropic diffusion with opencv-
python

» Simple deep image painting with keras
 Semantic image inpainting with DCGAN

Objectives

By the end of this chapter, the reader will have a deeper
understanding of various image restoration and inpainting
techniques to recover degraded images and reconstruct
missing regions. You will explore denoising with autoencoders,
blind deblurring using DeblurGAN, and different inpainting
methods. Additionally, you will gain hands-on experience with
anisotropic diffusion-based denoising in opencv-python, deep
image inpainting with Keras, and semantic inpainting using
Deep Convolutional Generative Adversarial Network
(DCGAN). These techniques will equip you with the skills to
effectively restore and enhance images for practical
applications in computer vision.

Denoising with autoencoders

An autoencoder is a neural network that learns a
representation of input data (using its hidden Ilayers
hwp(x) = x) in an unsupervised manner. In other words, it
learns an approximation to the identity function so that the
output % is similar to the input x (as shown in Figure 2.1). By
placing constraints on the network, for example, by having a



much smaller number of hidden units (than the input), we can
discover interesting structures in the input data (for example,
learn a compressed representation in the hidden units and
then reconstruct the output). Refer to the following figure:
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Figure 2.1: Basic architecture of an autoencoder

A denoising autoencoder is a stochastic version of an
autoencoder that takes inputs corrupted by noise and then it is
trained to recover the original inputs, to learn a good
representation. We first train a denoising autoencoder to learn
robust representations from a set of noisy & (ground-truth)
clean (training) input images and then use it to generate
denoised output images given noisy (test) input images.

Sparse denoising autoencoder

In sparse autoencoder, a sparsity constraint is imposed on
the hidden units and the autoencoder is trained to discover
interesting structure in the input. When the output value of a
hidden neuron is close to 1, it can be considered to be active
(firing). On the contrary, if its output value is close to O, it is
considered inactive. The constraint is to keep the hidden



neurons inactive most of the time. Refer to the Figure 2.1: if
a}z)(x) denotes the activation of the j'* hidden unit (in the
hidden layer, i.e., the layer 2), when the network is given a
specific input x and the average activation of hidden unit j is
denoted by 3, =$E}11 aj(z)x“), then the constraint enforced is
Pj = p, where the hyperparameter p represents sparsity. It is
typically assigned to a very small value close to 0 (for example,
p = 0.05).

In order to satisfy the sparsity constraint, the majority of the
hidden unit’s activations must be around 0 and thus an extra
penalty term is added to the optimization objective function
that penalizes p; deviating significantly from p. For example,
the following Kullback-Leibler (KL) divergence term for each
hidden unit j, is added as penalty term to the cost function:

p 1-p

KL(pllpj) = plog—+ (1 —p)log——

( J') P} 1— P}
This penalty function has the property that KL(p||p;) =0
minimum when g; = p. Otherwise, it increases monotonically as
pj diverges from p. Hence, when this penalty term is

minimized, it will force pj to be close to p. The overall cost
function is:

fsparse(wr b)=]J(W,b) + B z KL(pllﬁj)
j=1

Here, S; is the size of the hidden layer L, (number of hidden
units) and W, b represents the weights and bias parameters
that are learned with back-propagation of the loss, with S
being a hyperparameter controlling the penalty (sparsity)
term’s weight.

Now that we went through the basic concepts, we are ready

implement a sparse denoising autoencoder with
tensorflow. We shall start with a noisy version of notMNIST



input images (of English alphabets) and train an autoencoder
to reconstruct clean images from the input.

As wusual, let us start by importing the required Python
libraries. Note that we shall use the features of tensorflow v1
and disable the eager execution for v2:

import tensorflow as tf
print(tf.__version_ )

tf.compat.vl.disable eager_execution()
import math

import matplotlib.pyplot as plt

import os

import numpy as np

from cv2 import imread

Let us load the input notMNIST alphabet (A —J]) images from
the corresponding folder using the following function
read_images(). Note that it searches all the png image files
inside each of the 10 subfolders (one for each alphabet), using
os.walk() function, and stores the image and label (class) for
each image found. Refer to the following code snippet:

def read_images(dataset_path = 'images/notmnist’):
images = []
labels =[]
label = 0
classes = sorted(os.walk(dataset_path). next ([1])
for c in classes:
c_dir = os.path.join(dataset_path, c)
walk = os.walk(c_dir). next ()
for sample in walk[2]:
if sample.endswith('.png'):
try:
image = imread(os.path.join(c_dir, sample), 0)
images.append(image.ravel())
labels.append(c)
except:
None
label +=1
images = np.asarray(images, dtype=np.uint8)
return images

The next function Kkl divergence() implements the KL



divergence function, the penalty term to be added to the
optimization cost function to ensure sparsity:

def kl_divergence(p, p_hat):
return p * tf.math.log(p) - p * tf. math.log(p_hat) + \
(1 - p) * tf.math.log(1 - p) - (1 - p) * tf.math.log(! - p_hat)

Now, let us normalize the pixel values in the input images
between [0,1] and shuffle the images before starting training:

x_train = read_images()
x_train = x_train / x_train.max()
np.random.shuffle(x_train)

Let us set the hyperparameter values. Note that the number of
hidden units in the single hidden layer L, is chosen to be 200
and each input image is 28x28. Hence, when flattened, the
input dimension n becomes 784. Refer to the following code
snippet:

p = 0.01

learning_rate = le-3
epochs = 40

batch_size = 100
reg_term_lambda = 2*1e-3
beta = 3

n="784

n_hidden = 200

Let us now dive into the core of the implementation, follow the
next steps, to define the model:

1. Let us define the tensorflow (vl) placeholders for the
inputs (one for the original input x and another one for the
corrupted version Xnoisy) / reconstructed outputs (¥), and
tensorflow variables to store the weight and bias
parameters to be learned. Initialize the variables with
tf.random.normal() function with appropriate arguments.

2. Note that we have a couple of sets of weight parameters (
Wy, Wy), , the first one between the input and the hidden
layer, and the other one between the hidden and the output
layer. The same is true for the bias parameters.

3. Compute the forward propagation with matrix
multiplications for both the hidden and output layers.



4. Compute the average activation of hidden units j.

5. Compute the KL divergence penalty term lossg;, to ensure
the sparsity.

6. Define the squared loss function for reconstruction. Note
that the loss function uses the reconstruction error of the
original image x and not the noisy input, that is, lossysg =
(x — 2)?

7. Add L, regularization on the weights (to prevent
overfitting) reg,, (W) with the cost function.

8. Add an additional penalty term as the KL divergence
lossg;.

9. The cost function is the sum of the above 3 functions:
loss = lossysg + regy, + lossg;,

10. During forward pass, you need to compute p values so
that you can compute the penalty term for sparsity.

11. Note that we are using Adam (Adaptive Moment
Estimation, uses adaptive learning rates and momentum
for efficient stochastic gradient descent) optimizer here
(for updating the parameters with backpropagation).

Refer to the following code snippet:

x = tf.compat.vl.placeholder(tf.float32, [None, n])
x_noisy = tf.compat.vl.placeholder(tf.float32, [None, n])
xhat= tf.compat.vl.placeholder(tf.float32, [None, n])
W1 = tf.Variable(tf.random.normal([n, n_hidden], stddev=0.03), name="W1")
b1l = tf.Variable(tf.random.normal([n_hidden]), name='b1")
W2 = tf.Variable(tf.random.normal([n_hidden, n], stddev=0.03), name="W2")
b2 = tf.Variable(tf.random.normal([n]), name="'b2")
linear layer one_output = tf.add(tf. matmul(x_noisy, W1), bl)
layer_one_output = tf.nn.sigmoid(linear_layer_one_output)
linear_layer_two_output = tf.add(tf.matmul(layer_one_output,W2),b2)
xhat = tf.nn.sigmoid(linear_layer two_output)
mse_loss = (xhat - x)**2
p_hat = tf.reduce_mean(tf.clip_by value( \
layer_one_output,le-10,1.0),axis=0)
kl = kl_divergence(p, p_hat)
cost = tf.reduce_mean(tf.reduce_sum(mse_loss, axis=1)) + \
reg term_lambda*(tf.nn.12 loss(W1) + tf.nn.12_loss(W2)) + \




beta*tf.reduce_sum(kl)

optimiser = tf.compat.vl.train.AdamOptimizer(learning_rate=learning_rate,\
betal=0.9, beta2=0.999, epsilon=1e-08).minimize(cost)

init_op = tf.compat.vl.global variables_initializer()

Let us go over the following steps now, to learn the weight
parameters of the model:

1. Train the model on the dataset. Let us run training
epochs (for example, run for 40 epochs) inside a session
created with tf.compat.vl.Session(), using the following
code snippet.

2. The session allows the execution of graphs or part of
graphs. It allocates resources for this purpose and holds
the actual values of intermediate results and variables.

3. Iterate over the batches, and each time fetch
batch_size=100 images from the training dataset with
x_train[cur:cur+batch_size].

4. Add random Gaussian noise (with np.random.normal()
function) to corrupt the input images (x) and the (current)
batch with noise standard deviation 0.15 (try changing
this), Xpeisy = X + noise.

5. Note that you need to pass both x and Xnoisy (in batches)
to tensorflow session.run() graph computation’s
feed_dict, for the corresponding placeholders.

6. Compute the loss function value (averaged across the
batches) for every epoch and store in in the list losses.

7. Obtain the weights learned so far, with W1.eval(session).

8. Predict the denoised images (¥) with the model trained so
far, with xhat.eval(session).

Refer to the following code snippet:

losses = []

with tf.compat.v1.Session() as sess:
sess.run(init_op)
total_batch = int(len(y_train) / batch_size)
cur = 0
for epoch in range(epochs):




mean_cost = 0
for i in range(total batch):
batch x = x train[cur:cur+batch_size]
noise = np.random.normal(0, 0.15, batch_x.shape)
batch_x noisy = batch_x + noise
_, ¢ = sess.run([optimiser, cost], \
feed_dict={x: batch_x, x_noisy: batch_x_noisy})
mean_cost += ¢ / total_batch
losses.append(mean_cost)
if((epoch + 1) % 10 == 0):
input_images = batch_x
noisy_image = batch_x_noisy
weight_images = W1.eval(sess).transpose()
output_images = xhat.eval(feed_dict={x: batch_x, \
X_noisy: batch_x noisy}, session=sess)

cur += batch_size

As can be seen from the preceding code snippet, you can plot
the training progress (expected decrease in loss function
value) and visualize the original and denoised images
(obtained with model prediction), the code for plotting is left
as an exercise (fill-in the TODO section before), as follows:

1. Plot the loss function values to see the decay over epochs
(left as an exercise, insert your code at the TODO section,
inside the preceding code snippet. The following Figure 2.2
shows the output that you could see after 40 epochs:



loss

Figure 2.2: Decay of the loss function value over epochs

2. Plot the original and noisy inputs, the weights learned, and
the denoised output (for example, every 10 epochs). You
should obtain a figure like the following one (after 40
epochs, for example):



original input batch, epoch = 40 (p=0.01) noisy input batch, epoch = 40 (p=0.01)
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Denoising with convolution

autoencoder with skip connection

In this section, you will learn to use a very deep fully
convolutional Residual Encoder-Decoder Neural Network
(RED-Net), for image denoising and restoration. The network
is composed of multiple convolution and transposed-
convolution layers, enabling it to learn end-to-end mappings



from corrupted images (provided as input) to denoised original
images (to be produced as output). The convolution layers
eliminate corruptions by capturing the abstraction of image
contents. Transposed-convolutional layers recover the image
details by up-sampling the feature maps [1].

To avoid difficulty in training, convolutional and transposed-
convolutional layers are symmetrically linked with skip-layer
connections (as shown in the following Figure 2.4), to get the
training process converge faster with better results:

; RED-Net
Convoluation

output

skip connections

|
|
Denoised

Figure 2.4: RED-Net architecture
Source: https://arxiv.org/pdf/1606.08921.pdf

The skip connections from convolutional layers to their
mirrored corresponding transposed-convolutional layers
exhibit the following couple of advantages:

It handles the vanishing gradient problem while back-
propagation.

» The skip connections pass image details from convolutional
layers to transposed-convolutional layers, which is
beneficial in recovering the clean image.

Again, we shall implement the deep learning model with
tensorflow, and this time, we shall use the keras library
functions. Let us start by importing the required libraries:

import tensorflow as tf

from keras import layers, models, initializers
import numpy as np

import cv2



https://arxiv.org/pdf/1606.08921.pdf

|irnp0rt matplotlib.pyplot as plt |

Let us go over the following, as a detailed guidance for a step-
by-step implementation:

1. In general, there are the following layers in the network:
convolution (Conv2D), transposed-convolution
(Conv2DTranspose) and element-wise sum (Add). Each
layer is followed by a Rectified Linear Unit (ReLU).

2. An additional layer BatchNormalization is added. It
applies a transformation that maintains the mean output
close to 0 and the output standard deviation close to 1. The
layer will only normalize its inputs during inference after
being trained on data with similar statistics to the
inference data and tackles the internal covariate shift
problem.

3. For the element-wise sum layer, the output is the element-
wise sum of two inputs.

4. Learning the end-to-end mapping from corrupted images
to clean images needs to estimate the weights ©
represented by the convolutional and transposed-
convolutional kernels.

5. Convolution layers work as feature extraction units,
preserving the image’s details and eliminating the
corruption. After a forward pass through the convolutional
layers, the corrupted input gets converted into a clean one,
although subtle details may be lost. The transposed-
convolutional layers are then combined to recover the
details, outputting the recovered clean version. Moreover,
skip connections from a convolutional layer to its
corresponding mirrored transposed-convolutional layer are
added. The passed convolutional feature maps are summed
to the transposed-convolutional feature maps element-wise
and passed to the next layer after rectification.

6. Depth of the network used for image denoising varies from

20 and 30 layers. This is implemented with a for loop, by
adding group of layers iteratively, as done in the next code



snippet, with the rednet() function which returns a model
of the specified depth, with the depth and the number of
filters (n_filters), for the convolution/transposed-
convolution layers (defaulting to 128), passed as input
arguments.

7. Note that transposed-convolution is sometimes (wrongly)
called deconvolution, since deconvolution implies removing
the effect of convolution, which is not the goal here. It is
also known as upsampled convolution, which is intuitive to
the task it is used to perform, that is, upsample the input
feature map.

Refer to the following code sample:

def rednet(depth=20, n_filters=128, kernel _size=(3, 3), \
skip_step=2, n_channels=1):
num_connections = np.ceil(depth / (2 * skip_step)) \
if skip_step > 0 else 0
x = layers.Input(shape=[None, None, n_channels], name="Inputimage")
y =X
encoder_layers = []
with tf.name scope("REDNet"):
foriin range(depth // 2):

with tf.name_scope("EncoderLayer{}".format(@i + 1)):

y = layers.Conv2D(n_filters, kernel size=kernel size, \
kernel initializer=initializers.glorot_uniform(),\
padding="same", activation=None, use_bias=False,
name="Layer{} Conv".format(i + 1))(y)

y = layers.BatchNormalization(name="Layer{} BatchNorm" \

Sformat(@i + 1)) (y)
y = layers.ReLU (name="Layer{} Actv".format@i + 1))(y)
encoder_layers.append(y)
j = int((num_connections - 1) * skip_step) # Encoder layers count
k = int(depth-(num_connections-1)*skip_step) # Decoder layers cnt
foriin range(depth // 2 + 1, depth):
with tf.name_scope("DecoderLayer{}".format(i + 1)):
y = layers.Conv2DTranspose(n_filters, \
kernel size=kernel size, \
kernel initializer=initializers.glorot_uniform(), \
padding="same", activation=None, use_bias=False, \
name="Layer{} Conv".format(i))(y)
y = layers.BatchNormalization(name="Layer{} BatchNorm"\




format(@i))(y)

ifi ==

y = layers.Add(name="SkipConnect_Enc {} Dec {}"\

.format(j, k)) ([encoder_layers[j - 1], y])

k += skip_step

j -= skip_step
y = layers.ReLU (name="Layer{} Actv".format(i))(y)

with tf.name _scope("OutputLayer"):

y = layers.Conv2DTranspose(1, kernel _size=kernel size, \
kernel initializer=initializers.glorot_uniform(), \
padding="same", activation=None, use_bias=False, \

name="0Output_Conv")(y)

y = layers.BatchNormalization(name="Output BatchNorm")(y)

y = layers.Add(name="SkipConnect_Input_Output")([x, y])

y = layers.ReLU(name="Output_Actv")(y)

return models.Model(inputs=[x], outputs=[y])
rednet30 = rednet(30, n_channels=3)

Next, create a noisy input dataset by following the next steps:

1. Let us use the CIFAR10 image dataset (available in
tf.keras.datasets), add noise to the images (and later
denoise it using RED-Net).

2. Load the training and test datasets using the load_data()

function and normalize the pixel values, using the following
code block:

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
x_train = x_train / 255
x_test = x test / 255
np.random.shuffle(x_train)
noise = np.zeros(x_train.shape)
for i in range(x_train.shape[-1]):
noisel[..., i] = np.random.normal(0, 0.1, size=x_train.shape[:-1])
x_train_noisy = x_train + noise
noise = np.zeros(x_test.shape)
for iin range(x_test.shape[-1]):
noisel..., i] = np.random.normal(0, 0.1, size=x_test.shape[:-1])
x_test_noisy = x_test + noise

Now, compile the model and run training (using fit() on the
noisy and clean training images) for 10 epochs. Train on a
GPU (use Google Colab) for faster training, on CPU it will be



slow. Refer to the following code snippet:

rednet30.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=5*1e-6),
loss=tf.keras.losses.binary_crossentropy

)
history = rednet30.fit(x_train_noisy, x_train, batch_size=64, epochs=10)

Plot the decaying loss from the history, using the following
code snippet:

plt.plot(range(len(history.history['loss'])), history.history['loss'])
plt.grid()

plt.xlabel('Epochs’, size=10)

plt.ylabel('Loss’, size=10)

plt.show()

If you run the preceding code snippet, you should obtain a
figure like the next one:
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Figure 2.5: Learning over epochs

Predict to restore the clean images from the noisy test images:

x_test_p = rednet30.predict(x_test_noisy)

Choose a random sample of 10 noisy test images, denoise them
with RED-Net. Plot the noisy along with the recovered images.
You should obtain a figure as follows:



Noisy images (with added Gaussian additive noise)
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Figure 2.6: Denoising images from CIFRA10 dataset with RED-Net

Deraining with GCANet

In this problem, we shall focus on de-raining an image using a
pre-trained deep learning model (dehazing network), that is,
the input will be an image in a rainy environment and the
output will be one without the rain-streak component. Given a
hazy input image, the dehazing network tries to retrieve the
uncorrupted content. Again, instead of using traditional
handcrafted or low-level image priors as the constraints for
handcrafted, the output haze-free image will be directly
restored using an end-to-end deep neural net named Gated
Context Aggregation Network (GCANet). In this network,
the latest smoothed dilation technique is used to get rid of the
gridding artifacts caused due to the dilated convolution, and a
gated sub-network will be used to fuse the features from
different levels. The following Figure 2.7 shows the
architecture of the deep neural net [3]:

Gated Context Aggregation Network (GCANet) for Image Deraining

el TR TR T
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Figure 2.7: GCANet architecture
Source: https://arxiv.org/pdf/1811.08747.pdf


https://arxiv.org/pdf/1811.08747.pdf

Let us understand how this model works:

» Using the encoder, a hazy input image is encoded into the
feature maps. Next, more context information is
aggregated, and features from different levels are fused
(without down-sampling) to enhance the feature maps.

e Smoothed dilated convolution (implemented using
dilated convolutional layer) and an extra gated sub-
network are used.

« The target haze residue is computed after decoding the
enhanced feature maps back to original image space. Next,
the residue obtained is added to the hazy input image, and
the final haze-free image is obtained.

e The feature maps from different levels F,, F,, F, are
extracted and fed into the gated fusion subnetwork. Three
different importance weights, namely, (M;, M,,,M;) are
output by the gated fusion sub-network (corresponding to
the three feature levels, respectively). Finally, the
regressed importance weights obtained are used to
(linearly) combine these three feature maps from different
levels.

Let us implement the model, this time using PyTorch. Start by
importing the libraries needed:

import torch

import torch.nn as nn

import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np

from PIL import Image

import os

Let us deep dive into the core of the implementation using the
following code snippet using the original GCANet
implementation [8]:
* The class SmoothDilatedResidualBlock in the next code
block implements the smooth dilated ResBlock (Residual
Block is a key component in deep neural networks that



helps in training very deep models by wusing skip
connections to mitigate the vanishing gradient problem)
by stacking smooth dilated convolution blocks using the
ShareSepConv class, ordinary convolution blocks
(nn.Conv2d), and instance normalization blocks
(nn.InstanceNorm2d, which computes the mean and
standard deviation across each individual channel for a
single example and implements instant-specific
normalization).
* Note that all the classes inherit from torch.nn.Module
and they implement a couple of methods:
o __init_ (): The constructor called upon the instantiation
of the object, it defines the structure of the network and
initializes the member variables.

o forward(): This method is called to run a forward pass
on the layers in the block.

Refer to the following code snippet:

class ShareSepConv(nn.Module):

class SmoothDilatedResidualBlock(nn.Module):

def init (self, kernel size):
super(ShareSepConv, self). init_ ()
assert kernel size % 2 == 1, 'kernel size should be odd!
self.padding = (kernel_size - 1) // 2
weight_tensor = torch.zeros(1, 1, kernel_size, kernel size)
weight_tensor[0, 0, (kernel size - 1) // 2, \
(kernel size-1) // 2] =1
self.weight = nn.Parameter(weight_tensor)
self.kernel_size = kernel_size
def forward(self, x):
inc = x.size(1)
expand_weight = self.weight.expand(inc, 1, self.kernel_size, \
self.kernel_size).contiguous()
return F.conv2d(x, expand weight, None, 1, self.padding, 1, inc)

def _init (self, num_channels, dilation=1, groups=1):
super(SmoothDilatedResidualBlock, self). init ()
self.pre_convl = ShareSepConv(dilation*2 - 1)
self.convl = nn.Conv2d(num_channels, num_channels, 3, 1, \
padding=dilation, dilation=dilation, groups=groups, bias=False)
self.norm1 = nn.InstanceNorm2d(num_channels, affine=True)




self.pre_conv2 = ShareSepConv(dilation*2 - 1)
self.conv2 = nn.Conv2d(num_channels, num_channels, 3, 1, \
padding=dilation, dilation=dilation, groups=groups, bias=False)
self.norm?2 = nn.InstanceNorm2d(num_channels, affine=True)
def forward(self, x):
y = F.relu(self.norm1 (self.convl (self.pre_convl (x))))
y = self.norm?2 (self.conv2(self.pre_conv2(y)))
return F.relu(x+y)
class ResidualBlock(nn.Module):
def _init (self, num_channels, dilation=1, groups=1):
super(ResidualBlock, self). init_ ()
self.convl = nn.Conv2d(num_channels, num_channels, 3, 1, \
padding=dilation, dilation=dilation, \
groups=groups, bias=False)

self. norm1 = nn.InstanceNorm2d(num_channels, affine=True)

self.conv2 = nn.Conv2d(num_channels, num_channels, 3, 1, \
padding=dilation, dilation=dilation, \
groups=groups, bias=False)

self.norm?2 = nn.InstanceNorm2d(num_channels, affine=True)

def forward(self, x):

y = F.relu(self.norm1 (self.convl (x)))

y = self.norm?2 (self.conv2(y))

return F.relu(x+y)

The class GCANet implements the GCANet architecture. As
shown in Figure 2.7, the network first uses a bunch of
convolution layers, followed by a bunch of
SmoothDilatedResidualBlock layers, followed by a
ResidualBlock, and finally a transposed convolution
(nn.ConvIranspose2d) block, followed by a bunch of
convolution blocks.

class GCANet(nn.Module):

def init (self, in_c=4, out_c=3, only _residual=True):
super(GCANet, self). init_ ()
self.convl = nn.Conv2d(in_c, 64, 3, 1, 1, bias=False)
self.norm1 = nn.InstanceNorm?2d(64, affine=True)
self.conv2 = nn.Conv2d (64, 64, 3, 1, 1, bias=False)
self. norm2 = nn.InstanceNorm2d(64, affine=True)
self.conv3 = nn.Conv2d(64, 64, 3, 2, 1, bias=False)
self.norm3 = nn.InstanceNorm2d (64, affine=True)
self.resl = SmoothDilatedResidualBlock(64, dilation=2)
self.res2 = SmoothDilatedResidualBlock(64, dilation=2)
self.res3 = SmoothDilatedResidualBlock(64, dilation=2)




self.res4 = SmoothDilatedResidualBlock(64, dilation=4)
self.res5 = SmoothDilatedResidualBlock(64, dilation=4)
self.res6 = SmoothDilatedResidualBlock(64, dilation=4)
self.res7 = ResidualBlock(64, dilation=1)
self.gate = nn.Conv2d(64 * 3, 3, 3, 1, 1, bias=True)
self.deconv3 = nn.ConvTranspose2d(64, 64, 4, 2, 1)
self.norm4 = nn.InstanceNorm2d (64, affine=True)
self.deconv2 = nn.Conv2d(64, 64, 3, 1, 1)
self.norm5 = nn.InstanceNorm2d (64, affine=True)
self.deconvl = nn.Conv2d(64, out_c, 1)
self.only residual = only_residual

def forward(self, x):
y = F.relu(self.norm1 (self.convl (x)))
y = F.relu(self.norm2 (self.conv2(y)))

y1 = F.relu(self.norm3(self.conv3(y)))
y = self.res1(yl)
y = self.res2(y)
y = self.res3(y)
y2 = self.res4(y)
y = self.res5(y2)
y = self.res6(y)
y3 = self.res7(y)
gates = self.gate(torch.cat((y1, y2, y3), dim=1))
gated_y =yl * gates[:,[0],:,:] + y2 * gates[:, [1], :, :] + \
y3 * gates[:, [2], :, :]
y = F.relu(self.norm4 (self.deconv3(gated_y)))
y = F.relu(self.normb5(self.deconv2(y)))
if self.only_residual:
y = self.deconvl (y)

else:
y = F.relu(self.deconvl(y))
returny

Along with the input image, if the pre-calculated edges in the
input image are fed as auxiliary information to the network, it
often turns out to be very helpful to the network learning. For
this purpose, the function edge compute() pre-computes the
edges from the image.

def edge_compute(x):
x_diffx = torch.abs(x[:,:,1:] - x[:,:,:-1])
x_diffy = torch.abs(x[:,1:,:] - x[:,:-1,:])
y = x.new(x.size())
y.fill_(0)
y[:,:,1:] += x_diffx




v[:,:,:-11 += x_diffx

yl:, 1:,:] += x_diffy

yl:,:-1,:] += x_diffy

y = torch.sum(y,0,keepdim=True)/3
y /=4

returny

Let us understand how to instantiate the model class, load the
pretrained weights and run inference on the model, with a
step-by-step explanation of the next code snippet:

1. Instantiate the GCANet class into the variable net and
load the pretrained model weights using the method
torch.load(). Then set the network to evaluation mode
with net.eval(), and it becomes ready for prediction.

2. Read the rainy input image (with PIL’s Image.open()
method). The image size is assumed to be a multiple of 4. If
it is not, it is resized accordingly.

3. Concatenate (using torch.cat()) the pre-calculated edges
(using edge_compute()) with the hazy input image along
the channel dimension to obtain the final input to the
model.

4. Compute numpy ndarray to pytorch tensor (with
torch.from numpy()) and back (using the method
numpy()), as and when required.

5. torch.no_grad() deactivates autograd engine, by setting
all of the requires_grad flags to False temporarily.

6. Run a forward pass on the neural net (using net()) to
predict the derained output image.

7. Plot the input and output derained image using the
following code snippet:

model = 'models/wacv_gcanet_derain.pth’

net = GCANet(in_c=4, out_c=3, only residual=False)
net.float()

net.load_state_dict(torch.load(model, map_location='cpu'))
net.eval()

img_path = 'images/bridge.jpg’

img = Image.open(img_path).convert('RGB")




im_w, im_h = img.size
ifim w% 4!=0orim h % 4 !=0:
img = img.resize((int(im_w // 4 * 4), int(im_h // 4 * 4)))
img = np.array(img).astype('float’)
img _data = torch.from_numpy(img.transpose((2, 0, 1))).float()
edge_data = edge_compute(img_data)
in_data = torch.cat((img_data, edge_data), dim=0)\
.unsqueeze(0) - 128
in_data = in_data.float()
with torch.no_grad():
pred = net(Variable(in_data))
out_img data = pred.data[0].cpu().float().round().clamp(0, 255)
out_img = Image.fromarray(out_img data.numpy().astype(np.uint8)\
.transpose(l, 2, 0))
plt.figure (figsize=(12,10))
plt.subplots_adjust(0,0,1,0.95,0.05,0.05)
plt.subplot(121), plt.imshow(img.astype(int)), plt.axis('off")
plt.title(‘original’, size=20)
plt.subplot(122), plt.imshow(out_img), plt.axis('off")
plt.title(‘derained’, size=20)
plt.show()

If you run the preceding code snippet, you should obtain a
figure as follows:



original derained

Figure 2.8: Deraining with pretrained GCANet

Blind deblurring with DeblurGAN

In this section, we shall learn how to solve the blind motion-
deblurring problem for a single photograph, using an end-to-
end generative deep learning model called DeblurGAN. The
learning is based on a conditional Generative Adversarial
Network (GAN) and content loss. As described in Chapter 1,
Image Restoration and Inverse Problems in Image Processing,
the family of deblurring problems is divided into two types:
blind and non-blind deblurring, without and with an
assumption that the blur kernel is known, respectively. When
the blur function is unknown, and blind deblurring algorithms
estimate both latent sharp image and blur kernel (as
Richardson-Lucy algorithm, implemented in Chapter 1,
Image Restoration and Inverse Problems in Image Processing).

GAN, a form of unsupervised machine learning, trains two



competing networks, namely, the discriminator and the
generator simultaneously, as shown in Figure 2.9. Their roles
are:

« The generator G receives noise as an input and generates
a sample. The goal of the generator is to fool the
discriminator by generating perceptually convincing
samples that can not be distinguished from the real ones.

 The discriminator D receives a real and generated (fake)
sample and tries to distinguish between them. The goal of
the discriminator is to detect the fake image generated, it
acts as a binary classifier, outputting 1 when the input is a
real image and O in case of a fake one.

Refer to the following figure:

Generative Adversarial Network
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Figure 2.9: Schematic diagram of a generative adversarial network

If x be a real image and ¥ be a fake image generated by ¢
(from noise z, by ¥ = G(2)),

e The discriminator p tries to maximize D(x) and minimize

D(¥) (or equivalently maximize 1— D(¥)) to detect fake
images generated by G.

» The generator ¢ tries to maximize D(¥) (or equivalently
minimize 1 — D(¥)) to fool D.
Where we have:
* D(x): The discriminator’s estimate of the probability that
(real) image x is real (i.e., from the true data distribution).
e D(X) = D(G(z)): The discriminator’s estimate of the
probability that a generated (fake) image ¥ is real.



Hence, the game between the generator and discriminator
then can be formulated by the following minimax objective (in
the space), also called adversarial loss:

min max Ex-p |log(D(x))] + Es-p, [log(1-D(®)]

Where, P. is the data distribution and F; is the model
distribution, defined by ¥ = G(z). The input z is a sample from
a simple noise distribution and G(z) is the (fake) image output
by the generator-given input z. GANs are known for their
ability to generate samples of good perceptual quality.

Conditional GAN (cGAN) is an extension of the GAN
framework. An additional conditional information is input to
both discriminator and generator (as shown in Figure 2.10)
that describes some aspect of the images (for example, if it is
MNIST images, C could describe the digit class/label). This
attribute information is inserted in both the generator and the
discriminator. Hence, when the adversarial training is over,
the generator can generate a digit of a specific class when
asked. Unlike vanilla GAN, cGAN learns mapping from
observed image x and random noise vector zto y, G:x,z = y.
Here we have:
* x: Conditioning input (for example, a label, an image, or
some observed data)
e 2: Random noise vector (used to introduce
stochasticity/variety)
 y: Target output (for example, a label-specific image,
deblurred image, translated image, and so on)
The goal of DeblurGAN (which is effectively a form of
Conditional GAN) is to recover sharp image Is given only a
blurred image Iz as an input (which acts a the conditioning
input to the cGAN), without any information about the blur
kernel. Debluring is done by the trained CNN Gg,, which acts
as the generator. For each [ it estimates the corresponding Is
image. In addition, during the training phase, the critic



network Dgﬂ is introduced, and both networks are trained in an
adversarial manner (i.e., the generator and critic compete,
with the generator trying to fool the critic and the critic trying
to distinguish real from fake).

DeblurGAN learns: G(Ipuyr) = Isharp , the next table maps the
variables:

Symbol Meaning in cGAN Meaning in DeblurGAN
X Conditioning input Blurred image
z Noise vector Omitted (z = 0) or ignored
y Target output Sharp image !harr

Table 2.1: Mapping the variables

DeblurGAN does not use a noise vector z during inference or
training. It’s deterministic — the generator maps directly
from the blurred image to a sharp one (there’s a single correct
sharp image for a given blur).

The loss function is formulated as a combination of content
loss (which is the perceptual difference between the
generated deblurred image and the ground truth sharp image)
and adversarial loss:

adversarial loss content loss

g

total loss

The following figure shows the architecture of the generator
network G:
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Figure 2.10: Generator architecture in DeblurGAN
Source: https://arxiv.org/pdf/1711.07064



https://arxiv.org/pdf/1711.07064

As can be seen from the preceding figure, it contains two
strided convolution blocks with stride 1 or 2, nine residual
blocks (ResBlocks) and two transposed convolution blocks.
Each ResBlock consists of a convolution layer, instance
normalization layer, and ReLU activation. Dropout
regularization with a probability of 0.5 is added after the first
convolution layer in each ResBlock. In addition, a global skip
connection, referred to as ResOut, is introduced CNN learns a
residual correction I to the blurred image Ig, so I = Ig + I}. It
is found that such formulation makes training faster and
resulting model generalizes better [2].

Let us start our implementation by importing all the required
libraries, using the following code block:

import tensorflow as tf

from tensorflow.keras.layers import Input, Conv2D, Activation, Add, \
UpSampling2D, BatchNormalization, Dropout

from tensorflow.keras.layers import LeakyReLU, Conv2D, Dense, Flatten, \

Lambda, InputSpec, Layer

from tensorflow.keras.models import Model

import tensorflow.keras.utils as conv_utils

import tensorflow.keras.backend as K

from PIL import Image

import numpy as np

import matplotlib.pylab as plt

from glob import glob

Let us go through the following python implementation steps,
accompanied by detailed explanation:
* Refer to the preceding network architecture. We are going
to implement a slightly modified version of this network
using keras.

e The function res block() in the following code snippet
instantiates a Keras Resnet block using Keras functional
API. It accepts the following parameters: an input (tensor),
number of filters, kernel size and shape of strides for the
convolution, whether to use dropout or not and returns a
Keras model. It uses couples of ReflectionPadding2D
instances with an optional Dropout layer (to prevent



overfitting) in the middle.

e The function normalize tuple() transforms a single
integer or iterable of integers into an integer tuple.

* Note that here we are going to expect the input image only
in the channels last image data format (modify the code if
you want to support other data formats), which is the same
as K.image data_format().

data_format = K.image_data_format()
def res_block(input, filters, kernel _size=(3, 3), strides=(1, 1), \
dropout=False):
x = ReflectionPadding2D((1, 1)) (input)
x = Conv2D(filters=filters, kernel size=kernel size, \
strides=strides) (x)
x = BatchNormalization() (x)
x = Activation('relu') (x)
if dropout:
x = Dropout(0.5)(x)
x = ReflectionPadding2D((1, 1))(x)
x = Conv2D(filters=filters, kernel_size=kernel_size, \
strides=strides,) (x)
x = BatchNormalization() (x)
merged = Add() ([input, x])
return merged
def normalize_tuple(value, n):
return (value,) * n if isinstance(value, int) else tuple(value)
def spatial reflection_2d_padding(x, padding=((1, 1), (1, 1))):

pattern = [[0, 0], list(padding[0]), list(padding[1]), [0, 0]]
return tf.pad(x, pattern, "REFLECT")
class ReflectionPadding2D(Layer):

def _init (self, padding=(1, 1), **kwargs):
super(ReflectionPadding2D, self). init_ (**kwargs)
self.data_format = data_format
if isinstance(padding, int):

self.padding = ((padding, padding), (padding, padding))

elif hasattr(padding, ' len '):

height padding = normalize_tuple(padding[0], 2)
width_padding = normalize tuple(padding[1], 2)
self.padding = (height_padding, width_padding)
self.input_spec = InputSpec(ndim=4)
def compute_output_shape(self, input_shape):




rows = input_shape[1] + self.padding[0][0] + self.padding[0][1] \
if input_shape[1] is not None else None

cols = input_shape[2] + self.padding[1][0] + self.padding[1][1] \
if input_shape[2] is not None else None

return (input_shape[0], rows, cols, input_shape[3])

def call(self, inputs):
return spatial_reflection_2d_padding(inputs, padding=self.padding)
def get_config(self):
config = {'padding': self.padding,
‘data_format': self.data_format}
base_config = super(ReflectionPadding2D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))

Let us proceed to the next part:

Now implement the generator model, using the preceding
res_block. Note that the input shape of the image used
here is hard coded to (256,256,3), you may want to play
with the size and observe the impact on the output.

As shown in the model architecture diagram, the following
implementation uses nine (n_blocks gen=9) res _blocks.

Note that the res_blocks use dropout
(use_dropout=True) to prevent overfitting.

It uses BatchNormalization layer though instead of
instance normalization (to see the difference, we have to
change the network to use instance normalization instead
and observe the impact).

It uses UpSampling2D layer instead of
Conv2DTranspose (find out the difference, left as an
exercise).

n_blocks gen = 9
def generator_model():
inputs = Input(shape=(256, 256, 3))
x = ReflectionPadding2D((3, 3)) (inputs)
x = Conv2D(filters=ngf, kernel size=(7, 7), padding="'valid') (x)
x = BatchNormalization() (x)
x = Activation('relu') (x)
n_downsampling = 2
for i in range(n_downsampling):




mult = 2%*i
x = Conv2D(filters=ngf*mult*2, kernel_size=(3, 3), strides=2, \
padding='same') (x)
x = BatchNormalization() (x)
x = Activation('relu') (x)
mult = 2**n_downsampling
for i in range(n_blocks_gen):
x = res_block(x, ngf*mult, use_dropout=True)

n_blocks gen = 9
def generator_model():
inputs = Input(shape=(256, 256, 3))
x = ReflectionPadding2D((3, 3)) (inputs)
x = Conv2D(filters=ngf, kernel _size=(7, 7), padding='valid') (x)
x = BatchNormalization() (x)
x = Activation('relu') (x)
n_downsampling = 2
for i in range(n_downsampling):
mult = 2**
x = Conv2D(filters=ngf*mult*2, kernel_size=(3, 3), strides=2, \
padding='same') (x)
x = BatchNormalization() (x)
x = Activation('relu') (x)
mult = 2**n_downsampling
for i in range(n_blocks_gen):
x = res_block(x, ngf*mult, use _dropout=True)
for i in range(n_downsampling):
mult = 2**(n_downsampling - i)
x = UpSampling2D() (x)
x = Conv2D(filters=int(ngf * mult / 2), kernel_size=(3, 3), \
padding='same") (x)
x = BatchNormalization() (x)
x = Activation('relu') (x)
x = ReflectionPadding2D((3, 3))(x)
x = Conv2D(filters=output_nc, kernel size=(7, 7), padding='valid') (x)
x = Activation('tanh") (x)
outputs = Add() ([x, inputs])
outputs = Lambda(lambda z: z/2) (outputs)
model = Model(inputs=inputs, outputs=outputs, name='Generator"')
return model

Let us go over the following points:

* Once the generator architecture is defined, we are ready to
load the pretrained weights in the generator and run



deblurring.

The function load_image() in the following code snippet
uses the PIL library method Image.open() to open load an
image from disk, given its path.

The function preprocess image() normalizes the input
image pixels (assuming that pixel values are in [0,255]).

The function deprocesss image() does the reverse
operation: it converts normalized pixel values back into the
range [0,255] and changes the image type back to an 8-bit
unsigned integer (np.uint8).

The function deblur() accepts a couple of input
parameters, the first one being the blurred image to be
sharpened and the second one being the pre-trained
DeblurGAN model that will be used to deblur the image.
The function preprocesses the blurred input image, loads
the pre-trained weights in the generator model, and uses
the generator to predict the generated (de-blurred) image,
deprocesses it, and returns it.

Finally, load the original input image and its blurred
version (implement a custom blur kernel to simulate a
motion-blurred version of the input image, refer to the
questions at the end of the chapter). Invoke the deblur()
function with the blurred image as an input argument to
obtain the sharpened output in return.

def load_image(path):
img = Image.open(path)
return img

def preprocess_image(img):
img = img.resize((256,256))
img = np.array(img)
img = (img - 127.5) / 127.5
return img

def deprocess_image(img):
img =img * 127.5 + 127.5
return img.astype('uint8")

def deblur(blurred, model path):
x_test_lst = [preprocess_image(blurred)]




batch_size = len(x_test_lst)

x_test = np.array(x_test_Ist)

g = generator_model()

g.load_weights(model path)

generated_images = g.predict(x=x_test, batch_size=1)

generated = np.array([deprocess_image(img) \

for img in generated_images])[0]

return generated
blurred = load_image('images/parrot_blur.jpg")
deblurred = deblur(blurred, 'models/generator.h5")

If you plot the original, blurred, and deblurred (with
DeblurGAN) images, you should get the following output
figure:
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Figure 2.11: Deblurring images with DebulrGAN

Image inpainting

Image inpainting is a form of image restoration and
conservation, and the technique is generally used to repair



images with missing areas. Given an image and a (corrupted)
region Q inside it, the goal of an image inpainting method is to
modify the pixel values inside Q, so that this inpainted region
does not stand out with respect to its neighboring regions
(surroundings). The goal of inpainting is either to restore
damaged portions or to remove unwanted elements present in
an input image. The region Q is provided by the user, with a
binary mask (where the white/black pixels represent the
damaged/undamaged part of the image, respectively, or
sometimes the other way around). In this section, we shall
learn how to apply a few inpainting techniques to restore the
damaged parts of an input image, first using a few variational
methods with the library opencv-python and then using a
machine learning based method using the scikit-learn library.

Inpainting with opencv-python
There are several algorithms out there for digital image

inpainting, but OpenCV natively provides implementations for
a few of them, namely:

« INPAINT TELEA: This algorithm uses Fast Marching
Method (FMM) for inpainting the corrupted region in an
image. The algorithm starts from the boundary of the
region to be inpainted and then proceeds gradually inside
the region. It first fills everything in the boundary. A pixel
(to be inpainted) is replaced by the (normalized) weighted
sum of all known pixels in a small neighborhood around it
(nearby pixels in the neighborhood/near the normal of the
boundary/on the boundary contours get more weightage).
After the pixel gets inpainted, it goes to the next and
nearest pixel to be inpainted, by using the FMM (by
treating the region to be inpainted as level sets).

« INPAINT _NS: This algorithm is based on fluid dynamics
and is called Navier-Stokes based inpainting. It is a
heuristic-based algorithm, with couple of constraints:

o Preserve gradients



o Continue to propagate color information in smooth
regions

Partial differential equations (PDE) are used to update
image intensities inside the region with the constraints. It
travels from known to unknown regions along the edges
first (to maintain the continuity of the edges). It propagates
image smoothness information (estimated by the
Laplacian) along the isophotes (contour line joining pixels
with same intensity), at the same time, it matches the
gradients at the boundary of region to be inpainted.

e INPAINT _SHIFTMAP: This algorithm searches for
dominant correspondences (transformations) of image
patches and tries to seamlessly fill-in the area to be
inpainted using these transformations.

« INPAINT _FSR: This algorithm uses Frequency Selective
Reconstruction (FSR), which is a high-quality signal
extrapolation algorithm. Successively, the signal of a
distorted block is extrapolated using known samples and
already reconstructed pixels as support. An essential
feature of FSR is the fact that the calculations are carried
out in the Fourier domain, which leads to a fast
implementation. This further has two quality profiles, one
of the them needs to be chosen, depending on how fast we
need the reconstruction, they are: INPAINT FSR_FAST
and INPAINT_FSR_BEST.

In this section, we shall simply use the opencv-python
implementations described, to inpaint an image distorted by
adding a random pattern. We shall compare the quality of the
inpainted outputs obtained with different algorithms using the
following two metrics, namely,

 PSNR: PSNR between the original image f and
reconstructed image f is expressed as:



(max(f))

PSNR(f,f) = 10logy, WSE(F. /)

Here, MAX(f) = 255 is for a grayscale image of type uint8
and MSE is defined as:

£ 112
MSE(f.f) = s Sf I
Where, F represents the Frobenius norm of the error
image matrix (f — f) and s is size of image f (s = number of
pixels). PSNR is a representation of absolute error in dB.
* Structural Similarity Index Method (SSIM): In this
perception-based model, image degradation is

apprehended as perception-change in  structural-
information. SSIM is defined by [9]:

o~ A Te(r AN Ts(F A — (2upup + My)(2cov(f, f) + My)
SSIM(f.f) = [UF )], - LeCf. D - s(. 7)), (i + 42+ 1) (7 + o7 + 1)

Here, #, 0 and C(Q7 respesent the mean, standard
deviation and covariance of the images, M; = (E;F)? and
M, = (E,F)?, where the values E; =0.01, E, =0.003 and
F = 255 are used for grayscale images.
Moreover, | refers to luminance (brightness), c¢ refers to
contrast (range of the pixel intensities, distance between the
intensities of the darkest and the brightest regions) and s
refers to structure (the local luminance pattern), where a, B
and y are +ve constants.
Let us dive into the following python implementation steps:

1. Let us start by importing the required libraries. Also, note
the version of opencv-python (cv2) used.

import numpy as np

from matplotlib import pyplot as plt
import cv2

print(cv2.  version_ )




2. Read the input color image and the mask image as a
grayscale image (with the flag cv2.IMREAD_GRAYSCALE
which is 0).

3. Create the binary mask for the region to be inpainted, by
thresholding the mask image, by using a constant threshold
(for example, 128).

4. Create the corrupted image image _defect by masking the
same region in each color channel, as done in the next code
block:

image_orig = cv2.imread('images/house.jpg’)

mask = cv2.imread('images/random_mask.jpg’, 0)

thres = 128

mask[mask > thres] = 255

mask[mask <= thres] = 0

image_defect = image_orig.copy()

for layer in range(image_defect.shape[-1]):
image_defect[np. (mask)] =0

5. Let us run the preceding algorithms one after another on
the corrupted image and store the recovered images in a
python dictionary images rec, indexed by the algorithm
names.

6. The algorithms INPAINT TELEA and INPAINT NS can
be accessed by the function cv2.inpaint(), whereas, the
INPAINT SHIFTMAP and INPAINT FSR can be
accessed by the function cv2.xphoto.inpaint().

7. The function cv2.inpaint() accepts the following
arguments:

a. src: The source image with corrupted/missing regions).

b. inpaintMask: A binary mask indicating pixels to be
inpainted.

c. inpaintRadius: Specifies the radius of the circular
neighborhood around a pixel used for inpainting. A value

of 3 is commonly used, especially when the regions to be
inpainted are narrow or thin, as smaller radii tend to



produce sharper and less blurry results in such cases.

d. flags: INPAINT NS (Navier-Stokes based method) or
INPAINT TELEA (fast marching based method).

8. The function cv2.xphoto.inpaint() expects an additional
argument dst to store the inpainted output image. These
algorithms expect the mask to have black pixels
corresponding to the region Q to be inpainted. That is why
we need to invert the mask since the original mask has

white pixels corresponding to Q.

images_rec = {}
for algo_name, algo_id in zip(['TELEA', 'NS'], \
[cv2.INPAINT TELEA, cv2.INPAINT _NSJ):
images_rec[algo_name] = cv2.inpaint(image_defect, mask, 3, \
algo_id)

inverse_mask = (255 - mask)

image_rec = np.zeros_like(image_defect, dtype=np.uint8)

for algo_name,algo_id in zip(['SHIFTMAP', 'FSR_FAST', 'FSR_BEST"], \
[cv2.xphoto. INPAINT_SHIFTMAP, cv2.xphoto.INPAINT_FSR_FAST, \

cv2.xphoto.INPAINT _FSR_BEST]):
cv2.xphoto.inpaint(src=image_defect, mask=inverse_mask, \
dst=image_rec, algorithmType=algo_id)

images_rec[algo_name] = _rec.copy()

9. Use the functions peak signal noise ratio() and
structural_similarity() from the library skimage.metrics
to compute the PSNR and SSIM between the original and
recovered images, for different algorithms.

10. Moreover, you can compute the time taken by different
algorithms to produce the inpainted output (for example,
use the time module).

11. Display the output inpainted image by running an
algorithm, and plot the quality of inpainting reported by
PSNR and SSIM values, using the
show recovered_image() function from the following
code snippet.

12. Be sure to convert the image color space from BGR to
RGB before displaying it with matplotlib (use



cv2.cvtColor() function with ¢v2.COLOR BGR2RGB
argument), since the image is read with cv2.imread(),
which reads the image in BGR color space by default.

from skimage.metrics import peak _signal noise ratio as psnr, \
structural_similarity as ssim
def show_recovered_image(im_orig, im_rec, algo_name):
plt.imshow(im_rec), plt.ax/s('off")
plt.title('{} \n PSNR: {:.02f}, SSIM: {:.02f}'.format( \
algo_name, psnr(im_orig, im_rec), ssim(im_orig, im_rec, \
data_range=im_rec.max()-im_rec.min(), multichannel=True)), \
size=20)

Let us plot the original input image, binary mask, degraded
image and all the recovered images obtained by running
different  inpainting  algorithms (use the function
show_recovered image() defined previously). You should
obtain a figure as shown in Figure 2.12. Notice that the
inpainting algorithm FSR FAST produces the best quality
output in terms of PSNR and SSIM metrics:

Inpainting a corrputed image using different algorithms with opencv-python
ai’: Ima -_

- l.'.l| ginal image rl;l

TELEA PSNR: 29,37, S5IM: 0.91

FSR_FAST PSNR: 30.57. S5IM: 0.93  FSR _BEST PSNR: 29.80. SSIM: 0.91

| i,
- r i - '

Figure 2.12: Image inpainting with opencv-python



Inpainting with scikit-learn k-NN
regression model

In this section, we shall formulate the image inpainting
problem as a supervised machine learning regression problem.
More specifically, we shall try to learn an approximate
function f for the image function f:x,y = R, by:

 Training a supervised machine learning model Mg that
learns the function f (by updating its parameters @), by
minimizing a loss function L(f (x, v), f (x, y}), for (x,y) €1,
that is, for the region where the image is not corrupted (2°
). For example, for a model like linear regression, we can
use the Sum Squared Error (SSE), also called the L, loss
function defined by || f—f |3 or equivalently the MSE
obtained by dividing SSE by image size.

* Using the model My we just trained (and the function f we
just learned), to predict the pixel values with
f(x,y), ¥(x,y) € n, for the region N to inpaint (that is,
where the image pixels are corrupted).

Here, we shall use the k-Nearest Neighbor (KNN) regression
model (KNeighborsRegressor from scikit-learn library’s
neighbors module) to learn the function f. We can use any
other regression model too (for example, try the ordinary least
square linear regression with MSE loss function and the
ensemble model random forest regression and compare the
results).

First, let us follow the next steps to create a masked image,
masking the corrupted pixels that need to be inpainted:
 First read the original input and the mask image as
np.uint8 arrays, using the following code snippet.

* Note that here we are assuming that the input is a
grayscale image and thus reading both the input and mask
images with cv2.imread with mode flag as 0 (that is,
cv2.IMREAD_GRAYSCALE). We can extend the
implementation to inpaint an RGB color input image simply



by learning a model for each color channel (see exercise
problem ).

e Threshold the mask image (with a constant threshold 0.5,
for example) to obtain a binary mask (here, the inpainting
region (1 is defined by the white pixels in the mask),
convert it to boolean array. Assuming that the white pixels
in mask define the corrupted region, let us now create the
degraded image (image defect) by turning the
corresponding pixels off:

image_orig = cv2.imread('images/lena.jpg’, 0)

mask = cv2.imread('images/mask.jpg’, 0)

mask = mask / mask.max()

thres = 0.5

mask[mask > thres] = 1

mask[mask <= thres] = 0

mask = mask.astype(‘bool")

image_defect = image_orig.copy()

for layer in range(image_defect.shape[-1]):
image_defect[mask] = 0

Next, instantiate a KNN regression model with scikit-learn, fit
it on the known pixels and predict the unknown (corrupted)
pixels, following the next steps:

1. First, we need to preprocess the image, so that it is
suitable to be used by the kNN regression model (need to
separate out the feature and the target variables). The only
feature variables (that we shall use here to predict a target
pixel value) are the (x,y) coordinates of the pixel. Hence,
let us generate all possible image coordinates in the grid
that a pixel in the image can possibly have. This is exactly
done by np.meshgrid() function, as shown in the next
code snippet. Extract the pixel values for all pixels in the
grid, note that the X,y coordinates are swapped, can you
say why?

2. Next, let us divide the image into two parts, namely
training and test dataset. The training dataset (x_train,
y_train, d train) will correspond to the uncorrupted
region () in the image (from where the model will learn the



association between the pixel value and the coordinates).
In contrast, the test dataset (x test, y test, d test) will
correspond to the corrupted region (on these coordinates
the trained model will predict pixel values). Here is where
the Boolean mask will come in handy. Use the inverted
mask and the mask, respectively, to obtain the training and
the test dataset.

3. Instantiate a KNeighborsRegressor class (with default
parameters) and train the model (with the method fit()) on
the training dataset.

4. The kNN regression model uses the local interpolation of
the target variable values from the kNN pixels from the
training dataset, to predict the target variable value for a
test datapoint.

5. The number of neighbors k to be used for prediction
(n_neighbors argument in the KNeighborsRegressor
class constructor) defaults to 5. Try changing this
hyperparameter (for example, to 3,7,9) and observe the
(overfitting / underfitting) impact on the inpainting
result.

6. Finally, predict the corrupted pixels corresponding to the
test dataset (with the method predict()). Use the binary
mask array again to create an output image (image_out)
with the known and the predicted pixels, this is the final
inpainted image:

from sklearn.neighbors import KNeighborsRegressor

X, y = np.meshgrid(range(image_orig.shape[1]), \
range(image_orig.shape[0]))

d = image_origl[y, x]

x_train, y_train, d_train = x[~mask], y[~mask], d[~mask]

x_test, y_test, d_test = x[mask], y[mask], d[mask]

image_out = np.zeros_like(image_orig)

d_pred = np.zeros_like(d_test)

model = KNeighborsRegressor()

model.fit(np.vstack((x_train, y_train)).T, d_train)

d_pred = model.predict(np.vstack((x_test, y_test)).T)

image_out[~mask] = image_orig[~mask]




|image_out[mask] = d_pred

Now, plot the original, corrupted, and the inpainted
(recovered) image side by side. You should obtain a plot like
the following figure. Note that the algorithm could successfully
inpaint the damaged image.

recoverad

corrupted

Figure 2.13: Inpainting a corrupted Lena image with scikit-learn kNN regressor

Image denoising with anisotropic
diffusion with opencv-python

In this section, we shall learn how to use the anisotropic (heat)
diffusion equation to denoise an image, preserving the edges
using an extended image processing function from the library
opencv-python. Isotropic diffusion is identical to applying a
Gaussian filter, which blurs an image without preserving the
edges in the image, as we have already seen. It refers to a
uniform diffusion process where the smoothing is applied
equally in all directions. This approach treats all regions of the
image the same, typically leading to the even blurring of both
edges and homogeneous regions.

Anisotropic diffusion, on the other hand, is direction-
dependent and allows for selective smoothing. It preserves
edge details by reducing the diffusion (or smoothing) across
edges while allowing diffusion within homogeneous regions.
This approach helps in enhancing important features like
edges in images while reducing noise. The features of



anisotropic diffusion are listed as follows:

It can be used to smooth (denoise) an image by keeping the
edges mostly unchanged (even sharpened).

[t is anisotropic in the sense that the diffusion happens in
different neighboring direction at different rates
(depending on the presence of an edge or not). This is
implemented by the PDE shown in Figure 2.14, where the
conductivity term uses an edge stopping function (kernel)
g(.) to stop diffusion along sharp edges in the input.

 The anisotropic diffusion process is an iterative process,
the Gaussian kernel or an inverse-square kernel function
g(.) used as a conductivity function (c¢), according to
Perona-Malik equation 1 or equation 2 [6, 7],
respectively, as shown in the following figure:

Anisotropic Heat Diffusion Equation

I, = divielx,v, )VI)=c(x.v.1).A] + V¢ VI
+ & & L &
image divergence Gradient conductivity Laplacian
at time t function
=V (VN ==(cl)+=(cl,)
calculate the conductivity function € every iteration based on the current image [

c(x. v 1) = g(||91Cx. v, 1))
Perona-Malik edge-stopping function
g(Vi) = ¢ ~(W/KN (equation 1)

g(Vl) = —————— (equation 2)

Figure 2.14: Anisotropic diffusion equation
Source: http://image.diku.dk/imagecanon/material/PeronaMalik1990.pdf

Let us start the implementation by importing the required
libraries, modules and functions, using the following code
snippet:


http://image.diku.dk/imagecanon/material/PeronaMalik1990.pdf

import numpy as np

import matplotlib.pylab as plt

import cv2

print(cv2. version_ )

from skimage.io import imread

from skimage.util import random_noise

Follow the next steps for implementation with opencv-
python:

1. First, read the input RGB color image from disk and add
random Gaussian noise (with a variance of 0.05) to it, using
scikit-image library’s util.random_noise() function, to
obtain the noisy degraded image.

2. Apply the Gaussian blur (also can be thought of as
isotropic diffusion) to the image to remove noise, using
cv2.GaussianBlur() function, with the input noisy image
and a tuple representing the blur kernel size (11x11) as
first two input arguments. Set the third argument to the
function to 0 (OpenCV is instructed to automatically
compute the variance of the Gaussian blur based on the
kernel size).

3. Now let us compare the denoised output with one
obtained using anisotropic diffusion performed with the
function cv2.ximgproc.anisotropicDiffusion().

4. The function cv2.ximgproc.anisotropicDiffusion()
applies Perona-Malik anisotropic diffusion to the noisy
input image. The function accepts the following
parameters:

a. src: The 3-channel input (in our case, it will be the
noisy RGB color image noisy).

b. alpha: Time delta forwarded per iteration (typically has
values in [0,1]).

c. K: Sensitivity to edges in the image.

d. niters: Number of iterations to run.
5. Use aplha=0.05 and K=30 for two different numbers of



iterations, namely, 5 and 10 (to see how the convergence
takes place at successive iterations). Play with the values
of the parameters, plot the output denoised images, and
observe the impact on the quality of the denoised output
image (in terms of edges preserved, blurring, PSNR, SSIM)
as follows:

im = imread('images/building.jpeg")
noisy = (255*random_noise(im, var=0.05)).astype (np.uint8)
plt.figure (figsize=(12,13))
plt.subplots_adjust(0,0,1,0.95,0.05,0.05)
plt.gray()
plt.subplot(221), plt.imshow(noisy), plt.axis('off")
plt.title('Noisy Image', size=20)
output_blur = cv2.GaussianBlur(noisy, (11,11), 0)
plt.subplot(222)
show_recovered_image(im, output_blur, \
‘gaussian blur: kernel=(11,11)")

niters = [5, 10]
for iin range(2):

plt.subplot(2,2,i+3)

output_aniso = cv2.ximgproc.anisotropicDiffusion(noisy, \
alpha=0.05, K=30, niters=niters[i])
show_recovered_image(im, output_aniso, \
'‘anisotropic diffusion: #iter='+ str(niters[i]))
plt.show()

If you run the preceding code snippet, you should obtain a
figure like the next one:



gaussian blur: kernel=(11,11)
Moisy Image PSMNR: 18.63, S5IM: 0.47

anisotropic diffusion: #iter=5 anisotropic diffusion: #iter=10
PSMR: 19.54, 55IM: 0.52 _ PSNR: 18.78, S5IM: 0.49

Figure 2.15: Denoising image with anisotropic diffusion with opencv-python

As can be seen from the preceding figure, the denoised images
with anisotropic diffusion preserve edges better.

Sketch with anisotropic diffusion

Anisotropic diffusion can produce sketches from an image by
subtracting the diffused image from the original image (with
different iterations and varying parameter values we can get
edges at different scale-space). The following code provides a
simple implementation. Let us understand the implementation
step-by-step:



1. This time we shall use the anisotropic diffusion
implementation
medpy.filter.smoothing.anisotropic_diffusion() from
the library medpy (install the library first, if you have not
already done so).

2. Note that the input image used is a 4-channel .png image
(with an additional channel for transparency). So, we need
to first convert it to a 3 channel image using the function
rgba2rgb() from scikit-image’s color module and then
convert it to a grayscale image (expected input for the
function anisotropic_diffusion()).

3. The function edges _with _anisotropic_diffusion()
computes the edges as a difference between the original
and diffused image.

4. The function sketch() makes the edges more prominent
(by elementwise multiplication of edges image with original
image) to produce the output sketch.

Refer to the following Python code snippet:

import warnings
warnings.filterwarnings(‘ignore")

from medpy.filter.smoothing import anisotropic_diffusion
from skimage.io import imread
from .color import rgh2gray, rgba2rgb
from skimage.filters import gaussian
def sketch(img, edges):
output = np.multiply(img, edges)
output[output > 1] =1
output[edges == 1] =1
return output
def edges_with_anisotropic_diffusion(img, niter=100, \
kappa=50, gamma=0.2):
img = gaussian(img, sigma=0.5)
output = img - anisotropic_diffusion(img, niter=niter,\
kappa=kappa, gamma=gamma, voxelspacing=None, option=1)
outputfoutput > 0] =1
outputfoutput < 0] =0
return output
im = rgb2gray(rgba2rgb(imread('images/umbc.png')))




|0utput_aniso = sketch(im, edges_with_anisotropic_diffusion(im)) |

Plot the input and output images side by side, and you should
obtain a figure like the following one:

Original gray-scale image

e Y
i e

Figure 2.16: Sketching with anisotropic diffusion

Simple deep image painting with keras

In this section, we shall use the same idea that we used in
image inpainting with supervised machine learning, but this
time using deep neural network with keras. We shall
reconstruct RGB values for an entire image as a function of the
pixel coordinates only, f:R? — R3 and approximate the vector-
valued function f([x y]) = [R G B] using a function f which will
be learned from the image data with the deep neural net,
using the squared-loss function, given by | f—f |3 The
reconstruction will be done by prediction with this model and
we shall call this process as painting the image, since it will
reproduce a smooth approximation of the image, as we shall
see.

Let us start by importing the libraries and modules required:

import tensorflow as tf

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

from tensorflow.keras import backend as K
from keras.utils.vis_utils import plot_model
from PIL import Image

import numpy as np

import matplotlib.pylab as plt




Now, let us go through the following step-by-step
implementation:

1. The function get _data() in the following code snippet
extracts the feature variables x € R2 (pixel coordinates) and
target variable y € R? (RGB pixel values), to get the data
ready for training.

2. The function accepts a PIL image as input, and the image
data can be extracted with the method Image.getdata(),
as shown in the following code snippet.

3. Extract the r, g, b values.

def get_data(img):
width, height = img.size
pixels = img.getdata()
x_data, y_data = [],[]
for y in range(height):
for x in range(width):
idx = x + y * width
r, g, b = pixels[idx]
x_data.append([x / width, y / height])
y_data.append([r, g, b])
x_data = np.array(x_data)
y_data = np.array(y_data)
return x_data, y_data
im = Image.open("images/me.jpg")
X, y = get_data(im)

4. The function create model() in the following code
snippet uses keras Sequential API to define the deep
neural net model.

5. The network consists of a few fully connected (Dense)
layers, with nonlinear Relu activation.

6. The input of the model is of dimension (input_shape) 2
(namely, the X ) y coordinates of a pixel).

7. The output of the model has dimension 3 (Dense(3))
(namely, the R, G, B pixel values).

8. The loss function used is MSE (mean_squared_error),
with Adam optimizer, which is defined by the



model.compile() method.

9. The function generate image() accepts the trained
model as an input argument and reconstructs the same
image (by predicting the pixel values with the model) of

given width and height and the pixel coordinates x. This
nested for loop populates the output image pixel-by-pixel
using RGB values predicted by the model, reconstructing a
full-color image from the model’s output.

o idx = x + y * width converts the 2D coordinates (x, y)
into a flat index idx, assuming y pred is a flattened
list/array of pixel RGB values.

or, g b = ypredlidx] retrieves the predicted RGB
values for the pixel at position (%, y).

Now, refer to the next code snippet:

def create_model():
model = Sequential()
model.add(Dense(2, activation='relu’, input_shape=(2,)))
model.add(Dense (20, activation='relu'))
model.add(Dense (20, activation='relu'))
model.add(Dense (20, activation='relu'))
model.add(Dense (20, activation='relu'))
model.add(Dense (20, activation='relu'))
model.add(Dense (20, activation='relu'))
model.add(Dense (20, activation='relu'))
model.add(Dense(3))
model.compile(loss="mean_squared_error', optimizer="'adam')
return model
def generate_image(model, x, width, height):
img = Image.new("RGB", [width, height])
pixels = img.load()
y_pred = model.predict(x)
for y in range(height):
for x in range (width):

idx = x + y * width

r, g, b = y_pred[idx]

pixels[x, y] = (int(r), int(g), int(b))
return img

10. Create the model and plot the model architecture using
the plot model() function from keras.utils.vis utils



module, as shown in the following figure:

m = create_model()
plot_model(m, to_file='images/model arch.png', show_shapes=True, \
show_layer names=True)

Refer to the following figure:

Figure 2.17: Keras model architecture
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11. Train the model on the dataset created (using the fit()

method), for 10 epochs and with batch_size 5.

12. Use the model to predict the pixel RGB values for the
given coordinates. It returns the reconstructed (painted)

image.

13. Plot the original input and the reconstructed output

image as follows:

m.fit(x, y, batch_size=5, epochs=10, verbose=1, \
validation_data=(x, y))
out = generate_image(m, x, im.width, im.height)
plt.figure (figsize=(10,10))
plt.subplot(121), plt.imshow(im), plt.axis('off") plt.title('Original’, size=20)
plt.subplot(122), plt.imshow(out), plt.axis('off")
plt.title('Neural Net Painted', size=20)
plt.show()
# Epoch 1/10
# 61440/61440 [==============================] - 1255
2ms/step - loss: # 1449.2676 - val loss: 1249.4037
# Epoch 2/10
# 61440/61440 [==============================] - ]20s

2ms/step - loss: # 1041.2477 - val loss: 647.8983




# Epoch 3/10

# 61440/61440 [==============================] - 134s
2ms/step - loss: # 539.8658 - val loss: 321.4036

# Epoch 4/10

2ms/step - loss: # 361.0727 - val loss: 332.0901
# Epoch 5/10

2ms/step - loss: # 319.6828 - val loss: 258.9804
# Epoch 6/10

2ms/step - loss: # 299.9219 - val_loss: 260.5214
# Epoch 7/10

2ms/step - loss: # 287.6617 - val loss: 237.3738
# Epoch 8/10

2ms/step - loss: # 275.5465 - val_loss: 272.4277

# Epoch 9/10

# 61440/61440 [==============================] - 1425
2ms/step - loss: # 269.4614 - val_loss: 253.6740

# Epoch 10/10

# 61440/61440 [==============================] - 1295
2ms/step - loss: # 258.9236 - val loss: 259.6959

If you run the preceding code snippet, you should obtain a
figure like the next one:

Original Neural Net Painted

Figure 2.18: Neural painting with Keras

Semantic image inpainting with DCGAN

DCGAN introduces certain architectural constraints in
implementing an ordinary GAN and yields better results with
stronger representation learning. It eliminates the fully
connected layers (and also the global average pooling,



which hurts the convergence speed), turning it into an all-
convolutional net, replaces deterministic spatial pooling
functions (such as max-pooling) with strided convolutions,
allowing the discriminator and the generator to learn their
own spatial downsampling and spatial upsampling,
respectively.

Here are the architecture guidelines for stable DCGAN [4]:

e Use strided convolutions and fractional-strided
convolutions instead of the pooling layers, for the
discriminator and the generator, respectively.

* Use batch-normalization in generator and discriminator
(except for the layers generator output and the
discriminator input).

* For deeper architectures, get rid of fully connected hidden
layers.

 For all layers in the generator, use the ReLU activation
(except for the output, for which, use Tanh activation).

 For all layers in the discriminator, use the LeakyReLU
activation.

The following figure shows the DCGAN generator architecture:

DCGAN generator

Figure 2.19: DCGAN generator architecture
Source: https://arxiv.org/pdf/1511.06434 .pdf

In this section, we shall learn how to use DCGAN for image
completion, given a partially corrupted image. Let us
understand how we can implement it with semantic image
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inpainting using DCGAN:
« Semantic image inpainting is a challenging task where

large missing regions have to be filled based on the
available visual data.

e Unlike traditional inpainting (which relies on low-level
features like edges or textures), semantic inpainting uses
high-level understanding of objects and scenes to
plausibly reconstruct what is missing. For example:

o If part of a face is missing, a semantic inpainting model
can infer and generate eyes, nose, or mouth using prior
knowledge of how faces typically look.

o It doesn’t just fill in similar colors or textures — it fills in
the correct object parts, based on learned context.

e Given a trained generative model, the closest encoding of
the corrupted image is searched in the latent image
manifold using the context and prior losses. This
encoding is then passed through the generative model to
infer the missing content.

 The inference is possible irrespective of how the missing
content is structured.

* Back-propagation to the input data is employed to find the
encoding close to the provided corrupted image.

 To fill large missing regions in images, our method for
image inpainting utilizes the generator G and the
discriminator D, both of which are trained with
uncorrupted data. The encoding 7 closest to the corrupted
image is recovered while being constrained to the
manifold, as shown in the following figure. After 2 is
obtained, the missing content can be generated by using
the trained generator [5].

Refer to the following figure:
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Figure 2.20: Semantic image inpainting with DCGAN
Source: https://arxiv.org/pdf/1607.07539.pdf

The process of finding Z can be formulated as an
optimization problem. Let ¥ be the corrupted image and
M be the binary mask with a size equal to the image to
indicate the missing parts. The closest encoding 2 is
defined as:

z=argmin{L(zly.M)+ L,(z)}

= context loss prior loss

The context loss constrains the generated image z given
the input corrupted image ¥ and the hole mask M, whereas
the prior loss penalizes unrealistic images.

Weighted context loss: To fill large missing regions, we
need to take advantage of the remaining available data.
The context loss is designed to capture such information. A
convenient choice for the context loss is simply the [, norm
between the generated sample G(z) and the uncorrupted
portion of the input image ¥, but such a loss treats each
pixel equally, which is not desired.

A context loss is to be defined with the hypothesis that the
importance of an uncorrupted pixel is positively correlated
with the number of corrupted pixels surrounding it. A pixel
that is very far away from any holes plays very little role in
the inpainting process. This intuition is captured with the
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importance weighting term, W defined as follows:

pixel location . ¥ B
Y S if Mi#£0
‘%‘f] = ¢ jeN@E) :
importance weight G 0 if M; =0
neighbors mask

recovered image
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=) element-wise multiplication
.",:,1::] = A log(] DIG(2))
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» After generating G(2), the inpainting result can be obtained
by overlaying the uncorrupted pixels from the input.
However, the predicted pixels may not exactly preserve the

same intensities of the surrounding pixels,

corrected using Poisson blending (by keeping the
gradients of G(Z) to preserve image details while shifting
the color to match the color in the input image ¥). The final
solution, the recovered image X, can be obtained by:

X = arg min ||Vx — VG(2)||3,
X

s.x;=y; for M; =1

In this section, we shall use a pretrained DCGAN model with

tensorflow (v1), trained on celebrity faces (celebA dataset).
Let us dive into python implementation, follow the next steps:

1. Let us start by importing the required libraries, with the

following code snippet:

import tensorflow.compat.vl as tf



import numpy as np

import matplotlib.pylab as plt

from glob import glob

from skimage.io import imread
from scipy.signal import convolve2d

2. Read the input face images and cast to uint8.

3. Generate square masks at the center of the images using
the function gen_mask(). The default input image size is
64x64 and the scale is 0.25, which determines the size of
the mask.

4. Corrupt the input images by removing the central square
part from the image using the masks created, by using
logical AND (&) operation as:

def gen_mask(img sz = 64, scale = 0.25):
image_shape = [img_sz, img sz]
mask = np.ones(image_shape)

mask = np.ones(image_shape)

| = int(img_sz*scale)

u = int(img_sz*(1.0-scale))

mask][l:u, l:u] = 0.0

return mask
imgfilenames = sorted(glob(‘images/faces' + '/*.png"))
images = np.array([imread(f, pilmode='RGB').astype('float’) \

for fin imgfilenames]).astype(np.uint8)

masked_images = images.copy()
mask = gen_mask()
mask = (255*mask).astype(np.uint8)
for i in range(len(images)):

masked_imagesl[i,...] = masked_images[i,...] & \

np.expand_dims(mask,2)

masked_images = masked_images.astype(np.float64)
mask = (mask / 255).astype(np.float64)

5. Load the pretrained graph from ProtoBuf file with the
function loadpb(). It accepts a couple of arguments:
filename (path to ProtoBuf graph definition) and
model name (prefix to assign to loaded graph node
names). The function returns graph and graph_def, as per
TensorFlow definitions.



6. Use the function tf.get_tensor by name() to access the
tensors corresponding to input, output and loss in the
graph object as:

def loadpb(filename, model name='dcgan'):
with tf.io.gfile.GFile(filename, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def,
input_map=None,
return_elements=None,
op_dict=None,
producer_op_list=None,
name=model name)
return graph, graph_def
model name = 'dcgan’
gen_input, gen_output, gen_loss = 'z:0', "Tanh:0', 'Mean_2:0'
graph, graph_def = loadpb('models/dcgan-100.pb’, model_name)
gi = graph.get_tensor_by name(model name+'/' + gen_input)
go = graph.get_tensor_by name(model name+'/' + gen_output)
gl = graph.get_tensor_by_name(model name+'/' + gen_loss)
image_shape = go.shape[1:].as_list()

7. The function create_weighted_mask() computes the
importance weight mask, as defined.

8. The function create 3 channel mask() creates a 3
channel mask by repeating the single channel and the
function binarize mask computes binary mask given a
non-binary one.

9. The function build restore graph() creates the
placeholders for masks and images and builds the
computation graph for the context/perceptual loss and
gradients. Note that since eager execution is not enabled in
tensorflow vl, the execution will only happen when a
session is created.

10. The function preprocess() transforms the images and
the masks prior to passing them to the model in the
appropriate format.

11. The function postprocess() extracts the inpainted image



from the output tensor after the execution happens as:

def create_weighted_mask(mask, nsize=7):
ker = np.ones((nsize,nsize), dtype=np.float32)
ker = ker/np.sum(ker)
wmask = mask * convolve2d(1-mask, ker, mode='same’, \
boundary='symm")
return wmask
def binarize_mask(mask, dtype=np.float32):
assert(np.dtype(dtype) == np.float32 or \
np.dtype(dtype) == np.uint8)
bmask = np.array(mask, dtype=np.float32)
bmask[bmask>0] = 1.0
bmask[bmask<=0] = 0
if dtype == np.uint8:
bmask = np.array(bmask*255, dtype=np.uint8)
return bmask
def create_3 channel mask(mask):
return np.repeat(mask[:,:,np.newaxis], 3, axis=2)
def build_restore graph(graph):
image_shape = go.shape[1:].as_list()
with graph.as_default():
masks = tf.placeholder(tf.float32, [None] + image_shape, \
name='mask')
images = tf.placeholder(tf.float32, [None] + image_shape, \
name='images')
x = tf.abs(tf.multiply(masks, go) - tf.multiply(masks, images))
context _loss = tf.reduce_sum/(tf.reshape(x, \
(tf.shape(x)[0], -1)), 1)
perceptual loss = gl
inpaint_loss = context_loss + 1*perceptual loss
inpaint_grad = tf.gradients(inpaint_loss, gi)
return inpaint_loss, inpaint_grad, masks, images
def preprocess(images, imask, useWeightedMask=True, \
batch_size=64, nsize=15):
images = images / 127.5-1
mask = create_3_channel mask(create_weighted_mask(imask, nsize))
bin mask = create 3 channel mask(binarize mask(imask, \
dtype='uint8"))
masks data = np.repeat(mask[np.newaxis, :, :, :], \
batch_size, axis=0)
num_images = images.shape[0]

images_data = np.repeat(images[np.newaxis, 0, :, :, :], \
batch_size, axis=0)




ncpy = min(num_images, batch_size)
images_data[:ncpy, :, :, :] = images[:ncpy, :, :, :].copy()
return masks_data, images_data

def postprocess(g_out, images_data, masks_data):
images_out = (np.array(g_out) + 1.0) / 2.0
images_in = (np.array(images_data) + 1.0) / 2.0
images_out = np.multiply(images_out, 1-masks _data) + \

np.multiply(images_in, masks_data)

return images_out

12. The function backprop to_input() is the key function
that performs the actual execution (sess.run()) on the
session sess passed as an argument.

13. The function accepts the tensorflow placeholders
(images, masks) and the data (images data,
masks _data) for the corrupted input images and masks.

14. The input corrupted images and masks need to be passed
to the feed _dict for the placeholders.

15. The function accepts total batch_size (initialized to 64)
number of random input noise vectors z, each of dimension
z dim (100). It iteratively performs back-propagation
through the latent manifold (runs for niter =200 by
default) and returns the reconstructed output image
imout.

16. The function restore image() combines all using the
functions defined: it first preprocesses the input
image/mask batch, then builds the tf graph for
computation, then performs back-prop to obtain the output
batch, and finally postprocesses the output to transform it
to inpainted image batch, as shown in Figure 2.21:

def backprop_to_input(sess, inpaint_loss, inpaint_grad,
masks, images, masks_data, images_data, z,
niter=200, verbose=True):
momentum, Ir = 0.9, 0.01
v=_0
for i in range (niter):
out_vars = [inpaint_loss, inpaint_grad, go]
in_dict = {masks: masks_data, gi: z, images: images_data}
loss, grad, imout = sess.run(out_vars, feed_dict=in_dict)




vV_prev = np.copy(v)

v = momentum*v - Ir*grad[0]

Z += (-momentum * v_prev + (1 + momentum) * v)
z = np.clip(z, -1, 1)

if verbose:

ifi % 10 == 0:
print(‘'Iteration {}: {}'.format(i, np.mean(loss)))
return imout
def restore_image(images, masks, graph, sess):
masks_data, images_data = preprocess(images, masks)
inpaint_loss, inpaint_grad, masks, images = \
build_restore_graph(graph)
imout = backprop_to_input(sess, inpaint_loss, inpaint_grad, \
masks, images, masks_data, images_data, z)
return postprocess(imout, images_data, masks_data), \
images_data, imout
batch_size, z_dim = 64, 100
z = np.random.randn(batch_size, z dim)
sess = tf.Session(graph=graph)
inpaint_out, images_data, imout = restore_image (masked_images, \
mask, graph, sess)

# Iteration 10:
# Iteration 20:
# Iteration 30:
# Iteration 40:
# Iteration 50:
# Iteration 60:
# Iteration 70:
# Iteration 80:
# Iteration 90:

# Iteration 100:
# Iteration 110:
# Iteration 120:
# Iteration 130:
# Iteration 140:
# Iteration 150:
# Iteration 160:
# Iteration 170:
# Iteration 180:
# Iteration 190:

# Iteration 0: 221.28106689453125

137.1205291748047
120.86093139648438
120.55803680419922
118.15397644042969
111.87590026855469
111.30235290527344
109.60200500488281
112.72096252441406
108.38629150390625
106.88809204101562
106.95480346679688
106.71363830566406
105.97818756103516
103.75382995605469
101.30975341796875
104.94699096679688
101.54997253417969
107.21031951904297
103.7147445678711

As can be seen from the preceding output, the loss has a
decreasing trend with iterations, which means we will likely



find better reconstructions for the corrupted images. Plot the
original, masked (corrupted) input and the inpainted output
images with the DCGAN. You should obtain a figure as shown:

Original Input Images

!

Masked Input Images

FJIII

Inpainted Images by DCGAN (with 200 iterations)

k=

L

Figure 2.21: Image inpainting with DCGAN

Conclusion

In this chapter, we learnt a few more advanced techniques for
image restoration, denoising, deblurring and image inpainting.
Although we learned how to use a few variational method
implementations (for example, diffusion) and a machine
learning model (kKNN) for image restoration, the majority of
the methods we learnt to implement were based on very recent
deep learning models, such as different flavors of
autoencoders (sparse, variational) and GANs (DCGAN, CGAN).
By now, you should be able to solve image restoration
problems using deep learning pre-trained models and also
write python code train models from scratch, using both the
libraries pytorch and tensoflow/keras. In the next chapter,



we shall start with a new and a very important topic in image
processing, namely image segmentation.

Note: Throughout the chapter, we used the term parameters in a couple of
contexts:

® The first one is in the programming context: parameters (arguments)
to a Python function.

®* The second one is in the AI/ML context: learnable parameters (for
example, weights and biases) for a machine learning model.

Key terms

Inpainting, anisotropic diffusion, DeblurGAN, DCGAN,
conditional GAN, stacked autoencoder, sparse autoencoder,
kNN regression, Navier-Stokes, Fast Marching

Questions

1. A very simple Blur function: Implement a python function
get_custom blurkernel() to simulate a custom motion
motion-blur  kernel. Implement another  function
gen_blurred image() that accepts an input and an output
image file and your custom blur function, reads the input
image file, applies the blur kernel (by invoking the blur
function passed as argument) to the input image and saves
the output in the output image file. Plot the input image,
the generated kernel and the blurred output image.

a. For example, if you want to generate your blur-kernel
with a cubic spline (for example, blurred input images
for DeblurGAN were created using it), you just need to
call the function gen_blurred_image() with the function
get custom_blurkernel() which returns the desired
kernel:

gen_blurred_image(path_to_input_img, path_to_save blurred_img, \
get_custom_blurkernel)




And the output will look like the one shown in the
following figure:

input image Blurred input iImage

11 x 11 blur kernel

Figure 2.22: Blurring an image with custom blur kernel

b. Now, implement the motion blur kernel generation
algorithm from the paper
https://arxiv.org/pdf/1711.07064.pdf. Blur an image
with the function you implemented and apply
DeblurGAN to obtain the sharpened version of the
image.

2. In this chapter, we used available pre-trained weights
GCANet and DeblurGAN deep learning models. Now let
us train the models on custom annotated images (you will
need hazy/blurred and clean version of every image in the
training dataset) to be used for dehazing and deblurring,
respectively. Note that you can train a deep neural net
model:

a. Partially (using transfer learning), by training the
weights of last few layers only (preferably when you
have smaller number of annotated training images).

b. Fully (from scratch), when you have a whole lot of
annotated images.
In any case, or training a very deep learning model, you
will need a GPU for faster training (use Google Colab).

3. Use opencv-python’s bm3d implementation
(cv2.xphoto.bm3dDenoising()) for denoising (note that the
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algorithm is patented, you need to build OpenCV with an
appropriate flag). You should obtain a figure like the
following one:

Derolsing with di*ferent algorithms

f
L Rp i O

Figure 2.23: Image denoising with different filtering algorithms

4. Use KNN regressor to inpaint the following RGB color
image with the given binary mask. You should obtain a
figure like the following one:

mask

original

carrupted
L+ ™ N

recovered
e

Figure 2.24: Image inpainting with knn regressor
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CHAPTER 3
Image Segmentation

Introduction

Image segmentation is a task in image processing and
computer vision that involves partitioning an image into
multiple segments or regions. The goal is to group together
pixels that share similar characteristics, such as color,
intensity, texture, or other visual properties. The purpose of
image segmentation is to simplify the representation of an
image or to make it more meaningful for further analysis.

Mathematically, image segmentation can be defined as the
process of assigning a label or identifier to each pixel in an
image based on certain criteria. Let us denote an input image
as I, and the goal is to partition it into N segments. The task
segmentation can be represented as a function (x, y) that
maps each pixel in the image to a segment label:

S:(x,y) »{1,2,...,N}

Here, N is the total number of segments, and
s =5(x,y) € {1,2, ..., N} represents the segment label assigned
to the pixel (x,y). The segmentation function § is typically
determined by analyzing the properties of the pixels in the
image, and it aims to group pixels with similar characteristics
into the same segment.



There are various approaches to image segmentation, ranging
from traditional methods to deep learning techniques. Some
common and popular methods include thresholding, region-
based segmentation, edge-based segmentation and, more
recently, deep learning convolutional neural networks
(CNN) for semantic segmentation.

These methods vary in complexity and suitability for different
types of images and applications. In this chapter and the next
one, we will discuss a few different algorithms for
segmentation with aforementioned approaches and learn how
to use functions from Python libraries scikit-image, opencv-
python, scipy.ndimage, SimpleITK, tensorflow, keras and

pytorch.

Structure

This chapter will explore the following topics:
* Gray level and bitplane slicing
e Binarizing an image with thresholding
 Segmentation using clustering

« MeanShift segmentation with opencv-python and scikit-
learn

e Watershed segmentation with opencv-python and
SimplelTK

* GrabCut segmentation with opencv-python
« RandomWalk segmentation with scikit-image

e Segmentation using SLIC/NCut algorithms with scikit-
image

Objectives

By the end of this chapter, you will learn various image
segmentation techniques, ranging from basic to advanced



methods. You will explore fundamental approaches such as
graylevel and bitplane slicing, thresholding, and clustering-
based segmentation. Additionally, you will gain hands-on
experience with advanced techniques, including MeanShift,
watershed, GrabCut, RandomWalk, and fast marching
segmentation, using Python libraries like opencv-python,
scikit-image, and SimpleITK. You will also learn how to
apply segmentation wusing Simple Linear Iterative
Clustering (SLIC) and NCut algorithms. These methods will
equip you with the skills needed to effectively segment images
for diverse image processing and computer vision
applications.

Gray level and bitplane slicing

These operations apply piecewise linear transformation
functions to an image. Gray level slicing is a technique used
in image processing where specific intensity levels or ranges
of pixel values are selected and highlighted in the output
image while the rest of the intensity levels are either ignored
or suppressed. This process is often applied to enhance
certain features or details in an image. Bitplane slicing is a
technique used to decompose an image into its bitplane
components.

Gray level slicing

As described earlier, this technique is used for highlighting a
specific range of intensities in an image. There can be
following two approaches for gray level (intensity level)
slicing:

« Without background: Display in one value (e.g., white)
all the values in the range of interest, and in another (e.g.,
black, i.e., 0) all other intensities (as shown in the
following figure).



« With background: Brightens or darkens the desired
range of intensities but leaves all other intensity levels in
the image unchanged.

As shown in the Figure 3.1 (for an 8-bit grayscale image we
have L = 256), the source and target image gray levels being
denoted by r and s, respectively. The point transformation T
(gray-level slicing) is applied to obtain the target image’s gray
level s = T(1).

Intensity (gray) level slicing

without background with background

0 A B i

L—-1, AsSrsB 5_{L-1. A<r<B
5= " i ¥ otherwise
0, otherwise '
ROIl: pixel values in the range [A, B] 0=r=siL-1

Figure 3.1: Gray level slicing

Let us implement gray level slicing and import the required
Python libraries and functions to start with:

from skimage.io import imread
from skimage.color import rgb2gray
import numpy as np

import matplotlib.pylab as plt
import warnings
warnings.filterwarnings(‘ignore")

The function gray level slice() accepts an input grayscale
image, along with a minimum and a maximum pixel value as
input arguments. It applies intensity level slicing with/without
background, as described earlier, as specified by the value of



the boolean argument with_background, to be set to
True/False, respectively, with the value defaulting to False,
as shown in the following code snippet. The function returns
the gray level sliced image and the mask created by filtering
out the pixels outside the pixel range (provided as input).

The function plot_images() accepts a list of images (as
NumPy arrays) and the corresponding titles and uses
matplotlib.pylab to plot them with those titles:

def gray_level slice(im, min_pixel, max_pixel, with_background=False):
im_sliced = im.copy()
im_mask = (im >= min_pixel) & (im <= max_pixel)
im_sliced[im_mask] = 255
if not with_background:
im_sliced[~im_mask] = 0
return im_sliced, im_mask

def plot_images(ims, titles, suptitle = None):
n = len(ims)
plt.figure(figsize=(15,7))
plt.gray()
plt.subplots_adjust(0,0,1,0.95,0.05,0.05)
for iin range(n):
plt.subplot(1,n,i+1), plt.imshow(ims[i]), plt.axis('off")
plt.title(titles[i], size=20)
if suptitle:
plt.suptitle(suptitle, size=25)
plt.show()

Let us first read the image coins.png. Plot the image gray
level histogram to identify the range of grey levels within the
coins, using the next lines of code:

im = rgb2gray(imread('images/coins.png'))
im = (255 *im / im.max()).astype(np.uint8)

plt.figure(figsize=(5,3))
plt.hist(im.flatten(), bins=100), plt.grid()
plt.title(‘hisogram of gray levels', size=20)
plt.show()

If you run the following code snippet, you should obtain a
figure as follows. As shown in the following figure, most pixels
are between 100 and 240:
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Figure 3.2: Bimodal histogram of gray levels

Now, let us find all the coins based on pixel range
(min_pixel=90 and max pixel=255), with gray level slicing,
using the function gray level slice() implemented earlier,
and set pixels inside the coin to white.

For slicing with background set with _background=True
specifically, otherwise the rest of the pixels outside the pixel
range provided are set to black:

min_pixel, max_pixel = 90, 255

# to improve use median filter on background to remove light gray pixels

# Initialise your output images

im_sliced_without_bg, im_mask = gray_level slice(im, min_pixel, max_pixel)
im_sliced_with_bg, im_mask = gray level slice(im, min_pixel, max_pixel, True)

plot_images([im, im_sliced_without_bg, im_sliced_with_bg],
['original image', 'without background', 'with background'],
suptitle = 'gray level slicing with and without background')

If you run the following code snippet, you should obtain a
figure as follows:



gray level slicing with and without backaround
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Figure 3.3: Gray level slicing

Increasing contrast within ROI

Gray level slicing is used to emphasize specific regions in an
image by isolating the pixel values corresponding to those
regions. Let us use the aforementioned implementation on the
region of interest (ROI) of the coin’s image (e.g., the coins)
and increase the contrast within the coins using the following
code snippet.

The function enhance_image(), as defined in the following
code snippet, takes the original image along with the ROI
mask created (using the gray level slicing) as input and
enhances the image only in the ROI. It uses a non-linear
transformation on the ROI to improve the contrast of the coins
(and clamps the pixel values in [0,255] with np.clip()).
Finally, it sets the background (outside mask) to another gray
level (note that having a single grey level as background may
not feel right for human vision).

def enhance_image(im, im_mask, min_pixel):
im_enhanced = 0 * im
im_enhanced[im_mask] = np.clip(np.round((im[im_mask] - min_pixel)**1.1), \
0, 255)
im_enhanced[~im_mask] = 25
return im_enhanced

im_enhanced = enhance _image(im, im_mask, min_pixel)
plot_images([im, im_sliced_without_bg, im_enhanced], \
['original image', 'gray level slicing mask’', 'image enhanced'])




If you run the aforementioned code snippet, you should obtain
a figure as follows:

original image gray level slicing mask

image enhanced

Figure 3.4: Increasing contrast within ROI (mask)

Bitplane slicing

In digital image processing, each pixel in an image is
represented by a binary number (composed of bits), and
bitplane slicing involves extracting the bit values at a specific
bit position across all pixels. For an 8-bit image, there are 8
bitplanes (from the most significant bit (MSB), to the least
significant bit (LSB)), as shown in the following figure. Each
bitplane represents a different level of image detail. Instead of
highlighting the gray level range, we could highlight the
contribution made by each bit. This method can be used in
(lossy) image compression (by prioritizing and encoding
higher-order bitplanes, which contain most of the image’s
visual information, while discarding or compressing lower-
order planes to reduce data size).

Higher-order (the most significant) bits contain the majority of
visually significant data. Lower-order bits contain subtle
details. Often, by isolating particular bits of the pixel values in
an image, we can highlight interesting aspects of that image.
The following figure shows a schematic diagram for bitplance
slicing:
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Figure 3.5: Bitplane slicing

The following code snippet reads a grayscale image and
performs bitplane slicing (extracts the bits from different
bitplances using the function np.unpackbits()). As shown in
the following code, the higher bitplanes contain the most
visual information:

im = (255*rgb2gray(imread('images/pattern.jpg'))).astype(np.uint8)
h, w = im.shape
bitplanes = np.unpackbits([im.flatten()], axis=0)

plt.figure(figsize=(15,12))
plt.subplots_adjust(0,0,1,0.95,0.05,0.05)
plt.gray()
plt.subplot(3,3,1), plt.imshow(im), plt.axis('off")
plt.title(‘'original’, size=15)
for i in range(8):
plt.subplot(3,3,i+2)
plt.imshow (bitplanes[i,:].reshape(h,w)), plt.axis('off")
plt.title('bitplane {}'.format(8-i-1))
plt.show()

If you run the aforementioned code snippet, you should obtain
a figure as follows:



hitplane 7

Figure 3.6: Original image and the bitplane images

Binarizing an image with thresholding

Image thresholding is a technique used in image processing to
separate objects or regions in an image by dividing it into two
parts: foreground and background. This separation is based
on a threshold value, where pixels with intensities above the
threshold are assigned to one class (often known as
foreground), and those below the threshold are assigned to
another (often called background). The result is a binary
image where pixels are either black or white.

Thresholding with scikit-image

The library scikit-image provides a variety of thresholding



methods. Here, you will learn how to use different global
image thresholding algorithms to binarize an image.

Global thresholding

Global image thresholding involves applying a single threshold
value to the entire image. This threshold value is determined
based on the characteristics of the entire image, and it is used
to separate the image into two regions: one above the
threshold and one below the threshold. The result is a binary
image with pixels classified into foreground or background.

Let us start the implementation by importing the required
libraries, as usual, as shown:

from skimage.io import imread

from skimage.color import rgb2gray

import matplotlib.pylab as plt

from skimage.filters import try_all_threshold, threshold_otsu, rank

The function try_all threshold()from skiamge.filters is a
useful tool for comparing different global and local
thresholding methods. It generates a visual comparison of
various thresholding methods, making it easier to choose an
appropriate method for a specific image.

The following is an overview of a few global image
thresholding algorithms that we shall use:

« ISODATA: This Iterative Self-Organizing Data Analysis
(ISODATA) method calculates the threshold as the mean
between the average of the pixels below the threshold and
the pixels above it. It continues this process until
convergence.

e Mean: This method calculates the threshold value as the
mean intensity of the entire image. Pixels with intensity
values above the mean are assigned to one class, while
those below are assigned to another.

 Li/Yen: These are minimum cross-entropy thresholding
methods that seek a threshold that minimizes the cross-
entropy between the original and binarized images.



e Minimum: The histogram of the input image is computed
and smoothed until there are only two maxima. The
minimum in between is returned as the threshold value.

e Otsu: This method finds the (optimal) threshold that
minimizes the intra-class variance (or maximizes inter-
class variance) of pixel intensities in an image. The
algorithm works well for images with bimodal histograms,
where there are two distinct intensity peaks corresponding
to the foreground and background.

The following are the steps to apply binary segmentation on
an image, using the thresholding algorithms:

1. Load a sample image and convert it to a grayscale.

2. Use the try all threshold() function to generate a visual
comparison of different global thresholding methods.

3. Display the binary images produced using different
algorithms.

img = rgb2gray(imread('images/tagore.jpg’))
img = (255* img / img.max()).astype(np.uint8)

fig, ax = try_all_threshold(img, figsize=(12, 18), verbose=False)
plt.show()

If you run the aforementioned code snippet, you should obtain
a figure as follows:
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Figure 3.7: Binary thresholding with different algorithms



It seems the triangle, and the Yen methods outperform the
others for this particular input image.

Local thresholding

As discussed earlier, global image thresholding involves
applying a single threshold value to the entire image. Local
image thresholding, on the other hand, determines different
threshold values for different regions of the image. Each
pixel’s threshold is computed based on the local
characteristics of its neighborhood. This approach is useful
when the image exhibits variations in intensity or contrast
across different regions.

To simulate local intensity variation, we shall add a small
multiplicative (horizontal ramp) noise to the image, using the
add_mult_noise() function defined, using the following code
snippet:

from skimage.morphology import disk

def add_mult_noise(img):
ramp = np.clip(np.tile(np.linspace(0, 1, img.shape[1]), \
(img.shape[0],1)), 0, 255)
return (img * ramp).astype(np.uint8)

noisy_img = add_mult_noise(img)

Here we shall discuss how to use the local and the global
version of Otsu’s thresholding algorithm to binarize an image.

To obtain local thresholds, first, create a neighborhood disk of
radius=30 (change the radius to see the impact on the binary
output image) using the function disk() from
skimage.morphology and the function rank.otsu(), along
with the input image and neighborhood disk. Use the local
thresholds array to obtain the binary image local_otsu.

To obtain a global threshold value (global thresh) using
Otsu’s method use the function threshold otsu() from
skimage.filters module and use the threshold value to create
the binary image global_otsu.



Finally display the input and output images, notice that local
otsu produces a much better binary output image, whereas
the one obtained with the global version loses much
information:

radius = 30

footprint = disk(radius)

local_thresh = rank.otsu(noisy_img, footprint)
local_otsu = noisy_img > local_thresh

global thresh = threshold_otsu(noisy_img)
print(global_thresh)

global otsu = noisy_img > global_thresh

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 12))
ax = axes.ravel()

ax[0].imshow(noisy_img, cmap=plt.cm.gray, aspect='auto')
ax[0].set_title(‘input’, size=20), ax[0].axis('off")
ax[1].imshow(local_otsu, cmap=plt.cm.gray, aspect="'auto’)
ax[1].set_title('local Otsu', size=20), ax[1].axis('off")
ax[2].hist(noisy_img.ravel(), bins=256)
ax[2].set_title('Histogram', size=20)

ax[2].axvline(global thresh, color='r")
ax[3].imshow(global otsu, cmap=plt.cm.gray, aspect='auto’)
ax[3].set_title(‘global Otsu', size=20), ax[3].axis('off")
plt.tight_layout()

plt.show()

If you run the aforementioned code snippet, you should obtain
a figure as follows:
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Figure 3.8: Optimal thresholding with Otsu’s algorithm (local vs. global)

Max-entropy thresholding with
SimplelTK

Now, let us see how we can use the SimpleITK library’s
implementation of an entropy-based thresholding algorithm.
MaximumEntropyThresholdImageFilter in SimplelITK is
an implementation of an automatic thresholding algorithm
based on maximum entropy. The goal of the algorithm is to
find a threshold that maximizes the entropy of the resulting
binary image. Entropy is a measure of uncertainty or disorder,
and in the context of image thresholding, it reflects the
amount of information carried by the pixel intensity values.

The idea behind using maximum entropy as a criterion is to
find a threshold that maximizes the information gained when



going from a grayscale image to a binary image. The method
tends to work well when the image has a bimodal histogram
with distinct foreground and background intensities. The
algorithm first computes the normalized intensity histogram
for the input image, then computes the cumulative
distribution function (CDF), computes the entropy of the
output binary image for each possible threshold, and finds the
optimal threshold that maximizes the entropy.

The following code snippet first reads the image with
sitk.ReadImage() function scales the intensity values in the
range [0,1] using the RescalelntensityImageFilter() and
then applies the MaximumEntropyThresholdimageFilter()
to the rescaled image to obtain the output image using the
Execute() function. Next, it plots the input and output
images.

import SimplelTK as sitk

input_image = sitk.Readlmage('images/tagore.jpg’, sitk.sitkFloat32)
rescale = sitk.RescalelntensitylmageFilter()
rescale.SetOutputMaximum(1.0)

input_image = rescale.Execute(input_image)

filter = sitk.MaximumEntropyThresholdImageFilter()
filter.SetOutsideValue(1)

filter.SetInsideValue(0)

output_image = filter.Execute(input_image)
print(filter.GetThreshold())

plt.figure(figsize=(20,15))

plt.gray()

plt.subplot(121), plt.imshow(sitk.GetArrayFromImage(input_image))
plt.axis('off"), plt.title('input’, size=20)

plt.subplot(122), plt.imshow(sitk.GetArrayFromImage(output_image))
plt.axis(‘'off"), plt.title('thresholded’, size=20)

plt.tight_layout()

plt.show()

If you run the aforementioned code snippet, you should obtain
a figure as follows:
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Figure 3.9: Grayscale to binary image conversion with max-entropy thresholding

Adaptive thresholding with opencv-
python

Adaptive image thresholding is a specific implementation of
local image thresholding where the threshold values adapt to
local variations in the image. Again, the threshold for each
pixel is computed based on the local neighborhood around it.

Now, let us understand how to wuse the function
cv2.adaptiveThreshold() from opencv-python to perform
adaptive thresholding. The function
cv2.adaptiveThreshold() takes an input image, a maxValue
(value given to pixels exceeding the threshold), an adaptive
method (to be used to compute the adaptive threshold),
thresholdType (type of thresholding applied), blockSize
(size of the neighborhood area), and C (a constant subtracted
from the mean or weighted mean). The adaptive methods can
be selected from the following ones:

e cv2.ADAPTIVE THRESH GAUSSIAN C: specifies that
the adaptive threshold is computed as the weighted sum of
the neighborhood values, where weights are given by a
Gaussian window.

- Ccv2.ADAPTIVE_THRESH MEAN C: the method



calculates the threshold for each pixel as the mean of the
pixel values in its local neighborhood.

« cv2. THRESH BINARY: specifies that pixels with values
above the threshold are set to maxValue (255), and
others are set to 0.

Experiment with different values for blockSize and C to see
how they affect the adaptive thresholding result based on the
characteristics of the input image.

The following code snippet implements adaptive thresholding
using the mean and Gaussian adaptive threshold methods and
plots the output binary images along with the input image:

import cv2
import numpy as np
import matplotlib.pylab as plt

im = cv2.imread('images/tagore.jpg’, 0)

thresh1 = cv2.adaptiveThreshold(im, 255, cv2. ADAPTIVE_THRESH_MEAN C,
cv2.THRESH BINARY INV, 21, 10)

thresh2 = cv2.adaptiveThreshold(im, 255,

cv2.ADAPTIVE THRESH GAUSSIAN C,
cv2. THRESH BINARY INV, 21, 4)

plt.figure(figsize=(20,12))

plt.gray()

plt.subplot(131), plt.imshow(im), plt.axis('off")
plt.title('input’, size=20)

plt.subplot(132), plt.imshow(thresh1l), plt.axis('off")
plt.title(‘'adaptive thresholded (mean)’, size=20)
plt.subplot(133), plt.imshow(thresh?2), plt.axis('off")
plt.title('adaptive thresholded (gaussian)', size=20)
plt.tight_layout()

plt.show()

If you run the aforementioned code snippet, you should obtain
a figure as follows:
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Segmentation using clustering

Clustering is an unsupervised technique in machine learning
and data analysis where data points are grouped together
based on similarity or some inherent structure in the data. The
goal of clustering is to partition a dataset into groups, or
clusters, such that data points within the same cluster are
more similar to each other than to those in other clusters.

Mathematically, clustering can be defined as follows. Let
X = {x4,%,, ..., x,} be a set of n data points in a feature space.
The objective of clustering is to find a partition of X into K
clusters C = {C;, C5, ..., Cx}, where each Cy represents a cluster.

The partition should satisfy the following criteria:

« Homogeneity within clusters: Data points within the
same cluster are more similar to each other.

e Heterogeneity between clusters: Data points from
different clusters are dissimilar.

Now, regarding image segmentation, clustering techniques
can be employed to group pixels with similar characteristics
into segments. Each pixel is treated as a data point, and the
features extracted from the pixels (such as color, intensity,
and texture) serve as dimensions in the feature space.

The steps for using clustering for image segmentation
includes:



 Feature extraction: Extract relevant features from each
pixel in the image.

e Clustering: Apply a clustering algorithm (e.g., k-means)
to group similar pixels based on their feature vectors.

 Segmentation: Assign each pixel to the cluster it belongs
to and consider each cluster as a segment in the
segmented image.

In this section, you will learn how to:

« Implement image segmentation with clustering using
scikit-learn and scipy library functions

e Cluster similar images into groups.

Clustering with Mahalanobis distance

Mahalanobis distance is a measure used to quantify the
distance between a point and a distribution. It is a generalized
form of the Euclidean distance, but it also takes into account
the correlations between different features. This distance
metric is particularly useful when dealing with multivariate
data where the features are correlated.

The Mahalanobis distance (D)) between a point x and a

distribution with mean 4 and covariance matrix } is calculated
as follows:

Dy(x) = (x—pw) 27 (x—p)

In the context of image segmentation, Mahalanobis distance
can be applied to cluster pixels based on their feature vectors.
The following is a general outline of how you can use
Mahalanobis distance for image segmentation:
 Feature extraction: Extract relevant features from each
pixel in the image. Here, we shall use RGB colors as
features. Hence, the feature space will consist of 3D
vectors. Each pixel is represented as a feature vector.

e Compute mean and covariance: Compute the mean (u)



and covariance matrix (2) of the feature vectors in the
entire image or in predefined regions.

 Calculate Mahalanobis distance: For each pixel’s
feature vector, calculate its Mahalanobis distance from the
mean using the formula mentioned earlier.

« Segmentation: Assign pixels to different segments or
clusters based on their Mahalanobis distances. Pixels with
smaller distances are more likely to belong to the same
cluster.

 Thresholding or clustering: Apply a threshold or use
clustering techniques (e.g., k-means clustering) to group
pixels into distinct segments based on their Mahalanobis
distances.

Let us start the implementation by importing the required
libraries and modules:

import numpy as np

import scipy

from skimage.io import imread
from skimage.util import crop
import matplotlib.pylab as plt
cdist = scipy.spatial.distance.cdist

Now, let us aim to segment the RGB color pepper image into
two regions (K = 2), for example, one containing the red
vegetables and the other containing the green vegetables.
This is done in the function cluster rgb mahalanobis()
defined in the following code snippet.

We need to start with two predefined sub-regions by cropping
small subsets of pixels from the original image, each one
acting as a reference for the corresponding segment.

Use skimage.util.crop() function to crop the reference
image patches from the original image by specifying the
starting and ending indices along each axis, given by
cluster_sample locs, passed as an argument to the function
cluster rgb_mahalanobis().

The function cluster rgb mahalanobis(), in turn, uses the
function compute mahalanobis(), which accepts the



original image I and the predefined reference image patches
S and computes the Mahalanobis distance between each
pixel and the predefined (reference patches). For a m X n
image, we need to store (mn, 2) distance values (for each of
the mn pixels we need to store the Mahalanobis distances to
predefined patches).

The function compute mahalanobis(), in turn, uses the
function mahalanobis() to first compute u, X for the
reference patches x and then compute the Mahalanobis
distance between a pixel RGB vector ¥ and the predefined
pixel subsets (clusters).

Assign each pixel to its nearest cluster using the minimum
of the Mahalanobis distances computed, as shown in the
following code block:

def mahalanobis(y, x):
cov_x_inv = np.linalg.inv(np.cov(x,rowvar=False))
return cdist(y, np.reshape(np.mean(x, axis=0), (1, -1)),
‘mahalanobis’, VI=cov_x_inv)

def compute _mahalanobis(l, S):
R, G, B =1[:,:,01, I[:,:, 1], I[:,:,2]
subset R, subset G, subset B = S[:,:,0], S[:,:,1], S[:,:,2]
x = np.hstack((subset_R.reshape(-1,1), subset_G.reshape(-1,1),
subset_B.reshape(-1,1)))
y = np.hstack((R.reshape(-1,1), G.reshape(-1,1), B.reshape(-1,1)))
return mahalanobis(y, x).ravel()

def cluster rgb_mahalanobis(im, cluster sample_locs):
mahal dist = np.zeros((np.prod(im.shape[:2]), \
len(cluster_sample locs)))
for i in range(len(cluster_sample_locs)):
im_patch = crop(im, cluster_sample_locs[i], copy=False)
mahal dist[:,i] = compute_mahalanobis(im, im_patch)
ind = np.argmin(mahal_dist, axis=1)
ind = ind.reshape(im.shape[:2])
mask = np.zeros(im.shape[:2])
for k in range (mahal_dist.shape[1]):
mask[ind == k] =k
return mask

Now, let us read the pepper image from disk.

Define the locations of the small red and green patches (to be
cropped from the original image and used for reference) as



cluster_sample locs.

Use the function cluster rgb_mahalanobis() defined earlier
to segment the image using Mahalanobis distance.

The function cluster rgb mahalanobis() accepts the input
image along with the predefined reference pixels for the
segments, as shown in the following code snippet. The

function returns the segmentation mask. Display the
segmentation mask, along with the original RGB image.

im = imread('images/pepper.png')

cluster sample locs = [
((36, 150), (115, 90), (0,0)),
(127, 70), (143, 60), (0,0))

mask = cluster_rgb_mahalanobis(im, cluster_sample_locs)

plt.figure(figsize=(12,6))

plt.subplots_adjust(0,0,1,0.95,0.05,0.05)

plt.subplot(121), plt.imshow(im, aspect='auto"), plt.title('RGB IMAGE")
plt.axis('off")

plt.subplot(122), plt.imshow(mask, cmap='jet’, aspect="'auto')
plt.colorbar(), plt.title('(CLUSTERS"), plt.axis('off")

plt.show()

If you run the aforementioned code snippet, you should obtain
a figure as follows:

RGE IMAGE CUUSTERS

Figure 3.11: Clustering with Mahalanobis distance



Now, display the segments separately, as shown in the
following figure (the code is left as an exercise to the reader):

Clusters

Figure 3.12: Two clusters obtained with Mahalanobis distance based clustering

K-means vs. spectral clustering

K-means clustering is a popular unsupervised machine
learning algorithm used for partitioning a dataset into K
distinct, non-overlapping subsets (clusters). The goal of the k-
means algorithm is to assign each data point to one of the K
clusters in a way that minimizes the sum of squared distances
within each cluster. It is widely used for clustering analysis in
various domains, including image processing, data analysis,
and machine learning.

A common mathematical formulation for k-means clustering
involves defining an objective function that quantifies the
similarity within clusters and dissimilarity between clusters as

follows:
K
Minimize Z Z % — e |12
k

=1x€eCy

Here, My is the mean of the data points in cluster C;. The



algorithm aims to minimize the objective function ( i.e., the
sum of squared distances within each of the K clusters).

The following is a brief overview of how the k-means
clustering algorithm works:

e Initialization: Choose the number of clusters K.
Randomly initialize K cluster centroids in the feature space
(You can wuse better initialization methods such as
KMeans++).

« Assignment: Assign each data point to the nearest
centroid. The assignment is based on the Euclidean
distance between the data point and each centroid.

e Update centroids: Recalculate the centroids of the
clusters as the mean of all data points assigned to each
cluster.

« Repeat: Repeat steps 2 and 3 until convergence.
Convergence occurs when the centroids no longer change
significantly or when a predefined number of iterations is
reached.

The number of clusters (K) needs to be specified in advance,
and the algorithm’s performance can be sensitive to this
choice and initialization of the clusters.

Performing image segmentation using k-means -clustering
involves applying the k-means algorithm to group pixels in an
image based on their color or intensity values. Each cluster
represents a segment in the image.

Here, we shall use the scikit-learn library’s k-means
clustering implementation.

Let us start by importing the required libraries as follows:

from sklearn import cluster

from skimage.io import imread

from skimage.color import rgb2gray

from skimage.transform import resize as imresize
from sklearn.utils import shuffle

from sklearn.feature extraction import img to_graph
import numpy as np

import matplotlib.pylab as plt

import warnings




| warnings.filterwarnings('ignore") |

Here is a step-by-step guide to perform segmentation using k-
means clustering, as shown in the following code snippet:

1. Load the image using the skimage.io.imread() function,
and we shall use three color channels as features.

2. Reshape the 3D image array into a 2D array of pixels
using np.reshape().

3. Reduce the number of colors: To improve the
algorithm’s performance, randomly sample a subset of
pixels (e.g., 1000 pixels) from the image using the function
sklearn.utils.shuffle().

4. Apply k-means clustering: Create an instance (object)
of the KMeans class from scikit-learn to perform k-
means clustering. Fit the model to the sampled pixels

using the function fit().

5. Predict the cluster labels for all pixels in the image using
the function predict().

6. Generate segmented image: Replace each pixel in the
original image with the color of its assigned cluster
centroid as follows:

im = imread(‘images/horses.png')[...,:3]

X = np.reshape(im, (-1, im.shape[-1]))

X _sample = shuffle(X, random_state=0)[:1000]

k=2

kmeans = cluster.KMeans(n_clusters=k, random_state=10)
kmeans.fit(X_sample)

y_pred = kmeans.predict(X).astype(np.uint8)
labels_kmeans = np.reshape(y_pred, im.shape[:2])

Spectral Clustering is a graph-based clustering algorithm
that uses the spectral decomposition of the affinity matrix of
the data points. It is particularly effective for clustering
datasets that exhibit complex structures, including non-convex
shapes and clusters of varying shapes and sizes.

The following is an overview of how Spectral Clustering
works, along with the concepts that we need to understand:



« Affinity matrix: Given a dataset with data points, the first
step is to construct an affinity matrix , which measures the
similarity between data points. Common choices for
affinity include the Gaussian Radial Basis Function
(RBF) kernel or the nearest neighbor’s graph.

For example, with RBF, we have,
I =2 I12
A” = E_ 2o and Aii = 0.
e Degree matrix: Form a diagonal matrix D, where
D;; = XjA;j, each element D;; is the sum of the elements in
the corresponding row of the affinity matrix A.

 Laplacian matrix: The unnormalized Laplacian matrix
can be computed as L = D — A, and the normalized versions
can be computed as Lgy,, = — D~1/24D~1/2,

* Spectral decomposition: Compute the eigenvectors and
eigenvalues of the (unnormalized) Laplacian matrix. Stack
the k eigenvectors corresponding to the k smallest
eigenvalues as columns of a matrix j ¢ gnxk, with n as the
number of data points and k as the number of clusters.

e Clustering: Treat each row vector of U (i.e., each data
point’s representation in the new spectral space) as a
point in gk. Apply k-means (or other clustering algorithms)
on these rows to group them into k clusters. This way, the
original data is clustered based on their low-dimensional
spectral embeddings that capture the structure of the
graph.

The key idea behind spectral clustering is that the
eigenvectors capture the underlying structure of the data, and
clustering in the spectral space can reveal complex structures
that may be hard to capture in the original feature space.

To use spectral clustering for image segmentation, you can
treat the pixels in the image as data points and apply the
spectral clustering algorithm to group them into clusters
based on their similarity.

The algorithm is configured to use the nearest neighbors’



graph as the affinity measure (with a number of neighbors,
n_neighbors= 25) in the following code snippet, which uses
the SpectralClustering class from scikit-learn. The method
fit predict() is used to fit the model and then predict the
labels of the pixels in the image.

The image is reduced to a smaller size for faster execution
speed as follows:

h, w, _ = im.shape
im_small = imresize(im, (h//4, w//4))
X = np.reshape(im_small, (-1, im.shape[-1]))
spectral = cluster.SpectralClustering(n_clusters=k, eigen_solver='arpack’,
affinity="nearest_neighbors",
n_neighbors=25,
assign_labels = 'discretize’,
random_state=10)
y_pred = spectral.fit predict(X).astype(np.uint8)
labels_spectral = np.reshape(y_pred, im_small.shape[:2])

Visualize the binary segmentation mask and segmented
original image side by side for both the clustering algorithms
as follows:

plt.figure(figsize=(20,12))
plt.gray()
plt.subplots_adjust(0,0,1,0.96,0.05,0.05)
plt.subplot(221), plt.imshow(labels_kmeans)
plt.title('k-means segmentation (k=2)', size=30), plt.axis('off")
plt.subplot(222), plt.imshow(im.copy()), plt.axis('off")
for 1 in range(k):

plt.contour(labels_kmeans == 1, colors='r", linewidths=>5)
plt.title('k-means contour (k=2)', size=30)
plt.subplot(223), plt.imshow(labels_spectral)
plt.title('spectral segmentation (k=2)', size=30), plt.axis('off")
plt.subplot(224), plt.imshow(im_small.copy()), plt.axis('off")
for 1in range(k):

plt.contour(labels_spectral == 1, colors='r', linewidths=5)
plt.title('spectral contour (k=2)', size=30)
plt.show()

If you run the preceding code snippet, you should obtain a
figure as follows:



k-means segmentation (k=2)

: -
S G S N L

Figure 3.13: Image segmentation with k-means vs. spectral clustering

MeanShift segmentation with opencv-
python and scikit-learn

MeanShift segmentation is a region-based image
segmentation that involves grouping similar pixels into
regions. The basic idea behind MeanShift is to iteratively shift
data points towards the mode (peak) of the data distribution,
allowing the points to converge to local maxima. In the
context of image segmentation, this means grouping together
pixels with similar color or intensity values. This algorithm is
used for non-parametric clustering and is particularly
effective for situations where the number of clusters is not
known beforehand (as opposed to k-means, where we must
specify the number of clusters beforehand). In this section, we
will learn how to implement MeanShift segmentation with
opencv-python and scikit-learn library functions.

MeanShift filtering with opencv-python
As explained, MeanShift algorithm can be applied to group



similar pixels into regions, effectively segmenting the image.
The algorithm works by iteratively shifting each pixel towards
the mean of the pixels within a local spatial and color range
until convergence. In opencv-python this algorithm can be
implemented using MeanShift filtering function
cv2.pyrMeanShiftFiltering().

The function cv2.pyrMeanShiftFiltering() operates on an
image pyramid. This function is designed to perform more
efficient and multi-scale MeanShift segmentation by working
on different levels or scales of the image.

The function implements the filtering stage of the algorithm,
i.e., it outputs a filtered posterized image with flattened color
gradients and fine-grain texture.

At each pixel (X,Y) of the input image, the neighborhood of the
pixel in the joint space-color (sp, sr) hyperspace is considered:

(x,y):X—sp<x<X+sp, Y—-sp<y<Y+sp, I(RGB)—(,gDb)I<sr

Where (R,G,B) and (r,g,b) are color component vectors at
(X,Y) and (x,y), respectively. The average spatial value (X', Y")
and average color vector (R',G',B') are computed over the
neighborhood and they become the neighborhood centers on
the next iteration.

When the algorithm converges, the color components of the
initial pixel are set to the final value (average color at the last
iteration):

I(X,Y) « (R",G,B7)

The function cv2.pyrMeanShiftFiltering() accepts the
following parameters as input:

* src: The source image.

* sp: The spatial window radius (the spatial neighborhood).

» sr: The color window radius (the color neighborhood).

« maxLevel: The maximum level of the image pyramid for



the segmentation. It determines how many levels of the
pyramid will be wused. Higher levels represent lower
resolutions of the image. This is an optional parameter
with default value = 1. When maxLevel > 0, the Gaussian
pyramid of maxlLevel +1 levels is built, and the
aforementioned procedure is run on the smallest layer
first. Next, the results are propagated to the larger layer,
and the iterations are run again only on those pixels for
which the layer colors differ by more than sr from the
lower-resolution layer of the pyramid. It helps creating
color sharper regions boundaries.

e termcrit: Termination criteria for the iterative procedure,
an optional parameter, often specified as a tuple (epsilon,
max_iterations), indicating the desired accuracy and the
maximum number of iterations, respectively.

The function cv2.meanShift() is often confused with the
cv2.pyrMeanShiftFiltering() function, but it is not
specifically designed for image segmentation using the
traditional MeanShift segmentation algorithm. Instead, it is
often used for object tracking.

Let us demonstrate how the function
cv2.pyrMeanShiftFiltering() can be wused for image
segmentation using the following code snippet. As usual, let
us start by importing the required libraries, along with
opencv-python (cv2).

Load an image of flowers and perform pyramid mean shift
filtering with cv2.pyrMeanShiftFiltering(), using sp = 20
and sr = 50.

import cv2
import numpy as np
import matplotlib.pylab as plt

image = cv2.imread('images/coins.jpg’)
original = np.copy(image)
shifted = cv2.pyrMeanShiftFiltering(image, 20, 50)

Convert the mean shift image to grayscale, then apply Otsu’s



thresholding with the function cv2.threshold().

Find contours in the thresholded image using the function
cv2.findContours(), loop over the contours, and draw the
contours using the following code snippet:

gray = cv2.cvtColor(shifted, cv2.COLOR_BGR2GRAY)
mask = np.invert(cv2.threshold(gray, 0, 255, cv2. THRESH_BINARY | \
cv2.THRESH OTSU)[1])
cnts, _ = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, \
cv2.CHAIN APPROX SIMPLE)
print("{} unique contours found".format(len(cnts)))

for (i, ¢) in enumerate(cnts):
(%, y), ) = cv2Z.minEnclosingCircle(c)
cv2.putText(image, "#{}".format(i + 1), (int(x) - 10, int(y)), \
cv2.FONT HERSHEY SIMPLEX, 0.6, (0, 0, 255), 2)
cv2.drawContours(image, [c], -1, (0, 255, 0), 2)

Plot the original image, MeanShift segmentation output, the
binary mask obtained, and the contours overlayed on the
original image, side-by-side, using the following code snippet:

plt.figure(figsize=(20,15))

plt.subplot(221), plt.imshow(cv2.cvtColor(original, cv2.COLOR_BGR2RGB))
plt.axis('off"), plt.title('Original image', size=20)

plt.subplot(222), plt.imshow(cv2.cvtColor(shifted, cv2.COLOR_BGR2RGB))
plt.axis('off"), plt.title("With MeanShift', size=20)

plt.subplot(223), plt.imshow(mask, cmap='gray'), plt.axis('off")
plt.title("With MeanShift + Otsu', size=20)

plt.subplot(224), plt.imshow(image), plt.axis('off")

plt.title("With Contours', size=20)

plt.show()

If you run the preceding code snippet, you should obtain the
following figure:



Original image With MeanShift

With MeanShift + Otsu

Figure 3.14: MeanShift filtering with opencv-python

Segmentation with MeanShift

clustering in lab space with scikit-learn

Let us now demonstrate how we can use scikit-learn.cluster
module’s implementation of MeanShift clustering. Last time,
we used RGB color space but this time, we shall work on the

Lab color space (L: Lightness, a: Green-Red, and b: Blue-
Yellow channel) for the input image.
The following are the steps to be followed:

1. Load the input image and flatten it, so that m x n x 3
image becomes mn x 3 ndarray.

2. Use the function sklearn.cluster.estimate bandwidth()
to estimate the bandwidth parameter for MeanShift
clustering. The bandwidth is a crucial parameter in the
MeanShift algorithm as it determines the size of the region



for which points are considered similar during the mean
shift process. The quantile parameter controls the
proportion (fraction) of sample data points to be used in
the KDE (kernel density estimation): the default value is
0.3, meaning that the bandwidth will be chosen to include
30% of the samples, whereas the n_samples parameter
indicates the number of samples to use for the estimation
(if None, all samples are used)

3. Given the estimated bandwidth, the MeanShift algorithm
is applied (using the function
sklearn.cluster.MeanShift()) to cluster the data points
(pixels). For each data point, a mean shift vector is
computed, pointing towards the mode of the data
distribution within the specified bandwidth. The point is
then shifted in the direction of this vector, as shown in the
following code snippet.

4. The process of computing MeanShift vectors and shifting
points is repeated until convergence. Convergence occurs

when the MeanShift vectors become very small or when
the maximum number of iterations is reached.

5. After convergence, the algorithm assigns each data point
to the cluster to which it converged. Points that converge
to the same mode are considered part of the same cluster.

6. Finally, plot the original and the segmented image, along
with the scatterplot with the a-b channels for the Lab
color space, to visualize how the MeanShift algorithm

groups the pixels of the same colors together, as shown in
the following code snippet:

import numpy as np

from sklearn.cluster import MeanShift, estimate bandwidth
import matplotlib.pyplot as plt

from skimage.io import imread

from skimage.color import rgh2lab, label2rgb

image = imread('images/flowers.jpg")
flattened_image = np.reshape(rgb2lab(image), [-1, 3])




bandwidth = estimate_bandwidth(flattened_image[:, 1:], quantile=.2,
n_samples=5000)

ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)

ms.fit(flattened_image)

labels = ms.labels

print(len(np.unique(labels)))

#7

labels2 = np.reshape(labels, image.shape[:2])

plt.figure(figsize=(15,15))

plt.subplot(221), plt.imshow(image), plt.axis('off")

plt.title(‘'original image’, size=20)

plt.subplot(222)

plt.scatter(flattened_image[:,1],flattened_image[:,2],
color=np.reshape(image, [-1, 3])/255)

plt.xlabel('a"), plt.ylabel('b"), plt.grid()

plt.title('scattering with a-b', size=20)

plt.subplot(223)

plt.scatter(flattened_image[:,1],flattened_image[:,2],
color=np.reshape(label2rgb(labels2, image, kind='avg"),
[-1,3]D/255, cmap='jet")

plt.xlabel('a"), plt.ylabel('b"), plt.grid()

plt.title('segmenting with a-b', size=20)

plt.subplot(224), plt.imshow(label2rgb(labels2, image, kind='avg"))

plt.axis('off"), plt.title('segmented image with Meanshift', size=20)

plt.show()

If you run the aforementioned code snippet, you should obtain
a figure as follows:
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Figure 3.15: MeanShift segmentation in Lab color space with scikit-learn

Watershed segmentation with opencv-
python and SimplelTK

Watershed segmentation is a digital image processing
technique used for segmentation, which is the process of
dividing an image into different regions or segments. The
watershed algorithm is primarily considered a region-based
segmentation algorithm. The term watershed is borrowed
from hydrology, where it refers to the boundary line
separating two adjacent drainage basins. In image processing,



the concept is applied to separate different objects or regions
based on the topological features of the image.

The following is a simplified explanation of how watershed
segmentation works:

* Gradient computation: The first step involves computing
the gradient of the image. The gradient represents the
intensity change in the image, highlighting regions where
the intensity varies significantly.

* Intensity marking: Local minima in the gradient image
are identified as markers. These markers serve as seeds
for the segmentation process. Each marker is associated
with a specific region in the image.

* Label propagation: Starting from the markers, labels are
propagated outward to neighboring pixels. The goal is to
flood the image with labels, simulating the filling of basins
in a topographical map.

e Catchment basins: As the labels propagate, they
eventually meet at certain points, forming boundaries
between different catchment basins. These boundaries
correspond to the desired segmentation.

e Segmentation result: The final result of watershed
segmentation is a partitioning of the image into regions
separated by the boundaries identified in the process.

Watershed segmentation can be applied to grayscale or color
images. It is particularly useful in scenarios where objects in
an image have poorly defined boundaries or when there are
significant intensity variations. @ However, watershed
segmentation can lead to over-segmentation, where small
details are treated as separate regions. To address this,
techniques such as marker-controlled watershed
segmentation are wused, allowing users to guide the
segmentation process by specifying markers for certain
regions of interest.

In this section you will learn how to segment an image using a



couple of different implementations of the watershed
segmentation algorithm, with libraries such as opencv-
python and SimplelITK.

Watershed with opencv-python

You can perform watershed segmentation wusing the
cv2.watershed() function from the library opencv-python.
Here we shall use the algorithm to separate the foreground
object from the background (i.e., obtain a binary
segmentation) in the coins image. Let us start the
implementation by importing the required libraries and
modules as:

import cv2
import numpy as np
import matplotlib.pyplot as plt

Let us implement the function run_watershed() as shown in
the following code snippet. The function accepts the input
image (to be segmented) as the input argument and performs
the following operations step by step:
1. Converts the input image from BGR to grayscale using the
function cv2.cvtColor() with the flag
cv2.COLOR_BGR2GRAY.

2. Applies thresholding with cv2.threshold() (using Otsu’s
method cv2. THRESH OTSU) to create a binary image.
Performs morphological opening with
cv2.morphologyEx() and cv2.MORPH_OPEN (using a
3 X 3 square structural element) to remove noise and small
objects.

3. Dilates (using the function cv2.dilate()) the binary
image to obtain a sure background. Calculates the
distance transform in the binary image (with the function
cv2.distanceTransform()) to find the sure foreground by
thresholding. The distance transform calculates the
distance from each pixel to the nearest zero



(background) pixel. This function is particularly useful for
finding the distance to the closest boundary or object in a
binary image.

4. Converts the binary image (with sure foreground
locations) to an 8-bit image and finds the unknown regions
by subtracting (using cv2.subtract()) the sure foreground
from the sure background.

5. Labels the sure foreground regions using the connected
components algorithm (using the function
cv2.connectedComponents()). Add 1 to all labels and
mark the unknown regions with 0.

6. Applies the watershed algorithm with the markers,
using the function cv2.watershed(), as demonstrated in
the following code snippet.

7. Marks the watershed boundaries in green and uses the
function cv2.findContours() to find contours in the binary
masks obtained through thresholding. The contours are
then drawn on the original image using
cv2.drawContours(). Note that here we are interested to
draw the innermost contours, hence we have used the
hierarchy information (using mode = cv2.RETR _TREE)
obtained from cv2.findContours(), hence we have looped
through the contours and considered only those contours
whose hierarchy[contour_index][3] (parent) is not -1.

The function run_watershed() returns the dist_transform,
the markers and the final image with the contours drawn on
top, as demonstrated in the following code snippet. Finally,
load the input coins image and segment it with watershed
algorithm using the function run_watershed().

def run_watershed(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

ret, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY _INV + \
cv2. THRESH_OTSU)

kernel = np.ones((3,3),np.uint8)



opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN, kernel, iterations = 1)

# sure background area

sure_bg = cv2.dilate(opening,kernel,iterations=3)

# Finding sure foreground area

dist_transform = cv2.distanceTransform(opening, cv2.DIST L2, 5)

ret, sure_fg = cv2.threshold(dist_transform,0.0001*dist_transform.max(),\
255,0)

# Finding unknown region

sure_fg = np.uint8(sure_fQg)

unknown = cv2.subtract(sure_bg, sure_fQq)

# Marker labelling

ret, markers = cv2.connectedComponents(sure_fg)

# Add one to all labels so that sure background is not 0, but 1
markers = markers+1

# Now, mark the region of unknown with zero
markers[unknown==255] = 0

markers = cv2.watershed(image, markers)
image[markers == -1] = [255,0,0]

# loop over the unique labels returned by the Watershed algorithm
for label in np.unique(markers):
# if the label is zero, it's 'background', so simply ignore it
if label == 0:
continue
# otherwise, allocate memory for label region and draw it on the mask
mask = np.zeros(gray.shape, dtype="uint8")
mask[markers == label] = 255

# detect contours in the mask and grab the largest one
contours, hierarchy = cv2.findContours(mask.copy(), cv2.RETR_TREE, \
cv2.CHAIN_APPROX SIMPLE)
foriin range(len(contours)):
# Check if the contour has a parent (not the outermost contour)
if hierarchy[0][i][3] != -1:
color = (0, 255, 0) # Green color
cv2.drawContours(image, contours, i, color, 2, cv2.LINE_8, \
hierarchy, 0)

return dist_transform, markers, image

# Load the image

image = cv2.imread('images/coins.jpg"’)

original = image.copy()

dist_transform, markers, image = run_watershed(image)

Plot the input coins image along with the segmented image
and draw the contours of the objects with matplotlib.pylab:

| plt.figure(figsize=(12,8)) |



plt.subplot(221), plt.imshow(cv2.cvtColor(original, cv2.COLOR_BGR2RGB))
plt.axis('off"), plt.title('Original image', size=20)

plt.subplot(222), plt.imshow(dist_transform, cmap='Spectral')
plt.axis(‘off")plt.title('Distance’, size=20)

plt.subplot(223), plt.imshow(markers, cmap='coolwarm'), plt.axis('off")
plt.title('Segmentation Labels', size=20)

plt.subplot(224), plt.imshow(image), plt.axis('off")

plt.title("With Contours', size=20)

plt.tight_layout()

plt.show()

If you run the aforementioned code snippet, you should obtain
a figure as follows:

Original image Distance

Figure 3.16: Watershed segmentation with opencv-python

Morphological watershed with SimplelTK

The morphological watershed algorithm is an extension or
modification of the basic watershed algorithm. It often
involves combining morphological operations (image
processing techniques that probe and transform the structure
of an image using a predefined shape called a structuring



element) with the watershed algorithm to improve
segmentation results (note that in the last section, we used a
few morphological operations such as opening, dilation
explicitly and separately as preprocessing steps for
watershed segmentation). It is again based on the concept of
flooding and watershed lines, like how water flows in terrain
and collects in basins. In image processing, the grayscale
intensity values are considered as terrain, and the watershed
algorithm is applied to segment different regions based on
intensity.

Now, let us implement morphological watershed segmentation
using SimplelITK in Python:

e Import the SimpleITK library and alias it as sitk for
convenience, along with other required libraries.

 Read the input image of a whale as a grayscale image, we
shall again perform a binary segmentation on this image,
but this time  using SimplelITK’s  watershed
implementation.

 Rescale the intensity values of the input image using
RescalelntensityImageFilter(), apply this filter to
normalize or adjust range of pixel intensities of the input
image, to be in the range , as shown in the following code
snippet:

import SimplelTK as sitk
import numpy as np
import matplotlib.pylab as plt

img = sitk.Readlmage('images/whale.jpg’, sitk.sitkFloat64)
rescale = sitk.RescalelntensityImageFilter()
rescale.SetOutputMaximum(1.0)

img = rescale.Execute(img)

e Compute the gradient magnitude of the input image as
feature_img, using the function GradientMagnitude().
The gradient magnitude highlights regions where intensity
changes.

 Generate markers based on the gradient magnitude. In



this example, connected components are identified where
the gradient magnitude is greater than the mean value.

e Use regional minima (with RegionalMinima()) as
markers in subsequent watershed segmentation to define
the initial flooding points.

e Use the function ConnectedComponent() to identify and
label individual regions connected to the detected regional
minima.

e We shall use 3 additional points as hints (plotted as
magenta pixels on top the input image), a couple of them
belong to background and the remaining one on the
foreground object, let us specify the labels of the
corresponding pixels in the marker image (with values 1
and 2, respectively), as shown in the following code
snippet.

 Apply morphological watershed segmentation using the
gradient magnitude and markers, using the function
MorphologicalWatershedFromMarkers(), which
accepts the gradient and the marker images as input.

e Use the function LabelToRGB() to obtain the binary
segmentation mask image.

 Overlay the mask on top of the input image using the
function LabelOverlay() with a given opacity.

feature_img = sitk.GradientMagnitude (img)

min_img = sitk.RegionalMinima (feature_img, backgroundValue=0,
foregroundValue=1.0, fullyConnected=False,
flatIsMinima=True)

marker img = sitk.ConnectedComponent(min_img)

marker_img *= 0

marker pts = {(10,10):1, (350,200):2, (500,300):1}

for pt, label in marker pts.items():

marker_img[pt] = label
ws = sitk.MorphologicalWatershedFromMarkers(feature_img, marker_img,
markWatershedLine=True, fullyConnected=False)

labels = sitk.LabelToRGB (ws)

overlay = sitk.LabelOverlay(img, ws, opacity=0.001)

labels = rescale.Execute(labels)

overlay = rescale.Execute(overlay)




* Plot the images obtained. The following figure shows the
segmented output image, along with the input image.

plt.figure(figsize=(20,10))
plt.subplot(131), plt.imshow(sitk.GetArrayFromImage(img), cmap='gray")
plt.axis('off")
for pt, label in marker pts.items():

plt.scatter(pt[0], pt[1], c=label, s=100, cmap='Spectral’)
plt.title('input (with markers)', size=20)
plt.subplot(132), plt.imshow(255*sitk.GetArrayFromImage(labels))
plt.axis('off"), plt.title('segmented’, size=20)
plt.subplot(133), plt.imshow(sitk.GetArrayFromImage(overlay))
plt.axis('off"), plt.title(‘'overlayed', size=20)
plt.tight_layout()
plt.show()

If you run the preceding code snippet, you should obtain a
figure as follows:

input (with markers) segmented overlayed
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Figure 3.17: Morphological watershed segmentation with SimpleITK

GrabCut segmentation with opencv-
python

GrabCut is an image segmentation algorithm that that
combines image clustering and graph cuts to achieve image
segmentation. It is designed to automatically segment an
image into foreground and background regions. GrabCut is an
improvement over basic graph cut segmentation, as it
combines both data-driven and user-provided information to
achieve better segmentation results.

The following is a brief overview of these segmentation
techniques:

e Graph cut segmentation: Basic g¢graph cut



segmentation is basically an optimization technique that
formulates image segmentation as an energy-
minimization problem. It constructs a graph where pixels
are nodes, and edges represent the relationships between
neighboring pixels. The goal is to find a cut in the graph
that minimizes the energy, separating the image into
segments. The energy function typically consists of two
main terms: the data term and the smoothness term.

o The data term measures the cost or likelihood of
assigning a particular label (foreground or background)
to each pixel in the image. Mathematically, the data
term can be represented as:

nm=meJ

Here, X; is the label assigned to pixel i, and D;(X;) is the
data cost associated with assigning label X; to pixel .

o The smoothness term (pairwise term) encourages
neighboring pixels to have similar labels, promoting
spatial coherence in the segmentation. It penalizes
abrupt changes in labels between neighboring pixels.
This term helps to smooth-out the segmentation
boundaries. Mathematically, the smoothness term can
be represented as:

S(X) = Z SU (X,:,Xj)
(i,/))ENbd
Here, S;;(X; X;) is the smoothness cost associated with
the labels of neighboring pixels | and j.

o The overall energy function for the image
segmentation problem with graph cuts is a combination
of the data term and the smoothness term:

E(X) = D(X) + AS(X)
o Here 2] is a parameter that controls the trade-off



between the data and smoothness terms. The goal of
the optimization process is to find the labeling X that
minimizes this energy function. Graph cut algorithms,
such as the max-flow / min-cut algorithm, are then
applied to efficiently find the optimal partition or
labeling that minimizes the energy.

GrabCut segmentation: GrabCut is an interactive
segmentation algorithm that combines user input with an
iterative optimization process. The user provides a
bounding box around the object of interest, and GrabCut
iteratively refines the segmentation based on user input
and image data. It employs a graphical model with a graph
structure to represent the relationships between pixels
and incorporates user scribbles to guide the segmentation.

o Initially, pixels are classified into:
Definite foreground (marked by user)
Definite background (marked by user)
Possible foreground
Possible background

Constraints for the definite pixels are incorporated into
the minimization problem to fix their labels, ensuring
they cannot be reassigned during optimization.

o Gaussian Mixture Model (GMM) is used to model the
foreground and background. Using the input scribbles
(hints), GMM learns to estimate the class-conditional
distributions for the foreground and background,
ie., it estimates P(x | foreground) and
P(x | background), where x is the color vector (e.g., RGB
values) of a pixel.

o A graph isconstructed, where:

Nodes represent pixels.

Additional two nodes are added, source node and



sink node. Every foreground pixel is connected to
source node and every background pixel is
connected to sink node.

The data term in the energy function corresponds
to the negative log-likelihood of a pixel’s color
given its class (foreground or background).

The smoothness term corresponds to a prior that
encourages spatial coherence by favoring similar
labels for neighboring pixels with similar colors.

o The weights of edges connecting pixels to source/sink
node are defined by the (posterior) probability of a pixel
being foreground/background. The weights between
the pixel nodes are defined by the edge information or
pixel similarity. If there is a large difference in pixel
color, the edge between them will get a low weight.

0 A max-flow / min-cut (minimum cut) algorithm is
used to segment the graph. It cuts the graph into two
partitions, separating source node and sink node, it
finds the cut with minimum value of the cost function.
The cost function is the sum of all weights of the edges
that are cut. After the cut, all the pixels connected to
source node become the foreground and those
connected to the sink node become the background.

o This approach allows interactive refinement—
modifying scribbles iteratively improves the accuracy of
segmentation.

Let us start with an image to segment (for example, a flower
from the Berkely segmentation dataset) and a rectangle
around the object of interest (rect), providing the foreground
hint. The GrabCut algorithm will then iteratively refine the
segmentation based on this wuser input. The resulting
segmented image is displayed using the imshow() function



from matplotlib.pylab.

Now, let us demonstrate how to use cv2.grabCut() function
to implement binary segmentation using the Grabcut
algorithm. The function in opencv-python has several
arguments that control the behavior of the algorithm. Here is
an overview of the main arguments:

e img: Input image (to be segmented).

« mask: A mask image used to initialize and store the
segmentation. It should be a 2D array with the same
height and width as the input image. The mask is typically
initialized with zeros, and the user provides seed points
(rectangles or points) to indicate the initial estimate of the
foreground and background.

 rect: A rectangle, a tuple specifying the rectangle that
encloses the object of interest. The tuple format is (x, vy,
width, height). This rectangle is used as an initial
estimate for the foreground.

e bgdModel and fgModel: Background and foreground
model. These are arrays used by the algorithm internally;
they are updated by the function during the iterative
optimization process.

 iterCount: The number of iterations the GrabCut
algorithm will run to refine the segmentation. A larger
number of iterations may lead to a more accurate
segmentation (set to in the following code snippet).

« mode: An optional parameter that specifies the operation
mode. It can take one of the following values:

o cv2.GC_INIT WITH _RECT: The rectangle provided
(rect) is used as the initial segmentation.

o c¢v2.GC_INIT WITH MASK: The mask provided
(mask) is used as the initial segmentation.

o If None, the function starts with an internally computed
segmentation (may not be accurate).



import numpy as np
import cv2
from matplotlib import pyplot as plt

orig = cv2.imread('images/gerbara.png")
img = np.copy(orig)
mask = np.zeros(img.shape[:2],np.uint8)

# specify rectangle around object of interest (x, y, width, height)
rect = (25,20,400,280)
cv2.grabCut(img, mask, rect, None, None, 5, cv2.GC_INIT WITH_RECT)

# Modify the mask to get the binary segmentation result
mask = np.where((mask==2)|(mask==0),0,1).astype(‘uint8")
# Apply the mask to the original image

img = img * mask[:,:,np.newaxis]

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 7), \

sharex=True, sharey=True)
cv2.rectangle(orig, (rect[0], rect[1]), (rect[2], rect[3]), (255,0,0), 2)
ax1.imshow(cv2.cvtColor(orig, cv2.COLOR_BGR2RGB)), ax1.axis('off")
ax1.set_title('Original Image (with Object hint rectangle)’, size=15)
ax2.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)), ax2.axis('off")
ax2.set_title('Segmented Object with GrabCut', size=15) #,plt.colorbar()
plt.tight_layout()
plt.show()

If you run the preceding code snippet, you should obtain a
figure as follows:

Original Image (with Object hint rectangle)

Segmented Object with GrabCut

Figure 3.18: Interactive GrabCut segmentation with opencv-python

RandomWalk segmentation with scikit-
image



RandomWalk image segmentation uses the concept of a
random walk on a graph to partition an image into different
regions. In this method, each pixel in the image is treated as a
node in a graph, and the intensity values or features of the
pixels determine the weights of the edges between the nodes.
The random walk algorithm then simulates a random walker
moving on the graph, and the segmentation is obtained based
on the probabilities of the walker reaching different regions.

Now, let us demonstrate scikit-image’s implementation of
the random walker segmentation algorithm. Start by
importing the required Python Ilibraries, modules and
functions as:

from skimage.segmentation import random_walker

from skimage.io import imread

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.axes_gridl import make_axes_locatable

The random_walker function in scikit-image is part of the
skimage.segmentation module. We shall use this function
for random walker image segmentation. Here is an overview
of the key arguments of the function:

e data: The input image (a 2D grayscale or a 3D
multichannel image) to be segmented.

« markers: An array of the same shape as data where
markers indicate the segmentation regions. It should be an
array of integers, where different integers represent
different regions. Typically, you would set certain pixels as
markers (e.g., background and foreground markers) to
guide the segmentation.

e beta: A parameter that controls the influence of the
smoothness term. Higher values of beta result in smoother
segmentations. Adjust this parameter based on the
characteristics of your images.

e mode: Specifies the wupdate rule, default is ‘bf’
(backward/forward) and often more stable than other
update rules.



 channel axis: Specifies the channel axis for a
multichannel image, i.e., -1 indicates that the last
dimension is the channel dimension.

Let us use a white horse image as the input image, and we
aim to segment the horse (foreground object) from the
background:

« The horse image is annotated (scribbled), red and green
scribbles denote the background and foreground regions,
respectively. The marker image is created, by starting
from blank image and then marking the corresponding
pixels by different integers (e.g., 1 and 2), as shown in the
following code snippet.

 Use the random_walker() function to get the labels for
the segmented image, along with the probability of

foreground and background predicted by the function,
for each pixel in the image, obtained by setting the

argument return_full prob=True.

img = imread('images/horse.png")[...,:3]

mask = imread('images/mask horse.png')

markers = np.zeros(img.shape[:2], dtype=np.uint8)

markers[(mask][...,0] >= 200)&(mask][...,1] <= 20)&(maskK][...,2] <= 20)]
]

1
markers[(mask[...,0] <= 20)&(maskK]...,1] >= 200)&(maskK][...,2] <= 20) 2

labels = random_walker(img, markers, beta=1, mode="'bf', channel axis=-1)
labels_prob = random_walker(img, markers, beta=9, mode="bf’, \
channel axis=-1, return_full prob = True)

 Plot the original image, segmentation contour, binary
segmentation mask, and the probability of foreground
pixels using the following code snippet. You should obtain
an output as shown in the following figure:



fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(20, 15), \
sharex=True, sharey=True)
ax1.imshow(mask, interpolation='nearest'), ax1.axis('off")
axl.set_title('Original Image with Markers', size=30)
ax2.imshow(img, interpolation='nearest')
ax2.contour(labels, linewidths=5, colors='y"'), ax2.axis('off")
ax2.set_title('Segmentation Contour', size=30)
ax3.imshow(labels,cmap='gray',interpolation="'nearest’),
ax3.axis('off")

ax3.set_title('Segmentation’, size=30)

prob = ax4.imshow(labels_prob[1,...], cmap='Spectral’, \
interpolation='nearest')

ax4.axis('off"), ax4.set_title('Segmentation Probabilities', size=30)

divider = make_axes_locatable(ax4)

cax = divider.new_vertical(size="5%", pad=0.5, pack_start=True)

fig.add_axes(cax)

fig.colorbar(prob, cax=cax, orientation="horizontal")

fig.tight_layout()

plt.show()

If you run the aforementioned code snippet, you should obtain
a figure as follows:

Qriginal Image with Markers Segmentation Contour

Segmentation

Figure 3.19: Random walk segmentation with scikit-image



Fast marching segmentation with
SimplelTK

Fast marching image segmentation is a method that
evolves contours based on speed functions to segment object
boundaries efficiently. It is based on the Fast Marching
Method (FMM), which is a numerical technique for solving
the Eikonal equation. The Eikonal equation describes the
evolution of a front or wavefront in a way that is dependent on
the local speed at each point. Mathematically, the Eikonal
equation is given by:

| VT |= F

Where T is the arrival time (the time it takes for the front to
reach a certain point), | VT | is the magnitude of the gradient
of T and F is the speed function.

In the context of image segmentation using the FMM, the
speed function represents the likelihood or confidence of a
pixel belonging to a particular segment or region. It guides
the evolution of the front, with regions of higher speed being
reached earlier by the front. FMM evolves a front through the
image, assigning labels to pixels based on the information
obtained from the speed function.

Now, let us apply the fast-marching segmentation on an
image, using SimplelTK’s implementation of the algorithm.

The following are the steps you need to follow:

1. Let us start by importing the required libraries and
defining the parameter values for the functions to be used,
using the following code snippet:

import SimpleITK as sitk
import numpy as np
import matplotlib.pylab as plt

seed_position = (70, 170)
sigma = 0.25
alpha = -3.0




beta = 10.0
stopping_time = 100

2. Read the input grayscale image using the ReadImage()
function from SimpleITK.

3. Let us first apply the filter function
CurvatureAnisotropicDiffusionIlmageFilter() to the
image, this filter is used for image smoothing or denoising.
It applies an anisotropic diffusion process that is guided by
the local image structure, helping to preserve edges and
boundaries while reducing noise. This filter is particularly
useful for enhancing the visibility of structures in images.
The method Execute() applies the filter to the input image
to obtain the smoothed image smoothing output, as
shown in the following code snippet.

4. Next, apply the filter function
GradientMagnitudeRecursiveGaussianlmageFilter()
to the smoother image. This filter calculates the gradient
magnitude of an image using a recursive Gaussian filter.
This filter is commonly used to emphasize edges and
highlight transitions between different intensity levels.

5. Apply SigmoidImageFilter() to the gradient magnitude
image for contrast adjustment or to enhance specific
intensity range.

6. Finally, apply FastMarchingImageFilter() function to
the image. The FastMarchingImageFilter in SimpleITK
is part of the toolkit’s segmentation module and is
designed to perform image segmentation using the FMM.
You need to provide the filter with the seed points (using
the function SetTrialPoints()). These are the initial points
from which the front will start to evolve. The filter will set
these points as known and then iteratively update the
arrival times around them.

You can set additional parameters, such as the stopping value

(with the method SetStoppingValue()), determining when
the front evolution should stop. You can subsequently apply



the BinaryThresholdlmageFilter() for thresholding the
output image to create a binary image, as shown in the figure.
Display all the images using the plot_image() function, as
shown in the following code snippet:

def plot_image(img, title, img type=np.float32):
im = sitk.GetArrayViewFromImage(img).astype(img_type)
im = im / im.max()
plt.imshow(im), plt.axis('off"), plt.title(title, size=20)

input_image = sitk.ReadImage('images/Img 03 09.png', sitk.sitkFloat32)

smoothing = sitk.CurvatureAnisotropicDiffusionIlmageFilter()
smoothing.SetTimeStep(0.125)
smoothing.SetNumberOflterations(5)
smoothing.SetConductanceParameter(9.0)
smoothing_output = smoothing.Execute(input_image)

gradient_magnitude = sitk.GradientMagnitudeRecursiveGaussianImageFilter()
gradient_magnitude.SetSigma(sigma)

gradient_magnitude_output = gradient_magnitude.Execute(smoothing_output)
rescale = sitk.RescalelntensityImageFilter()

gradient_magnitude_output = rescale.Execute(gradient_magnitude _output)

sigmoid = sitk.SigmoidImageFilter()
sigmoid.SetOutputMinimum (0.0)
sigmoid.SetOutputMaximum (255)

sigmoid.SetAlpha(alpha)

sigmoid.SetBeta(beta)

sigmoid_output = sigmoid.Execute(gradient_magnitude_output)

seed_value = 0

fast_marching = sitk.FastMarchingImageFilter()

trialPoint = (seed_position[0], seed_position[1], seed_value)
fast_marching.AddTrialPoint(trialPoint)
fast_marching.SetStoppingValue(stopping time)
fast_marching_output = fast_marching.Execute(sigmoid_output)

thresholder = sitk.BinaryThresholdImageFilter()
thresholder.SetLowerThreshold(0)
thresholder.SetUpperThreshold(255)
thresholder.SetOutsideValue(0)
thresholder.SetInsideValue(1)

output_image = thresholder.Execute(fast_marching_output)

plt.figure(figsize=(20,15))

plt.gray()

plt.subplots_adjust(0,0,1,0.95,0.05,0.05)

plt.subplot(231), plot_image(input_image, 'input’)
plt.subplot(232), plot_image(smoothing output, 'smoothed")




plt.subplot(233)

plot_image(gradient_magnitude_output, 'gradient’, np.uint8)
plt.subplot(234), plot_image(sigmoid_output, 'sigmoid output')
plt.subplot(235)

plot_image(fast_marching_output, 'segmented (FastMarching)")
plt.subplot(236), plot_image(output_image, 'segmentred (binarized)")
plt.show()

If you run the aforementioned code snippet, you should obtain
a figure as follows:

input smoothed gradient

Segmentation using SLIC/NCut with
scikit-image

In this section, you will learn a few more segmentation
algorithms, e.g., superpixel-based (SLIC) and normalized
cut (NCut) based algorithms. We shall demonstrate how to
segment an image with these algorithms using
skimage.segmentation and skimage.graph module
functions, respectively.



SLIC segmentation

SLIC is a superpixel segmentation algorithm wused in
computer vision and image processing. The goal of SLIC is to
group pixels into perceptually meaningful and spatially
compact regions called superpixels. Superpixels are
essentially sets of contiguous pixels that share similar color
and texture characteristics. SLIC is particularly useful for
segmenting images into regions with similar color and texture.
It is an extension of k-means clustering applied in a spatially
localized manner.

The following is a brief overview of how SLIC segmentation
works:

e Initialization: The algorithm starts by sampling a set of
initial cluster centers, which are distributed regularly
throughout the image. These initial cluster centers are
determined based on a combination of image intensity and
spatial proximity.

 Assignment of pixels to super pixels: Each pixel is then
assigned to the nearest cluster center in a 5D space,
consisting of color information (usually in the RGB or LAB
color space) and spatial information (x, y coordinates).
This assignment is done by considering both the color
similarity and the spatial proximity of pixels to the cluster
centers.

« Update of cluster centers: After the initial assignment,
the cluster centers are updated by computing the mean
color and position of all pixels assigned to each cluster.
This step helps to refine the superpixel boundaries.

e Iteration: Steps 2 and 3 are iteratively repeated until
convergence. The process converges when the cluster
centers and assignments do not change significantly
between iterations.

« Compactness constraint: SLIC includes a compactness
constraint to ensure that the resulting superpixels are



spatially compact. This is achieved by penalizing the

distance between pixels and their assigned cluster centers

based on the Euclidean distance in the 5D space.
The algorithm’s parameters include the number of desired
super pixels and a weighting factor that controls the trade-off
between color similarity and spatial proximity in the
assignment step. By adjusting these parameters, users can
control the size and regularity of the superpixels generated by
SLIC. The SLIC method is known for its efficiency and
effectiveness in producing visually meaningful superpixels.

Normalized cut

Image segmentation with NCut is a technique that aims to
partition an image into coherent regions based on the
similarities between pixels. Normalized cut is a graph-based
method that considers both the similarities within the same
segments and the dissimilarities between the different
segments.

The objective function to be minimized in Ncut segmentation
is defined to balance the desire for high similarity within
clusters and low similarity between clusters. The goal is to
find a partition of the graph (representing an image or data)
that minimizes the normalized cut value.

The objective function for Ncut segmentation is typically
expressed as follows:

assoc(A,V) assoc(B,V)
cut(A, B) cut(A, B)

NCut(A4,B) =

Where we have:

* cut(A,B): The cut between clusters 4 and B, representing
the sum of weights of edges connecting nodes in A to
nodes in B.

* assoc(A,V): The association of cluster 4 with all vertices V,
representing the sum of weights of edges connected to



nodes in A.
e V: The set of all vertices in the graph.

The goal is to partition the graph into non-overlapping
clusters 4 and B in such a way that the cut between them is
minimized while considering the sizes of the clusters. The
division by the association terms normalizes the cut values,
making it independent of the sizes of the clusters.

The overall objective is to find clusters that have high internal
similarity and low external similarity. The segmentation
algorithm achieves this by solving an optimization problem
that minimizes the normalized cut value. In practice, this is
often achieved wusing spectral methods, where the
eigenvectors of a certain matrix (usually the graph
Laplacian) are used to represent the clusters. The algorithm
seeks to find an optimal partition that satisfies these
constraints while minimizing the normalized cut value,
resulting in a meaningful segmentation of the image. It also
penalizes unbalanced partitions, discouraging solutions where
one segment is significantly smaller than the other.

Now, let us demonstrate how an input image containing
apples and oranges can be segmented using the scikit-image
implementations of the aforementioned algorithms:

 We shall use the function segmentation.slic() to segment
the input image using SLIC. The argument n_segments to
the function determines the approximate number of
segments to create, whereas compactness controls the
balance between color similarity and spatial proximity in
the segmentation.

 The function graph.rag mean_color() function is part of
the Region Adjacency Graph (RAG) analysis for image
segmentation. The RAG is a graph representation where
nodes correspond to image regions (superpixels or
segments), and edges connect neighboring regions. The
rag mean_color() function specifically computes the
mean color of each region in the RAG. The function returns



a dictionary where keys are the region labels and values
are the mean colors.

e Use the function graph.cut_normalized() to segment the
image using NCut algorithm.

e Let us plot the original input image along with the
segmented images, using the following code snippet:

import skimage
print(skimage._ version_ )
#0.21.0

from skimage import graph, segmentation, color
from skimage.io import imread
from matplotlib import pyplot as plt

img = imread('images/apples_oranges.png')[...,:3]
labels_slic = segmentation.slic(img, compactness=30, n_segments=400)
out_slic = color.label2rgb(labels_slic, img, kind='avg")

g = graph.rag_mean_color(img, labels_slic, mode='similarity")
labels_ncut = graph.cut_normalized(labels_slic, g)
out_ncut = color.label2rgb(labels_ncut, img, kind="'avg")

fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True, \
figsize=(20, 15))

ax[0,0].imshow(img), ax[0,0].set_title('Original image', size=20)

ax[0,0].set_axis_off()

ax[0,1].imshow(out_slic)

ax[0,1].set_title("With SLIC superpixelation', size=20)

ax[1,0].set_axis_off(), ax[1,0].imshow(out_ncut)

ax[1,0].set_title('With Normalized-Cut', size=20)

ax[0,1].set_axis_off(), ax[1,1].set_axis off()

plt.tight_layout()

plt.show()

If you run the aforementioned code snippet, you should obtain
a figure as follows:



original image with SLIC super-pixelation

Figure 3.21: SLIC/NCut segmentation with scikit-image

RAG merging

RAG merging is a technique used in image segmentation,
where the goal is to partition an image into meaningful
regions. RAG merging involves the construction of a graph
representation of an image, where nodes correspond to image
regions, and edges represent the adjacency relationships
between regions. The merging process is then applied to
iteratively combine similar regions based on certain criteria.
The following is a basic outline of the steps involved in RAG
merging:

* Region growing: Start with an initial over-segmentation
of the image. This can be achieved using techniques like
region-growing or superpixel algorithms. Assign a unique
label to each pixel or region.

* Construct region adjacency graph: Create a graph
where each node corresponds to a region and edges
connect adjacent regions. The weight of the edges can be
defined based on a similarity metric between regions. This
metric can consider color, texture, or other features.

» Iterative merging: Iterate through the edges of the RAG
and merge regions that meet certain criteria. The merging



criteria can be defined based on the similarity metric and a
threshold. For example, merge adjacent regions if their
color similarity is above a certain threshold.

 Update RAG: After merging, update the RAG by removing
the edges between the merged regions and adding new
edges to the merged region.

* Repeat merging: Repeat the merging process until no
more merging is possible or until a predefined condition is
met.

The following  code snippet uses the  function
graph.cut_threshold() to combine regions separated by
weight less than threshold (e.g., 50 in the following code
snippet). Given an image’s labels and its RAG, the function
outputs new labels by combining regions whose nodes are
separated by a weight less than the given threshold, as shown
in the following code snippet:

img = io.imread('images/bird.png")[...,:3]

labels_slic = segmentation.slic(img, compactness=30, n_segments=400)
out_slic = color.label2rgb(labels_slic, img, kind='avg")

g = graph.rag_mean_color(img, labels_slic)
labels_rag = graph.cut_threshold(labels_slic, g, 50)
out_rag = color.label2rgb(labels2, img, kind='avg")

fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True, \
figsize=(15, 12))

fig.subplots_adjust(0,0,1,0.95,0.05,0.05)

ax = ax.ravel()

ax[0].imshow(img), ax[0].set_title('Original image’', size=20)

ax[1].imshow(segmentation.mark_boundaries(img, labels_slic,color=(0,0,0)))

ax[1].set_title("With SLIC (boundaries marked)', size=20)

ax[2].imshow(out_slic), ax[2].set_title('"With SLIC', size=20)

ax[3].imshow(segmentation.mark _boundaries(out_rag, labels rag, \

color=(0,0,0)))

ax[3].set_title("With SLIC + RAG merging', size=20)

for a in ax:
a.axis('off")

plt.show()

If you run the preceding code snippet, you should obtain a



figure as follows:
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Figure 3.22: SLIC segmentation/RAG merging with scikit-image

Conclusion

In this chapter, we explored a wide range of image
segmentation techniques, delving into the intricacies of image
processing. We have already seen edge detection algorithms
such as Canny and LoG, these algorithms can be used for
edge-based segmentation. Our primary focus was on the
region-based and machine learning-based segmentation
techniques.

We understood the foundational concepts of graylevel and
bitplane slicing, shedding light on the significance of intensity
levels within an image. Gray level slicing emerged as a
powerful tool, particularly when applied to regions of interest
for contrast enhancement.

Moving forward, we demonstrated image binarization,
employing thresholding techniques with python libraries
scikit-image, SimplelTK, and opencv-python. Global and local
thresholding methods were explored, alongside advanced
approaches such as max-entropy and adaptive thresholding.



The chapter further covered a comprehensive exploration of
segmentation techniques, including Mahalanobis distance-
based clustering, k-means vs. spectral clustering, MeanShift
segmentation, watershed segmentation, GrabCut
segmentation, RandomWalk segmentation, and fast marching
image segmentation.

Our journey into segmentation continued with SLIC, NCut
algorithms, and RAG merging. The diverse spectrum of
techniques covered in this chapter provides readers with a
comprehensive toolkit for image segmentation and
enhancement, paving the way for innovative applications
across various domains.

In the next chapter, we will understand a few advanced
applications of deep learning models, introducing semantic /
panoptic segmentation with Detectron2, background
manipulation wusing DeeplabV3, and outlier detection
employing autoencoder with H20.

Key terms

Autoencoder, MeanShift, @ watershed, active  contour,
thresholding, Mahalanobis distance, GMM

Questions

1. Use the function threshold local() from skimage.filters
module to obtain a local binary thresholded image (based
on local pixel neighborhood) using a few different
algorithms (e.g., mean, median, niblack, etc.) with
camerman input image from skimage.data. You should
obtain a figure like the following one (with block size 25,

e.g.):



Local thresholding with scikit-image

Lecal Threshald {Mean]

Figure 3.23: Local thresholding with scikit-image

Vary the block size to see the impact on the output binary
image obtained.

2. Segmentation using active contours with SimplelTK:
Active Contour Model, also known as snake, is a popular
method for image segmentation. The basic idea is to evolve
a curve within an image to find boundaries that separate
different regions of interest. Use the function
GeodesicActiveContourLevelSetImageFilter() from
SimplelTK to implement active contour. For example, with



the following input rose image you should obtain a
segmented output like the following figure:

Segmentation with Active Contour

segrmented (ters=3200. BMS change:

Figure 3.24: Segmentation with active contour
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CHAPTER 4
More Image Segmentation

Introduction

As discussed in Chapter 3, Image Segmentation, image
segmentation is a fundamental task in image processing and
computer vision that involves partitioning an image into
meaningful regions or segments, often to simplify analysis or
extract specific objects of interest. The significance of
segmentation lies in its ability to enable deeper understanding
and interaction with visual data, forming the foundation for
numerous applications, ranging from medical imaging to
autonomous driving. With the growing accessibility of
Machine learning (ML) and deep learning (DL) tools,
image segmentation has evolved from simple rule-based
methods to highly sophisticated, data-driven approaches
capable of achieving human-like accuracy.

This chapter explores a variety of image segmentation
techniques, showcasing their practical implementations using
modern ML and DL frameworks. It begins with traditional
methods such as binary classification for skin segmentation
using scikit-learn and connected component labeling with
scikit-image, demonstrating how foundational techniques can
be applied to simpler segmentation problems. Next, it delves



into dynamic foreground-background separation in videos
using GMM with opencv-python, illustrating a probabilistic
approach to temporal segmentation.

The chapter then transitions to more advanced DL-based
methods, starting with semantic segmentation, which
assigns class labels to every pixel in an image. Two powerful
frameworks are explored: tensorflow with a pre-trained
DeepLabV3+ XCeptionNet model and opencv-python paired
with a pre-trained caffe Efficient Neural Network (ENet)
model. Building on this, panoptic segmentation—a
comprehensive approach that combines semantic and instance
segmentation—is demonstrated using Facebook’s Detectron2
framework.

Beyond segmentation, practical applications are highlighted,
such as blurring and altering backgrounds in images and
videos using DeepLabV3+ models, and outlier detection for
identifying anomalous images using autoencoders with H2O.
Each section is designed to guide readers through
implementation while emphasizing the practical trade-offs and
use cases of the presented methods.

Structure

This chapter covers the following topics:

« Human skin segmentation with binary classifiers with
scikit-learn

« Segmentation by labelling connected components with
scikit-image

 Foreground-background separation in a video using GMM
with opencv-python

 Semantic segmentation with DeepLabV3+ and ENet

« Panoptic segmentation with the deep learning model
Detectron2

e Blurring and changing background in image and video



using DeepLabV3
e Outlier detection using autoencoder with H20

Objectives

By the end of this chapter, the reader will have a deeper
understanding of both traditional machine learning and deep
learning-based segmentation techniques and be equipped with
the knowledge to tackle diverse segmentation challenges in
real-world scenarios. You will learn to implement image
segmentation using binary classifier with scikit-learn, by
labeling connected components with scikit-image, and
separate foreground/background with opencv-python. The
reader will also learn semantic/panoptic segmentation using
the pre-trained deep learning models with tensorflow/caffe
with opencv-python, background modification in images, and
anomalous image detection using the library H20.

Human skin segmentation with binary
classifiers with scikit-learn

In this section, our goal will be to segment human skins as
foreground objects from an image, using a supervised
machine learning model, namely, a binary classifier, which
is trained to distinguish between two categories (classes):
skin and non-skin. This could be wuseful in various
applications, such as identifying skin diseases, detecting
anomalies, evaluating the effectiveness of skincare products,
or assisting in content moderation tasks like pornography
detection. Here are the steps that you need to follow to build a
skin-detector classifier:

1. Prepare training dataset: Start with a skin
segmentation dataset from the UCI Machine Learning
Repository



(https://archive.ics.uci.edu/dataset/229/skin+segmen
tation). The dataset contains positive and negative
examples (that is, a set of RGB pixel values and their labels
indicating whether they correspond to human skin or
not).

2. This dataset is collected by randomly sampling R, G, and
B values from images of the faces of different age groups
(young, middle-aged, old), regions, and genders. This
dataset has the dimensions of 245057 x 4, the first three
columns are B, G, R values (corresponding to the variables
x1, x2, and x3, respectively) and the fourth column is the
class label (decision variable y, where y = 1 is a positive,
that is, a skin example, and y = 2 is a nonskin example).
The following Table 4.1 shows the size of the samples in
the dataset:

Total learning sample size Skin sample size Non-skin sample size

245057 50859 194198

Table 4.1: Size of samples in the dataset

3. We shall use the YCbCr color space instead of RGB, since
it separates the Iluminance (brightness) from
chrominance (color information) in RGB values using a
linear transform (thereby reducing the impact of lighting
variations). Then, we will train a few binary classifiers on
the given dataset, but only using the chrominance
channels.

4. Let us start by importing the required libraries and the
python classes corresponding to binary classifier models
from the library scikit-learn. Next, load the dataset and
convert it from RGB to YCbCr color space. We shall only
use Cb and Cr channels as features to predict the label
skin; hence, drop all other columns, as shown in the
following code snippet. This dataset will act as training
dataset for the classifier models to be trained:

|import numpy as np


https://archive.ics.uci.edu/dataset/229/skin+segmentation

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.tree import DecisionTreeClassifier

from sklearn.naive bayes import GaussianNB

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier
from skimage.io import imread

from skimage.color import rgh2ycbcr, gray2rgb

df = pd.read_csv(‘images/Skin_NonSkin.txt', header=None, \
delim_whitespace=True)

df.columns = ['B', 'G', 'R’, 'skin']

df.skin[df.skin == 2] = 0

df['Cb'] = np.round (128 -.168736*df.R -.331364*df.G + .5*df.B) \
.astype(int)

df['Cr'] = np.round (128 +.5*df.R - .418688*df.G -.081312*df.B) \
.astype(int)

df.drop(['B','G','R'], axis=1, inplace=True)

df.drop_duplicates(inplace=True)

df.head()

Refer to the following figure, showing first few pixel values
(after RGB-YCbCr color-space transformation)
corresponding to skin:

skin Cb Cr
0 1 116 148
14 1 117 149
45 1 116 148
47 1 115 149
61 1 114 148

Figure 4.1: Skin color pixels in YCbCr color space

5. We shall use the following supervised machine learning
models as binary classifiers. Here is a brief description of
the models:

a. Gradient boosting: An ensemble learning model
that combines the predictions of several weak learners
(typically decision trees) to create a strong learner. It
builds trees sequentially, with each tree correcting the
errors of the previous one.

b. Decision tree: A type of supervised machine learning



model used for both classification and regression tasks.
It works by recursively splitting the dataset based on
features, creating a tree-like structure. Each internal
node represents a decision based on a feature, and each
leaf node represents the output or class label. Decision
trees are interpretable and can handle both numerical
and categorical data.

c. Gaussian Naive Bayes: A probabilistic (generative)
classification model based on Bayes’ theorem. It
(naively) assumes that the features are conditionally
independent given the class label and that the
distribution of each feature is Gaussian (normal).
Despite its simplicity and the naive assumption, it often
performs well in practice, especially with continuous
data.

d. k-nearest neighbors (kNN): a simple and intuitive
instance-based learning model used for classification
and regression. In kNN, an object is classified by the
majority class of its k nearest neighbors, where is a
user-defined parameter. It works on the principle that
similar instances in the feature space should have
similar output values. The choice of affects the trade-
off between bias and variance in the model.

6. Use scikit-learn’s implementation of the binary classifier
models. Instantiate the objects corresponding to each of
the model classes and train each model on the training
dataset using the fit() method, as shown in the following
code snippet:

Xy = df.values
X = Xy[:, 1:]
y = Xy[:, 0]

models = (GradientBoostingClassifier(n_estimators=1000, \
max_leaf nodes=4, max _depth=None,
random_state=2, min_samples_split=>5),
DecisionTreeClassifier(random_state=0),
GaussianNB(),
KNeighborsClassifier(5))




|m0dels = [clf.fit(X, y) for clf in models]

7. Once trained, our models are ready to be used for
prediction. To predict whether a pixel from an image is a
skin pixel or a non-skin pixel, for each of the
aforementioned models:

a. We need to convert pixel RGB value to YCbCr.
b. Pass the YCbCr value of the pixel as input to the model.

c. The model will predict the class label (using the
method predict(), as invoked from the function
plot_contours() in the next code snippet).

8. Create a meshgrid of values for Cb, Cr and scatterplot
the predicted value of a pixel with the given values of Cb,
Cr as skin or non-skin, for each pixel. Scatterplot the
training datapoints on top. As can be seen from Figure 4.2,
the small red region indicates the pixels predicted as skin,
also observe that the prediction by different classifier
disagree at many pixels.

def make meshgrid(x, y, h=.02):
X_min, X max = x.min() - 1, x.max() + 1
y_min, y max = y.min() - 1, ymax() + 1
xX, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

return xx, yy

def plot_contours(ax, clf, xx, yy, **params):
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
out = ax.contourf(xx, yy, Z, **params)
return out

fig, sub = plt.subplots(2, 2, figsize=(20,20))
plt.subplots_adjust(left=0, right=1, bottom=0, top=0.9, \
wspace=0.05, hspace=0.08)

X0, X1 = X[:, 0], X[:, 1]
xx, yy = make meshgrid(X0, X1, h=1)

titles = (‘GradientBoosting’,
'DecisionTree’,
'‘Gaussian Naive Bayes',
'kNearestNeighbor")




for clf, title, ax in zip(models, titles, sub.flatten()):
ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=5
plot_contours(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xlabel('Cb', size=20)
ax.set_ylabel('Cr', size=20)
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(title, size=20)

plt.suptitle('Decision Boundaries with different Classifiers', \
size=30)

plt.show()

If you run the preceding code snippet, you should obtain a
figure as follows:

Decision Boundaries with different Classifiers

Do inban Thee

[=-] (=)

Figure 4.2: Visualizing the decision boundaries for the binary classifiers to predict
skin/non-skin pixels

9. Next, load the input image that you want to segment
(containing human faces/skins), convert it to the YCbCr
color space, and predict the label of the pixel as skin (1)



or non-skin (0).

10. Mask out the pixels where the prediction is nonskin,
and obtain the final segmentation result, for each of the
binary classifiers, as demonstrated in the following code
snippet:

image = imread('images/players.png’)[...,:3]
proc_image = np.reshape(rgb2ycbcr(image), (-1, 3))

fig, sub = plt.subplots(2, 2, figsize=(20,15))
plt.subplots_adjust(left=0, right=1, bottom=0, top=0.95, \
wspace=0.05, hspace=0.08)

for clf, title, ax in zip(models, titles, sub.flatten()):
print(title)

skin = clf.predict(proc_imagel...,1:])
skin = skin.reshape(image.shape[(0], image.shape[1])
result = np.bitwise_and(gray2rgb(255*skin).astype(np.uint8), \
image)
ax.imshow(result), ax.axis('off")
ax.set_title('Skin Detected and Segmented with ' + title, \
size=20)

plt.show()

If you run the preceding code snippet, you should obtain a
figure as follows:

Figure 4.3: Human skin detection in image with binary classifiers



Segmentation by labelling connected
components with scikit-image

In this section, we will learn how to segment an image by
finding the connected components in the thresholded
binary image. A connected component is a set of connected
pixels with the same label or intensity value. Various
algorithms can be used for connected component labeling,
such as:

 Two-pass algorithm: In the first pass, assign temporary
labels to connected components. In the second pass,
resolve label equivalences and assign final labels.

 Union-Find algorithm: Also known as disjoint-set data
structure, it efficiently keeps track of connected
components and merges equivalent labels.

Let us segment an image with connected component labeling
algorithm with scikit-image.measure module’s label()
function. Start by importing the required libraries and
functions. Here are the steps to be followed:

1. Read a land image (from satellite) as input and convert it
to grayscale using skimage.color.rgb2gray() function.

2. Apply Otsu thresholding to obtain the binary image. Use
morphological closing operation (using the function
skimage.morphology.closing()) to close small holes or
gaps in regions, smooth the boundaries of objects, and
connect nearby regions that have small separations, if any.
It is particularly useful for preprocessing binary images
and improving the segmentation of objects.

3. Remove artifacts connected to image border with the
function clear border().

4. Label image regions with the function
skimage.measure.label(), which is specifically designed
for connected component labeling in binary images. It
assigns a unique label to each connected component in the



input binary image. The label() function takes a binary
image as input, where pixels are classified as either
foreground (1) or background (0). The connectivity
parameter defines which pixel neighbors should be
considered (for example, use the value 2 for 8-
connectivity and the value 1 for 4-connectivity).

5. As can be seen from the following code snippet, it finds
1482 regions. Plot the input image, overlay the labels on
top of the image using the function
skimage.color.label2rgb().

6. Use skimage.measure.regionprops() function to loop
through the regions found and draw a rectangle around

large enough regions (for example., with region.area >=
100).

from skimage.filters import threshold_otsu

from skimage.segmentation import clear border
from skimage.measure import label, regionprops
from skimage.morphology import closing, square
from skimage.color import label2rgb, rgh2gray
import numpy as np

import matplotlib.pyplot as plt

import matplotlib.patches as mpatches

image = (255*rgb2gray(imread(‘images/land.png")[...,:3])) \
.astype(np.uint8)

thresh = threshold_otsu(image)
bw = closing(image > thresh, square(3))
cleared = clear_border(bw)

label_image = label(cleared, connectivity=2)
image_label overlay = label2rgb(label image, image=image)
print(np.max(label_image))

fig, ax = plt.subplots(figsize=(20, 10))
ax.imshow(image_label overlay, cmap='jet')
for region in regionprops(label_image):

if region.area >= 100:

minr, minc, maxr, maxc = region.bbox



rect = mpatches.Rectangle((minc, minr), maxc-minc, maxr-minr,
fill=False, edgecolor="yellow’,
linewidth=2)

ax.add_patch(rect)

ax.set_axis_off()
plt.tight_layout()
plt.show()

If you run the preceding code snippet, you should obtain a
figure as follows:

Figure 4.4: Segmentation by labeling connected components

7. By default, O-valued pixels in the binary image are
considered as background pixels by the
skimage.measure.label() function. You can override this
default behavior by passing a value in the background
argument (for example, background=1 will consider the
1-valued pixels as background).

8. Use the input image of the school building and obtain
different segmentation results by varying the threshold
for binarization, background value and color map (cmap)
for matplotlib.pylab.imshow(). You should obtain a
figure as the following one:



Colored by labsling connecied componeriy with BG=]

Figure 4.5: Coloring the segmented regions obtained by labelling with connected
components

Foreground-background separation in a
video using GMM with opencv-python

Background subtraction is a technique used in computer
vision to separate the foreground (moving objects) from the
background in a video stream or sequence of images.
OpenCV provides several algorithms for background
subtraction, and one commonly used method is the function
createBackgroundSubtractorMOG2(), which implements a
Gaussian Mixture based background/foreground segmentation
algorithm. GMM is a probabilistic model wused for
representing a mixture of multiple Gaussian distributions.



In this section we shall demonstrate background subtraction
in video frames, using the opencv-python function
createBackgroundSubtractorMOG2(). Here are the steps
to be followed:
1. Let us start the implementation by importing the required
libraries.
2. Read the input video stream (here, we shall use a video of
students walking in the corridor towards the camera)
using cv2.VideoCapture().

3. Instantiate a GMM background subtractor object with the

function cv2.createBackgroundSubtractorMOG2(). The
function accepts the following arguments:

a. history: The number of previous frames used to build
the background model. A higher value gives the
algorithm an extended memory but it may be slower to
adapt to changes. Default is 500.

b. varThreshold: A threshold on the squared
Mahalanobis distance between the pixel and the model
to decide whether a pixel is well-described by the
background model. A lower value makes the algorithm
more sensitive to changes. Default is 16 (the following
code snippet uses the value 32, and experiments with
different values of this parameter).

c. detectShadows: If True, the algorithm detects
shadows and marks them in the foreground mask.
Default value is True.

4. The background subtractor maintains an internal model of
the background, and for each incoming frame, it compares
the pixel values with this model. Pixels that deviate
significantly from the background model are considered as
foreground. The detectShadows parameter helps
distinguish shadows from actual foreground objects.

5. Process each frame or image in a loop, applying the GMM
background subtractor (with the method apply()), to



obtain the foreground mask. Figure 4.6 shows the
foreground mask computed for a few different frames from
the video. Refer to the following code snippet:

import numpy as np
import cv2
import matplotlib.pylab as plt

cap = cv2.VideoCapture(‘images/Vid 03 01.mp4")
foreground_background = cv2.createBackgroundSubtractorMOG2(
history=500, varThreshold=32,
detectShadows=False)
count =1
while True:
_, frame = cap.read()
if frame is None:
break
frame = frame.astype(np.uint8)
foreground_mask = foreground_background.apply(frame)\
.astype(np.uint8)
if count in [50, 100, 170]:
plt.subplot(121)
plt.imshow(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
plt.axis('off"), plt.title('Original image', size=20)
plt.subplot(122), plt.imshow(foreground_mask), plt.axis('off")

plt.title('Motion-based Segmentation with MOG Background'
'‘Subtraction', size=20)
plt.suptitle('Frame: ' + str(count), size=30)
plt.tight_layout()
plt.show()
count +=1

cap.release()

If you run the preceding code snippet, you should obtain a
figure as follows:



Frame: 50
Mation-based Segmentation with MOG Background Subtraction

Driginal image

‘I-:ra me: 100

Criginal image Motion-based Segmentation with MOG Background Subtraction

Frame; 170

Matien-based Segmentation with MOG Background Subtraction

Figure 4.6: Foreground-background separation in video with opencv-python

Semantic segmentation with
DeepLabV3+ and ENet

Semantic segmentation is a computer vision task that aims to
classify each pixel in an image into predefined classes, such
as road, person, car, and so on. It is called semantic

because it assigns meaning (i.e., class labels) to every pixel
based on what object it represents. Unlike object detection,

which detects and localizes objects in an image, semantic



segmentation provides a more detailed understanding of the
scene by assigning a class label to every pixel. In this section,
you will learn how to use a couple of popular pre-trained
neural net models (namely XCepionNet and ENet) to
perform semantic segmentation of an image.

Using pretrained DeepLabV3+

XCeptionNet model with TensorFlow

DeepLabV3+ with XceptionNet is a semantic segmentation
model that combines the DeepLabV3+ architecture with the
XceptionNet backbone. This model is designed for pixel-level
segmentation tasks, where the goal is to classify each pixel in
an image into specific object classes. DeepLabV3+ is an
extension of the DeepLabV3 model, and the incorporation of
the XceptionNet backbone enhances its performance.

Here is a breakdown of the key components:

* DeepLabV3+ architecture: DeeplLabV3+ is an evolution
of the DeeplLab architecture developed by Google for
semantic segmentation tasks. It incorporates several key
features, including atrous (dilated) convolutions, Atrous
Spatial Pyramid Pooling (ASPP), and decoder modules.
These features help capture multi-scale contextual
information and improve the model’s ability to segment
objects in images.

 XceptionNet backbone: XCeptionNet is a deep neural
network architecture based on depth-wise separable
convolutions. It is known for its efficiency and has been
used as a backbone in various computer vision tasks. In
the context of DeepLabV3+, XceptionNet serves as the
feature extractor to capture hierarchical features from the
input image.

e Atrous convolution and ASPP: Atrous convolutions, also
known as dilated convolutions, are used in DeepLabV3+ to
capture multi-scale information without down-sampling the



spatial resolution. The ASPP module further enhances this
capability by using multiple atrous convolution rates in
parallel to capture information at different spatial scales.

 Decoder module: The decoder module in DeepLabV3+ is
responsible for refining the segmentation output. It up-
samples the features to the original image resolution and
combines them with features from earlier layers to
improve localization accuracy.

XceptionNet, short for Extreme Inception, is a deep neural
network architecture that was proposed by the creator of the
Keras deep learning library. XceptionNet is a deep
convolutional neural network (CNN) architecture that is
often used for computer vision and image processing tasks,
including semantic segmentation. The following figure shows
the schematic diagram (taken from the corresponding paper)
for the architecture of XCeptionNet:
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Figure 4.7: XceptionNet architecture
Source: https://arxiv.org/pdf/1610.02357.pdf

can be seen in Figure 4.7, here are the key components of

the XceptionNet architecture:

Entry flow: The network begins with a standard
convolutional layer followed by a series of convolutional
blocks. Each block consists of a depth-wise separable
convolution, batch normalization, and a Rectified
Linear Unit (ReLU) activation. The entry flow is
responsible for capturing low-level features.

Middle flow: The middle flow is composed of several
identical residual blocks. Each residual block consists of
three separable convolutional layers. The middle flow
helps the network capture more complex features by
stacking these residual blocks.


https://arxiv.org/pdf/1610.02357.pdf

« Exit flow: The exit flow is responsible for producing the
final output of the network. It consists of a combination of
separable convolutional layers, global average pooling,
fully connected layers, and a softmax activation for
classification, in case of image classification tasks. The
global average pooling is used to reduce spatial
dimensions and create a fixed-size representation
regardless of the input size.

 Depthwise separable convolutions: The core building

block of XceptionNet is the depth-wise separable
convolution. Unlike traditional convolutions that operate
on all input channels at once, depth-wise separable
convolutions perform spatial convolutions independently
for each input channel, followed by a 1x1 pointwise
convolution to mix information between channels. This
factorization reduces the number of parameters and
computations, making the network more efficient.

 Skip connections: XceptionNet uses skip connections
(residual connections) in both entry flow and middle flow.
These connections help mitigate the vanishing gradient
problem (which occurs when gradients become too small
during backpropagation, causing neural networks to
learn very slowly or stop learning altogether), allowing for
easier training of very deep networks.
The XceptionNet architecture is known for its efficiency and
strong performance on various computer vision tasks. It has
fewer parameters compared to traditional architectures such
as InceptionV3 while achieving competitive or even superior
results. The depthwise separable convolutions contribute to
the model’s ability to capture hierarchical features efficiently,
making it well-suited for tasks such as image classification,
object detection, and semantic segmentation.

Here we shall use a pretrained DeepLabV3+ model with
XceptionNet backbone (already trained on the cityscapes
dataset) to perform semantic segmentation of an input



image of a road with traffics.

Cityscapes is a widely used dataset for semantic
understanding of urban street scenes. It is specifically
designed for training and evaluating computer vision models,
especially those aimed at tasks like semantic segmentation
and object detection in urban environments.

Here are key details about the Cityscapes dataset:

e Content: The dataset consists of high-quality images
captured in various cities, and each image is densely
annotated for pixel-level semantic segmentation. This
means that each pixel in an image is labeled with a specific
class, indicating whether it belongs to a road, sidewalk,
building, person, car, and so on.

 Labels: Cityscapes provides fine-grained annotations with
20-30 different classes, covering a wide range of urban
scene elements. Some of the classes include road,
sidewalk, building, person, car, bus, traffic light, and
vegetation, among others. Each pixel in the images is
assigned one of these class labels.

« Image types: The dataset includes a variety of image
types, such as high-resolution images, stereo images, and
images captured in different weather conditions (for
example, sunny, rainy). This diversity is valuable for
training models that can generalize well to different urban
scenarios.

« Usage for training: Researchers and practitioners use
the Cityscapes dataset to train and evaluate semantic
segmentation models. Training involves feeding the images
and corresponding pixel-level annotations into a deep
learning model (such as ENet, U-Net, or DeepLab) to
learn the mapping between pixels and semantic classes.
The trained model can then be used to predict semantic
segmentation masks for new images.

« Benchmarking: Cityscapes is also commonly used as a



benchmark for evaluating the performance of different
computer vision models. Researchers can compare the
accuracy of their models on the Cityscapes test set, which
consists of images not seen during training.
Let us now learn how to apply semantic segmentation to an
image, using a pretrained model. Here are the steps you need
to follow:

1. Load all the required libraries along with tensorflow.
Note that we need tensorflow version 1 here (even though
we have version 2 installed). Hence, use tf.compat.vl to
maintain compatibility.

2. Define the functions label to _color_image() to convert a
label to a «color wusing a colormap, and
visualize segmentation() to display an input image,
along with the segmentation map passed as arguments, as
shown in the following code snippet. Define the
label names corresponding to the labels output (map the
label ids to class names) by the semantic segmentation
model.

from PIL import Image

import cv2

import numpy as np

import matplotlib.pylab as plt
from matplotlib import gridspec
import tensorflow

tensorflow. version

import tensorflow.compat.vl as tf
from tensorflow.io.gfile import GFile

def label to_color image(label):

if label.ndim != 2:
raise ValueError(‘Expected 2-D input label')

colormap = np.array([
[128, 64, 128],
[244, 35, 232],
[ 70, 70, 70],
[102, 102, 156],
[190, 153, 153],
[153, 153, 153],




[250, 170, 301,
[220, 220, O],
[107, 142, 35],
[152, 251, 152],
[ 70, 130, 180],

[220, 20, 60],

[255, 0O, 0],

[ O, O,142],

[ 0, 0, 70],

[ 0, 60, 100],

[ 0, 80,100],

[ 0, 0,230],

[119, 11, 32],

[ 0O, 0, 0]], dtype=np.uint8)

if np.max(label) >= len(colormap):
raise ValueError('label value too large.')

return colormapl[label]

label names = np.asarray([
'road’, 'sidewalk’, 'building’, 'wall’, 'fence’, 'pole’,
'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky’,
‘person’, 'rider’, 'car’, 'truck’, 'bus’, 'train’, 'motorcycle’,
‘bicycle’, ‘'void'])

full label map = np.arange(len(label_names))\
.reshape(len(label_names), 1)
full_color_map = label _to_color_image(full_label map)

def visualize segmentation(image, seg_map):
plt.figure(figsize=(20, 15))
plt.subplots_adjust(left=0, right=1, bottom=0, top=0.95, \
wspace=0.05, hspace=0.05)
plt.subplot(221), plt.imshow(image), plt.axis('off")
plt.title('input image', size=20)
plt.subplot(222)
seg_image = label to_color_image(seg_map).astype(np.uint8)
plt.imshow(seg_image), plt.axis('off")
plt.title('segmentation map', size=20)
plt.subplot(223), plt.imshow(image)
plt.imshow(seg_image, alpha=0.7)
plt.axis(‘off"), plt.title('segmentation overlay', size=20)
unique_labels = np.unique(seg_map)
ax = plt.subplot(224)
plt.imshow (full_color_map[unique_labels].astype(np.uint8), \
interpolation="nearest')
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), label names[unique_labels])
plt.xticks([], [1)



ax.tick_params(width=0.0, labelsize=20), plt.grid('off")
plt.show()

3. Load the pretrained XceptionNet model: Load pre-
trained XceptionNet model (trained on the cityscapes
dataset). You can download the compressed model from
the link
http://download.tensorflow.org/models/deeplabv3_city
scapes_train 2018 02 06.tar.gz. Unzip the compressed
file and place the file frozen_inference graph.pb inside
the models folder.

4. Define a function run_semantic_segmentation() that
takes two parameters: image (input image) and
model path (path to a pre-trained model). This function
will perform semantic segmentation on an input image
using the pre-trained model (it accepts model path as an
argument, which will be the path to the frozen inference
graph).

5. Load the tensorflow graph: Create a new tensorflow
graph and load the pre-trained model into the graph using
the provided model _path. The model file is assumed to be
in a binary format, and its content is read into graph_def.
Check if the graph was successfully loaded. If not, raise a
RuntimeError() indicating that the inference graph could
not be found in the provided tar archive.

6. Import graph into a tensorflow session and set this graph
as the default graph within the context, i.e., Create a
tensorflow session (with tf.Session()) using the loaded
graph.

7. Obtain the width and height of the input image. Resize the
image to the specified target_size (2049, 1025) using the
nearest-neighbor interpolation.

8. Run semantic segmentation inference on the
preprocessed image. The output is stored in
batch_seg _map. The output tensor name is assumed to be


http://download.tensorflow.org/models/deeplabv3_cityscapes_train_2018_02_06.tar.gz

SemanticPredictions:0, and the input tensor name is
ImageTensor:0.

9. Post-process segmentation map: Extract the
segmentation map from the batch output. If the
segmentation map has only two dimensions, add an extra
dimension for later resizing. Resize the segmentation map
back to the original image size using the nearest-neighbor
interpolation. Return the final segmentation map, as
demonstrated in the following code snippet.

10. Visualize the segmentation map along with the overlayed
segmentation, using the function
visualize segmentation(). It also displays the labels as
legend. If you run the next code snippet, you will obtain a
figure like the one shown in Figure 4.8:

def run_semantic_segmentation(image, model_path):

graph = tf.Graph()

graph_def = None

with GFile(model path, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())

if graph_def is None:
raise RuntimeError(‘Cannot find inference graph.')

with graph.as_default():
tf.import_graph_def(graph_def, name="")

sess = tf.Session(graph=graph)

width, height = image.size
target_size = (2049,1025)
resized_image = image.convert('RGB').resize(target_size, \
Image.ANTIALIAS)
batch_seg map = sess.run('SemanticPredictions:0’,
feed_dict={'ImageTensor:0": [np.asarray(resized_image)]})
seg _map = batch_seg map[0]
if len(seg_map.shape) ==
seg_map = np.expand_dims(seg_map,-1)
seg_map = cv2.resize(seg_map, (width,height), \
interpolation=cv2.INTER_NEAREST)
return seg_map

model = 'models/frozen_inference graph.pb'
image = 'images/road.png’
image = Image.open(image)

seg_map = run_semantic_segmentation(image, model)




|visualize_segmentation(image, seg_map)

If you run the preceding code snippet, you should obtain a
figure as follows:

Figure 4.8: Semantic segmentation with DeepLabV3+/XceptionNet

With opencv-python and pretrained

Caffe ENet model

The Efficient Neural Network (ENet) model is a lightweight
and efficient neural network architecture designed for
semantic segmentation. ENet was developed with a focus on
achieving real-time performance with high accuracy, making
it suitable for applications such as autonomous vehicles,
robotics, and augmented reality. Here are some key features
and aspects of ENet:

e Architecture: ENet is a CNN architecture that utilizes a

combination of different layers, including convolutional
layers, pooling layers, and skip connections. It has a

symmetric encoder-decoder structure.

 Efficiency: One of the main goals of ENet is to be
computationally efficient while maintaining good



segmentation performance. It achieves this through
various design choices, such as factorized convolutions,
which decompose standard convolutions into a series of
smaller convolutions to reduce computational complexity.
The model is known for its speed and effectiveness in
semantic segmentation tasks while having a relatively
small number of parameters compared to some other deep
neural networks.

e Skip connections: ENet employs skip connections
between the encoder and decoder parts of the network.
These connections help preserve spatial information and
enable the network to capture both local and global
context.

* PReLU activation: Parametric Rectified Linear Unit
(PReLU) activations are used in ENet, which can help the
model learn better representations by allowing negative
values during training.

e Spatial dropout: ENet uses a spatial dropout technique,
which involves randomly dropping entire channels of
feature maps during training. This helps prevent
overfitting and improves the robustness of the model.

e Multi-scale processing: ENet processes the input at
multiple scales, capturing both fine and coarse details in
the image. This is achieved through parallel processing at
different resolutions.

Once trained, ENet can be used for real-time semantic

segmentation of images or video frames, providing a pixel-
wise classification of the visual content. Refer to the following

figure:



ENet Architecture
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Figure 4.9: ENet architecture
Source: https://sh-tsang.medium.com/reading-enet-real-time-semantic-
segmentation-semantic-segmentation-41f26b85468

To use a pretrained ENet model (trained on the cityscapes
dataset) for semantic segmentation using opencv-python,
follow these steps:

1. As usual, start by importing the necessary
libraries/packages.

2. Download the pretrained ENet model (enet-model.net),
cityscape class names (enet-classes.txt) and the RGB
color values for the classes (enet-colors.txt) from the
following link: https://github.com/simogasp/opencv-
semantic-segmentation/tree/master/enet-cityscapes
and save them in the models folder.

3. Load the class label names and label colors as follows:

# import the necessary packages

import numpy as np

import imutils

import time

import cv2

import matplotlib.pylab as plt

classes = open('images/enet-classes.txt').read().strip().split("\n")



https://sh-tsang.medium.com/reading-enet-real-time-semantic-segmentation-semantic-segmentation-41f26b85468
https://github.com/simogasp/opencv-semantic-segmentation/tree/master/enet-cityscapes

colors = open('images/enet-colors.txt').read().strip().split("\n")
colors = [np.array(c.split(",")).astype("int") for c in colors]
colors = np.array(colors, dtype="uint8")

4. Initialize the legend visualization. Loop over the class
names and colors, draw the class name + color on the
legend, using the following code snippet:

legend = np.zeros(((len(classes) * 25) + 25, 300, 3), dtype="uint8")
for (i, (className, color)) in enumerate(zip(classes, colors)):
color = [int(c) for c in color]
cv2.putText(legend, className, (5, (i * 25) + 17),
cv2.FONT HERSHEY SIMPLEX, 0.5, (0, 0, 255), 2)
cv2.rectangle(legend, (100, (i * 25)), (300, (i * 25) + 25),
tuple(color), -1)

5. Load the serialized model from disk, with the function
cv2.dnn.readNet().

6. Load the input image, resize it, and construct a blob from
it, using the function cv2.dnn.blobFromImage(). This
function will be used to preprocess an image before
feeding it into a deep neural network (DNN) for running
semantic segmentation. The function takes the input image
and performs necessary transformations to create a 4-
dimensional blob that can be used as input to the neural
network.

a. The function cv2.dnn.blobFromImage() accepts the
following arguments:

i. The input image to be segmented.

ii. The scalefactor, used to scale the pixel values. Here
we have used 1/255 to have pixel values in the range
[0,1].

iii. The spatial size to which the input image should be
resized (keep in mind that the original input image
dimensions ENet was trained on was 1024x512, and
that is why we need to resize the input image.)

iv. swapRB: OpenCV loads images in BGR order.
While many pre-trained neural networks expect input



images in RGB order, we need to set swapRB=True
to automatically swap the channels.

v. crop indicates whether to crop the image after
resizing.
7. Set the image as input to the model and perform a
forward pass on the ENet neural network model, using
the function net.forward() and obtain the output.

8. Infer the total number of classes along with the spatial

dimensions of the mask image via the shape of the output
array.

9. Our output class ID map will be num classes x height x
width in size. So, let us use the argmax() function to find
the class label with the largest probability for each and
every (x,y)-coordinate in the image.

10. Given the class ID map, let us map each of the class IDs
to its corresponding color.

11. Resize the mask and class map such that its dimensions
match the original size of the input image.

12. Compute a weighted combination of the input image
with the segmentation mask to obtain an overlay image, as
shown in the following code snippet:

net = cv2.dnn.readNet(‘models/enet-model.net")

image = cv2.imread('images/traffic.jpg")

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

image = imutils.resize(image, width=500)

blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (1024, 512), 0, \
swapRB=True, crop=False)

net.setInput(blob)
start = time.time()
output = net.forward()
end = time.time()

(numClasses, height, width) = output.shape[1:4]
classMap = np.argmax(output[0], axis=0)
mask = colors[classMap]

mask = cv2.resize(mask, (image.shape[1], image.shape[0]), \
interpolation=cv2.INTER_NEAREST)
classMap = cv2.resize(classMap, (image.shape[1], image.shape[0]), \




interpolation=cv2.INTER_NEAREST)
output = ((0.4 * image) + (0.6 * mask)).astype("uint8")

13. Finally, visualize the overlayed image along with the
segmentation mask output and the input image. Display
the class names as legends, as shown in the following
code snippet. You should obtain a figure as shown in
Figure 4.10.

plt.figure(figsize=(20,25))

plt.subplot(311), plt.imshow(image), plt.axis('off")
plt.title('Original Image’, size=20)
plt.subplot(312), plt.imshow(output), plt.axis('off")
plt.title('Segmented Image’, size=20)
plt.subplot(313), plt.imshow(legend), plt.axis('off")
plt.title('legends’, size=20)

plt.tight_layout()

plt.show()

If you run the preceding code snippet, you should obtain a
figure like the next one:
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Figure 4.10: Semantic segmentation with pretrained ENet model (Caffe)



Panoptic segmentation with the deep
learning model Detectron2

Panoptic segmentation is an image processing/computer
vision task that combines instance segmentation and semantic
segmentation. In panoptic segmentation, the goal is to assign
a unique label to each pixel in an image, differentiating
between stuff (such as, roads, sky) and things (for example,
objects, people). This task unifies the outputs of semantic and
instance  segmentation, providing a  comprehensive
understanding of the scene. Let us first try to understand the
differences between different types of deep-learning-based
segmentation models we can have:

e Semantic segmentation: The goal of semantic
segmentation is to classify each pixel in an image into
predefined classes or categories without distinguishing
between different instances of the same class. The output
is a pixel-wise labeling map, where each pixel is assigned a
class label (for example, road, car, person).

« Instance segmentation: The goal of instance
segmentation is to identify and distinguish individual
instances of objects within the same class. It involves not
only classifying pixels but also assigning a wunique
identifier to each instance of an object. The output
includes both the pixel-wise class labels and instance-
specific masks, which differentiate between different
instances of the same class.

« Panoptic segmentation: As mentioned previously,
panoptic segmentation is a combination of semantic and
instance segmentation. It aims to provide a unified
understanding of an image by assigning a unique label to
each pixel, differentiating between stuff (for example,
background, roads) and things (such as, objects, people).
The output consists of both semantic segmentation masks
for stuff classes as well as instance segmentation masks



for things classes. It unifies the outputs of semantic and
instance segmentation into a single map.

In this problem, you will learn how to implement panoptic
segmentation using the library detectron2, which is a
popular open-source deep learning library developed by
Facebook AI Research (FAIR) for object detection and
instance segmentation tasks. While Detectron2 is primarily
designed for instance segmentation (and you will use the
pretrained models for instance segmentation in the exercise),
you can use it for panoptic segmentation by combining its
instance segmentation outputs with a separate semantic
segmentation model.

Let us demonstrate how the library can be used to perform
panoptic segmentation. We will install the library (refer to the
following link:
https://github.com/facebookresearch/detectron2/blob/m

ain/INSTALL.md). Run the following code snippets with a
GPU / TPU (for example, on Google Colab) for faster
execution:

Ipython -m pip install 'git+https://github.com/facebookresearch/detectron2.git'

Import the library detectron2, along with the modules and
functions needed, using the following code snippet:

import detectron2
from detectron?2.utils.logger import setup_logger
setup_logger()

import torch

TORCH_VERSION = "." join(torch._ version__.split(".")[:2])
CUDA_VERSION = torch._version__.split("+")[-1]
print

import numpy as np
import matplotlib.pylab as plt
import os, json, cv2, random



https://github.com/facebookresearch/detectron2/blob/main/INSTALL.md

# import some common detectron2 utilities

from detectron2 import model zoo

from detectron2.engine import DefaultPredictor

from detectron2.config import get_cfg

from detectron2.utils.visualizer import Visualizer

from detectron2.data import MetadataCatalog, DatasetCatalog

Initialize the configuration, load the model weights for the
pretrained model and instantiate the  predictor
(DefaultPredictor), with the next few lines of code:

cfg = get_cfg()

cfg.merge_from file(model zoo.get config file(
"COCO-PanopticSegmentation/panoptic_fpn R 101 3x.yaml"))

cfg. MODEL.WEIGHTS = model_zoo.get_checkpoint_url(
"COCO-PanopticSegmentation/panoptic_fpn R 101_3x.yaml")

predictor = DefaultPredictor(cfg)

Read the input image (of cats and dogs), run inference by
invoking the function predictor() and use the Visualizer to
overlay the segmentation labels using the following code
snippet and plot the results obtained:

im = cv2.imread(cats_dogs.jpg')
panoptic_seg, segments_info = predictor(im)["panoptic_seg"]
v = Visualizer(im[:, :,::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),\
scale=0.9)
out = v.draw_panoptic_seg predictions(panoptic_seg.to("cpu"), \
segments_info)

im =im[;, :, ::-1]

out = out.get_image([:, :, ::-1]
plt.figure(figsize=(20,10))

plt.subplot(121), plt.imshow(im), plt.axis('off")
plt.title('input image', size=20)

plt.subplot(122), plt.imshow(out), plt.axis('off")
plt.title('"Panoptic Segmented + overlayed', size=20)
plt.tight_layout()

plt.show()

If you run the preceding code snippet, you should obtain a
figure as follows:
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Figure 4.11: Panoptic segmentation with Detectron2

Blurring and changing background in
image and video using DeepLabV3

DeepLabV3 is a deep learning model designed for semantic
image segmentation. In this section, we shall use this model to
implement background-blurring in an image (or video).
Background-blurring in video calls, such as Zoom meetings,
enhances privacy and reduces distractions by keeping the
focus on the speaker. Here is a general outline of how you can
approach this task:

Object segmentation: Use DeepLabV3 to perform
semantic segmentation on each frame of the video. This
will give you a mask indicating the different objects
present in the scene.

Identify background and foreground: Once you have
the segmentation masks, identify the regions
corresponding to the background and foreground. You may
need to set a threshold or use some post-processing
techniques to refine the masks.

Apply blurring: Apply a blur effect to the background
while keeping the foreground (person or main subject)
sharp. You can wuse traditional image processing
techniques or other deep learning models designed for
image manipulation.

e Combine frames: Combine the modified frames to create

the final video with the blurred background.



Let us now implement the preceding steps, import the
required libraries and modules to start with. Here we shall
use the library pytorch to load and predict using a pretrained
DeepLabV3 model.

import cv2

import numpy as np

import matplotlib.pyplot as plt
import torch

import torchvision

Now follow the next steps, as shown in the following code
snippet:
1. The function load model() can be used to load the

pretrained DeepLabV3 model with a ResNetl1l01
backbone (download it in your local machine from the

pytorch model hub for the first time, using the function

torch.hub.load()).

2. The function get pred() can be used to obtain the
semantically segmented output image, using the following
steps:

a. First check if the GPU is available
torch.cuda.is_available(). If yes, use it for much faster
execution.

b. Apply the standard preprocessing transforms (using the
function torchvision.transforms.Normalize()) that
need to be done before running inference.

c. Run the model with the preprocessed input image to
obtain the segmentation labels and return the labels.

def load_model():
device = "cuda" if torch.cuda.is_available() else "cpu"
model = torch.hub.load('pytorch/vision:v0.6.0", \
‘deeplabv3 resnet101’, pretrained=True)
model.to(device).eval()
return model

def get_pred(img, model):
device = "cuda" if torch.cuda.is_available() else "cpu"
imagenet_stats = [[0.485,0.456,0.406], [0.485,0.456,0.406]]

preprocess = torchvision.transforms.Compose( \




[torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean = imagenet_stats[0],
std = imagenet_stats[1])])
input_tensor = preprocess(img).unsqueeze(0)
input_tensor = input_tensor.to(device)
with torch.no_grad():
output = model(input_tensor)["out"][0]
output = output.argmax(0)

return output.cpu().numpy()

Now let us follow the steps listed, as shown in the next code
snippet:

1. Load the pretrained DeepLabV3 model to memory using
the function load_model().

2. Read (with cv2.imread()) the original input and the new
background image (to replace original image’s
background). Use cv2.cvtColor() function to convert from
BGR to RGB mode. If you want to apply the background
blur to a video, first extract the frames from the video and
for each frame image apply the following operations.

3. Obtain the segmented input image using the function
get_pred(). The specific labels and their meanings in the

segmented image depend on the dataset that the model
was trained on. In the case of DeeplLabV3, it is often

trained and evaluated on datasets such as PASCAL VOC
or COCO, which have predefined class labels.

4. The PASCAL VOC dataset has 20 categories, in which our
categories of interest are:

a. 0: Background
b. 15: Person

Hence, wherever the class person is predicted, the label
returned will be 15.

5. Create a binary mask for the background pixels and select
the background with the mask.

6. Define a kernel size (for example, 15x15, as shown in the
next code snippet) for opencv-python’s Gaussian blur



(using the function cv2.GaussianBlur()).

7. Apply the Gaussian blur to the background pixels and
obtain the image with the blurred background.
Subsequently repeat the mask across RGB channels.

8. In order to change the background, crate a binary mask
again, select all the pixels from the input except the ones
identified as person (that is, has label 15). Resize the new
background image to the input image (frame) size.
Replace the background pixels from the input image with
the corresponding ones from the background image, using
the mask, as shown in the next code snippet.

9. Plot the input image, segmentation mask, the
background-blurred image and the image with the
background replaced, using the next code snippet:

model = load_model()

orig = cv2.cvtColor(cv2.imread('images/me.png'), \
cv2.COLOR_BGR2RGB)

frame = orig.copy()

width, height, channels = frame.shape

bg_image = cv2.imread('images/beach.jpg’)
bg_image = cv2.cvtColor(bg_image, cv2.COLOR_BGR2RGB)

labels = get_pred(frame, model)
mask = labels ==

mask = np.repeat(mask[:, :, np.newaxis], channels, axis = 2)
blur value = (51, 51)

blur = cv2.GaussianBlur(frame, blur value, 0)
frame[mask] = blur[mask]

mask = labels == 15

mask = np.repeat(mask[:, :, np.newaxis], 3, axis = 2)
bg = cv2.resize(bg_image, (height, width))

bg[mask] = frame[mask]

out_frame = bhg

plt.figure(figsize=(15,15))
plt.subplots_adjust(0,0,1,0.95,0.05,0.05)
plt.subplot(221), plt.imshow(orig), plt.axis('off")
plt.title(‘original’, size=20)

plt.subplot(223), plt.imshow(frame), plt.axis('off")




plt.title('blurred background’, size=20)

plt.subplot(222), plt.imshow(labels, cmap='gray'), plt.axis('off")
plt.title('mask (from DeeplLabV3)', size=20)

plt.subplot(224), plt.imshow(out_frame), plt.axis('off")
plt.title('changed background', size=20)

plt.show()

If you run the preceding code snippet, you should obtain a
figure as follows:
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Figure 4.12: Automatically changing background with DeepLabV3+

Outlier detection using autoencoder
with H20



As we have seen in the earlier chapters, autoencoder is a
type of artificial neural network used for unsupervised
learning. It is often designed to encode the input data into a
lower-dimensional representation and then reconstruct the
input data from this representation. The network is divided
into an encoder and a decoder:

* Encoder: This part of the network compresses the input
data into a lower-dimensional representation, often
referred to as the encoding or latent space.

 Decoder: This part of the network reconstructs the input
data from the encoded representation. The goal is to
generate an output that closely matches the input.

e The autoencoder is trained to minimize the difference
between the input and the reconstructed output.

« Anomalous image detection using autoencoders involves
training the neural network to learn a compressed
representation of the normal images and then using it to
reconstruct new data. The intuition is that the autoencoder
is effective at reconstructing normal patterns but will
struggle to accurately reconstruct anomalous patterns.
Therefore, anomalies will have higher reconstruction
errors. Anomalies can be detected by measuring the
difference between the input and the reconstructed
output.

In this problem, we shall use the Python library H20, which is
also an open-source machine learning platform. It supports
autoencoders for anomaly detection. Here is a general outline
of how you can perform anomalous image detection using
autoencoders with H20:

1. Make sure you have H20 installed in your Python

environment (if not, install it with pip).
2. Import h2o0, along with the other required packages. Start

an H20 cluster by running the following code (with
h2o0.init()):



import numpy as np

import matplotlib.pylab as plt
import h2o

from h2o.estimators.deeplearning import H20AutoEncoderEstimator

h2o0.init()

3. Load the handwritten images (MNIST dataset) image
data (train and test partitions) into H20 (with
h2o.import_file() as shown in the next code snippet).
Each row in the dataset contains a 28x28 digit image
flattened to 784 dimensions. Get rid of the labels header
(with pop()) since we shall go unsupervised.

resp = 784

train = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-
data/bigdata/laptop/mnist/train.csv.gz")

test = h2o.import_file("https://s3.amazonaws.com/h2o0-public-test-
data/bigdata/ /mnist/test.csv.gz")

train.pop(resp)

test.pop(resp)

4. Define and train an autoencoder model using H20
(instantiate a H20AutoEncoderEstimator object).
Specify the encoding layer to have fewer neurons than the
input layer, forcing the model to learn a compressed
representation (for example, our model has the following
dimensions: 784 64 32 64 784, with the bottleneck layer
having dimensions). With the hidden parameter, you can
adjust the number of neurons.

5. Use the train() function to train the model on the training
images, for 25 epochs, for example, using the next code
snippet. Print the model MSE (Mean Squared Error for
image reconstruction, which measures the average
squared difference between original and reconstructed
image pixels, it is computed as shown:

1 3 _ 2
MSE = TN Z?:nl g:é(foriginat(x:}’)' frecnnstructed(xry))



Where M, N are image dimensions.

ae_model = H20AutoEncoderEstimator(activation="Tanh",

hidden=[64,32,64],

model id="ae model",

epochs=25,

ignore_const_cols=False,

reproducible=True,

seed=1234)
ae_model.train(list(range(resp)), training_frame=train)
ae_model.mse()

6. Use the trained autoencoder ae_model to reconstruct the
test images (using the predict() method) and measure the
reconstruction error. Sort the images in descending order
of reconstruction error since anomalies will have higher
reconstruction errors.

pred = ae_model.predict(test)

test_rec_error = ae_model.anomaly(test)
test_rec_error = test_rec_error.as_data_frame().values
test_rec_error = test_rec_error.ravel()

indices = np.argsort(test_rec_error)[::-1]

7. Finally, visualize top k (for example, k = 8) outliers, plot
the original images and their reconstructions to gain
insights into detected anomalies using the following code
snippet:

k=38
test_images = test.as_data_frame().values
pred_images = pred.as_data_frame().values
foriin range(k):
idx = indices[i]
k+=1
plt.figure(figsize=(10,7))
plt.gray()
plt.subplot(121), plt.imshow(test_images[idx].reshape(28,28))
plt.axis('off"), plt.title(‘original’, size=10)
plt.subplot(122), plt.imshow(pred_images[idx].reshape(28,28))
plt.axis(‘'off")
plt.title('reconstructed, loss:{:.03f}" \
format(test_rec_error[idx]), size=10)
plt.tight_layout()
plt.show()

You will get a figure as shown in the following Figure 4.13



displaying the top outliers:

Figure 4.13: Top outliers detected with the autoencoder (with high reconstruction
errors)

You can also visualize the images that are reconstructed
properly (have low outlier scores) as shown in Figure 4.14:

reonstiucied, oss:0.010

Figure 4.14: Images with less reconstruction error (low outlier scores) with the
autoencoder

Conclusion

This chapter provided a comprehensive overview of image
segmentation techniques, showcasing the application of both
traditional machine learning and advanced deep learning
approaches. Starting with fundamental methods, binary
classification with scikit-learn was used for human skin
segmentation, followed by connected component labeling with
scikit-image for isolating regions in images. Foreground-
background separation in videos was demonstrated using
GMM with opencv-python, highlighting temporal
segmentation.

Transitioning to deep learning, semantic segmentation was



explored using two powerful frameworks: TensorFlow with a
pretrained DeepLabV3+ XCeptionNet model and OpenCV-
python paired with a pretrained Caffe ENet model. Advanced
panoptic segmentation, which combines semantic and
instance segmentation, was implemented wusing the
Detectron2 framework. Practical applications were also
discussed, including blurring and changing backgrounds in
images and videos with DeepLabV3, and outlier detection (as
a preprocessing step in any image processing task) using
autoencoders with H20.

By combining theoretical insights with  practical
implementations, this chapter equipped readers with the tools
and techniques to apply both traditional and deep learning-
based segmentation methods to a variety of real-world
scenarios.

Key terms

Semantic segmentation, panoptic segmentation, outlier
detection, autoencoder, U-Net, XCeptionNet, DeepLabV3,
GMM

Questions

1. Use k-means clustering to group face images from
Labeled Faces in the Wild (LFW) face dataset (from
scikit-learn datasets). If the face dataset contains faces of
7 people, use k = 7 clusters for k-means. This time, you
need to treat each image as a vector and cluster them
based on their feature representations. The following
Figure 4.15 shows a few face samples from the face
dataset:



Sample face images from the LFW dataset
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Figure 4.15: Few face samples from the LFW dataset

Use different algorithms to initialize the centroids for k-
means (for example, set init argument of the function
sklearn.KMeans() to random, k-means++,
pca.components_ and so on) and observe how the metrics
evaluating the cluster-quality varies. You should obtain a
benchmarking result as shown in the following figure:

n_persons: 7, n_samples 1288, n_teatures 1858

init Ltine inertia hono conpl  v-meas ARI AMI silhouette
k-neans+= 2.38s 1615542 0.052 @.045 0.848 0.€31 e0.041 0.870]
random 1.365 1615251 6.849 ©.84) ©.846 0.029 9.038 0.276
PCA-based 0.155¢ 1618526 0.085¢ ©.842 0.847 0.828 0.039 0.866

Figure 4.16: Benchmarking results

Finally, use a dimension reduction technique (for example,
PCA) to visualize the clusters in 2D. You should obtain a
figure like Figure 4.17 (for example, plot the images at the
location given by the 2D coordinates corresponding to
their low dimensional representation):
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Figure 4.17: Visualizing clusters obtained with k-means in 2D with PCA

Compare the (unsupervised) cluster labels with the
ground-truths. How can we improve the quality of the
clusters?

2. Use SLIC and NCut algorithms to segment the same
apples and oranges image. However, this time, vary the
input parameters to the function
skimage.segmentation.slic() and observe the impact on the
segmented image. What values of the parameters will
produce the following segmented images? Refer to the
following figure:

Original image W SLIC veperpluslation

Figure 4.18: Segmentation with SLIC/NCut



3. Use scipy.ndimage to segment an image with connected
component labeling (hint: use the function label()).
Compute the area of the regions (for example, use the
function np.bincount()). Plot the regions obtained. For the
given original input image (as shown in the next figure),
you should obtain a figure as follows:
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Figure 4.19: Segmentation with connected component labelling with
scipy.ndimage

Now, use opencv-python’s implementation for the same

algorithm (for example, use the function
cv2.connectedComponentsWithStats()). Compare the
results obtained from a different library’s
implementations.

4. Training a U-Net model on self-driving cars dataset:
The U-Net architecture is a CNN designed for semantic
segmentation tasks in computer vision. It is characterized
by its U-shaped structure, which consists of a contracting
path (encoder) followed by an expansive path (decoder).
Build a U-Net architecture unet model (hint: understand
the building blocks and use the following code), by reusing
conv_block and upsampling block components, define with
keras functional API.

def unet_model(input_size=(96, 128, 3), n_filters=32, \
n_classes=23):

inputs = Input(input_size)



cblockl = conv_block(inputs, n_filters)
cblock2 = conv_block(cblock1[0], 2*n_filters)
cblock3 = conv_block(cblock2[0], 4*n_filters)
cblock4 = conv_block(cblock3[0], 8*n_filters, \
dropout_prob=0.3)
cblockb = conv_block(cblock4[0],16*n_filters, \
dropout_prob=0.3, max_pooling=None)

#expanding path
ublock6 = upsampling_block(cblock5[0], cblock4[1], \
8 * n_filters)

ublock7 = upsampling block(ublock6, cblock3[1], n_filters*4)
ublock8 = upsampling_block(ublock7,cblock2[1], n_filters*2)
ublock9 = upsampling_block(ublock8,cblock1[1], n_filters)
conv9 = Conv2D(n_filters,

3,

activation='relu’,

padding='same’,

kernel initializer='he normal') (ublock9)

convl0 = Conv2D(n_classes, kernel size=1, \
padding='same')(conv9)
model = tf.keras.Model(inputs=inputs, outputs=conv10)

return model

def conv_block(inputs=None, n_filters=32, dropout_prob=0, \
max_pooling=True):

conv = Conv2D(n_filters,
kernel size = 3,
activation='relu’,
padding='same’,
kernel initializer = \
tf.keras.initializers.HeNormal()) (inputs)

conv = Conv2D(n_filters,
kernel size = 3,
activation='relu’,
padding='same’, \
kernel initializer = \
tf.keras.initializers.HeNormal()) (conv)

if dropout_prob > 0:

conv = Dropout(dropout_prob)(conv)
if max_pooling:

next_layer = MaxPooling2D(pool_size=(2,2))(conv)
else:

next_layer = conv

skip_connection = conv



return next_layer, skip_connection

def upsampling_block(expansive_input, contractive_input, \
n_filters=32):

up = Conv2DTranspose(
n_filters,
kernel size = 3,
strides=(2,2),
padding='same') (expansive_input)
merge = concatenate([up, contractive_input], axis=3)
conv = Conv2D(n_filters,
kernel size = 3,
activation='relu’,
padding='same’, \
kernel initializer = \
tf.keras.initializers.HeNormal()) (merge)
conv = Conv2D(n_filters,
kernel size = 3,
activation='relu’,
padding='same’, \
kernel initializer = \
tf.keras.initializers.HeNormal()) (conv)

return conv

Use the CameraRGB dataset from lyft-udacity-
challenge (self-driving cars dataset) to train the U-Net
model (which contains training images along with
annotated ground-truth segmentation labels). Finally, run
inference on the model to segment the test images. You
should obtain better quality segmentation with higher
epochs, as shown for a few sample test images. Refer to
the following figure:



Semantic Segmentation with U-Net trained for 30 epochs
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semantic Segmentation with U-Net trained for 30 epochs
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Semantic Segmentation with U-Net trained for 30 epochs
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Figure 4.20: Semantic segmentation with U-Net

5. Use the Detectron2 pre-trained model to run instance
segmentation and compare instance vs. panoptic
segmentation using the input image used earlier. You
should obtain a figure like the following one:



Instance Segmentation

Figure 4.21: Instance segmentation with Detectron2

Now, train the model on a custom dataset and run
inference to obtain segmented output.

6. torch.hub is a centralized repository where you can find
and download pre-trained models without having to search
and download from various external sources. Use
DeepLabV3 ResNet50 pretrained model from torch.hub
(use the function torch.hub.load()) to perform semantic
segmentation for the same image to get the output
segmented image like Figure 4.21:



Semantic Segmentation with TorchHub Mask DeeplLabV3 ResNet50

nuerlaled mask

Figure 4.22: Semantic segmentation with DeepLabV3/ResNet50 from torch.hub

binary mask

Use Mask R-CNN ResNet50 pretrained model (use
torch.hub.load()) to perform instance segmentation for the
following image to get the output segmented image like
the following one:

Instance Segmentation with TorchHub Mask R-CNN ResNet50

Input binary mask overlayed mask

Figure 4.23: Instance segmentation with DeepLabV3/ResNet50 from torchhub
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CHAPTER 5

Image Feature Extraction and
Its Applications: Image
Registration

Introduction

Feature detection in image processing and computer vision involves
identifying key structures, such as points, edges, or regions, within
an image to extract relevant information for further analysis. This
process simplifies the image by reducing its high-dimensional, often
redundant, pixel data into a compact set of features, making it easier
for algorithms to process efficiently.

Feature detection is a foundational step in a variety of tasks,
including object recognition, 3D reconstruction, image registration,
and machine learning, where the extracted features are help improve
accuracy and reduce computational complexity. It plays a critical role
in many applications, such as robotics, autonomous navigation,
medical imaging, and scene understanding, by focusing on the most
important details within the visual data.

Feature extraction refers to the process of converting the input
image into a structured set of feature vectors. By carefully selecting
the right features, the goal is to capture the most relevant
information from the image needed for a specific task, such as image
matching, alignment, and registration—without relying on the full
image content. This reduced representation enables faster, more
robust, and scalable processing.



Structure

This chapter will cover the following topics:
* Different types of feature detectors and descriptors
* Corner detectors with opencv-python
* Image alignment/matching: Image registration

* Image color channel alignment using image registration with
pystackreg

* Deformable image registration with pyelastix
* Image registration with SimplelITK

* Deep deformable image registration with VoxelMorph with
tensorflow/keras

Objectives

In this chapter and the next one, we will explore how to extract the
most relevant features from images, specifically key points of interest
that carry significant visual information. Feature detection involves
identifying these keypoints, and once detected, a descriptor is
computed for each one of them. A local descriptor provides a
compact representation of the area surrounding a keypoint, focusing
on its shape and appearance in that specific region. Unlike global
descriptors, which provide feature representations that describe an
entire content of an image (as a single, unified vector or set of
values), the local descriptors are better suited for tasks like matching
due to their focus on localized details. We will learn how to compute
both feature detectors and descriptors, and explore the different
applications of these techniques in image processing. Additionally,
we will cover widely used feature detectors, including Harris
Corner, Scale-Invariant Feature Transform (SIFT), Histogram
of Oriented Gradients (HOG), and HAAR, and apply them to key
tasks like image matching, alignment, and object detection using
scikit-image and opencv-python (cv2) libraries in Python. Again,
taking a problem-oriented approach, the focus will be on
understanding the core concepts, algorithms, and their real-world
applications.



Different types of feature detectors and
descriptors

Before diving deeper, let us clarify the distinction between feature
detectors and feature descriptors, two foundational concepts that
will be referenced throughout this chapter:

* Feature detectors: Feature detection is the process of
identifying distinctive points or regions in an image that exhibit
unique characteristics. These points, often referred to as
keypoints, are selected based on their uniqueness and stability
under transformations like rotation, scaling, and changes in
viewpoint. A few popular feature detection methods include
corner detectors (for example, Harris Corner detector) and blob
detectors (such as, Difference of Gaussians (DoG)). The output
of feature detection is a set of keypoints that represent salient
points in the image.

* Feature descriptors: Feature description involves computing a
compact and distinctive representation for each detected
keypoint, typically based on the local image region surrounding
the keypoint. These descriptors encode information such as
texture, intensity, or gradient patterns, and are designed to be
distinctive, robust to variations in scale, orientation, and lighting.
A few popular feature description methods include Oriented
FAST and Rotated BRIEF (ORB), Binary Robust
Independent FElementary Features (BRIEF), Speeded-Up
Robust Features (SURF) and SIFT. The output of feature
description is a set of feature vectors or matrices corresponding
to the keypoints, capturing their local context.

In summary, feature detection is the process of finding keypoints in
an image, while feature description involves computing feature
vectors for these Kkeypoints. Together, feature detection and
description enable robust and efficient extraction of meaningful
information from images, which can be used for tasks such as image
matching, object recognition, and a wide range of other computer
vision applications.

Feature detectors and descriptors can be broadly be categorized into
two types, namely:

* Local feature detectors and descriptors: These methods focus



on extracting features from specific, distinctive regions of an
image. They are designed to be robust to geometric
transformations (e.g., rotation, scale, and changes in viewpoint).
They are often designed to find keypoints, such as corners or
blobs, where local image structures exhibit significant variations.
Examples include Harris Corner detector, Features from
Accelerated Segment Test (FAST), ORB and SURF. Once these
keypoints are located, local descriptors encode the surrounding
image information into compact, distinctive representations, often
using gradient or intensity-based statistics. Local features are
especially useful in scenarios involving partial occlusion, varying
viewpoints, change in illumination or non-uniform lighting—
making them ideal for applications like object tracking, matching,
and image registration.

Global feature descriptors: These descriptors aim to capture
information about the entire image, providing a holistic
representation of its contents. They consider the entire image and
encode information such as color histograms, texture statistics, or
deep feature embeddings. Examples include color histograms,
Generalized Search Trees (GiST), Bag of Visual Words
(BoVW), and global deep features extracted from pre-trained
neural networks. Global features are beneficial when the overall
content or scene context is more important than specific local
details. They are suitable for tasks such as image categorization,
scene recognition, and large-scale image retrieval.

In this chapter, we will focus primarily on local feature detectors
and descriptors, as they offer finer control and greater robustness
for many real-world image processing tasks, particularly those
involving image registration and matching. The following table
provides a comparative overview of the key local feature detectors
and descriptors discussed
advantages, limitations, and typical use cases to guide the selection
of appropriate methods for various image processing and computer

vision applications:

in this chapter,

highlighting their

Feature . . Typical
method Type Invariance Advantages Disadvantages usage
Harris Detector |Not scale or |Simple and Sensitive to Basic corner
Corner rotation fast; good for |rotation and detection,
invariant detecting scale changes; subpixel
corners in well- [not ideal for refinement




flf:ttl:l;g Type Invariance | Advantages |Disadvantages "l;ly;);;:;l
defined complex scenes
structures
Features Detector |Not scale or |Very fast; well- |May detect too Real-time
from affine suited for real- |[many corners; corner
Accelerated invariant time not rotation or detection,
Segment applications scale invariant SLAM
Test (FAST) (Simultaneous
Localization
and Mapping)
Scale- Detector |Invariantto |Robustand Computationally |Image
Invariant + scale, highly expensive; patent |matching,
Feature Descriptor | rotation, and |distinctive; restrictions (now |panorama
Transform partially good matching |expired) stitching, 3D
(SIFT) affine performance reconstruction
transforms
Speeded Up |Detector |Invariantto |Faster than Still relatively Object
Robust + scale and SIFT; robust to |slow; less recognition,
Features Descriptor | rotation noise and distinctive than |image
(SURF) transformations | SIFT registration
Oriented Detector |Invariantto |Very fast; open- |Not as robust as |Real-time
FAST and + rotation; source; SIFT/SUREF for applications,
Rotated Descriptor | partially to combines FAST |wide baseline mobile vision
BRIEF scale + BRIEF matching systems
(ORB)
Binary Descriptor | Not scale or |Compact binary | Requires Descriptor
Robust rotation descriptor; fast |rotation-invariant |[component in
Independent invariant matching detector; not ORB and
Elementary robust to others
Features scale/rotation
(BRIEF)
Histogram |Descriptor |Partial Excellent for Not rotation or Object
of Oriented invariance (to|detecting scale invariant; detection,
Gradients small objects like not a keypoint especially
(HOG) deformations |pedestrians detector humans
and
illumination)
HAAR Descriptor| Not invariant |Fast detection |Requires Face
features (used with |to using cascades; | extensive detection
cascades) |scale/rotation|good for faces [training; not (e.g., Viola-
general-purpose |Jones
algorithm)

Table 5.1: Comparative overview of the key local feature detectors
and descriptors




Corner detectors with opencv-python

In this section, you will learn how to detect corner features using two
classical algorithms, namely Harris Corner detector and Shi-
Tomasi Corner detector. These methods are foundational in
computer vision and widely used in applications such as image
registration, motion tracking, and object recognition.

Note: Both Harris and Shi-Tomasi corner detectors are not invariant to scale or
rotation. They perform best on images without significant scaling or rotation
transformations.

Harris Corner detector

The Harris Corner detector identifies regions in an image where
the intensity changes significantly in multiple directions. This
behavior is characteristic of corners, as opposed to edges or flat
regions where intensity change is unidirectional or minimal.

The algorithm examines how the intensity of pixel values changes
within a small window as it shifts across different locations in an
image. While edges exhibit sharp intensity changes in just one
direction, corners experience significant changes in intensity in
multiple directions. The algorithm calculates the intensity variation
for small shifts in different directions (denoted as u and v). This is
expressed as:

E(u,v)=z w(x,y) Ix+uy+v)—I(xy)

Xy o ot . . - . L
window function shifted intensity intensity

Where we have:
* I(x,y): Image intensity at point (x, y)
* w(x,vy): A window function (e.g., Gaussian) giving more weight to
central pixels
* u, v: Window shifts in x- and y-directions
At edges, this function increases significantly in only one direction.

At corners, E(u,v) increases in all directions, hence shifting the
window in any direction leads to a large intensity change, which is a



key characteristic exploited by the Harris Corner detector for
identifying corners with good localization with high precision.

Applying first order Taylor expansion, I(x +u,y + v) = I(x,y) + [,u + I,v
to the preceding equation and with a few algebraic steps, we obtain
the following:
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E(u,v) = [u v Z w(x,y) [
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Where the structure tensor matrix
I.I. I.I
oy xty Iyly

Here, I, and I, represent the partial derivatives of the image in the x-
and y-directions, respectively, and you can compute them with the
function cv2.Sobel()).

To determine the likelihood of a corner (i.e., whether a window
contains a Corner), compute the Harris response (a score R) as:

R = det(M) — Ji!c(trau:e(:'lff))2

Where we have:

e det(M) = 1,4,

o trace(M) = A, + A,

» 1; and A, are eigenvalues of the matrix M

* k is a tunable sensitivity parameter, typically 0.04 < k < 0.06
Interpretation:

The eigenvalue magnitudes are used as follows to determine whether
a region is a corner, an edge, or flat:

e If both A4, and A, are small, then |R|is small, and the region is flat.
» If one eigenvalue is large and the other small, e.g., if 4, > 4, or
Ay > 44, then R < 0, and the region is edge.

» If both A4; and A4, are large and 4; ~ 4,, then R is large, and the
region is a corner (as shown in Figure 5.1):
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Figure 5.1: Harris Corner detection using eigenvalues of M

The Harris Corner detection algorithm outputs a grayscale image
with the corner scores for each pixel. In order to obtain the corners
in the image, we need to apply thresholding on the output with a
suitable threshold value on the output scores.

Now, it is time for implementation. Let us start by importing the
required libraries:

import numpy as np
import cv2
import matplotlib.pylab as plt

With opencv-python (cv2), the Harris Corner points can be detected
using the cornerHarris() function, demonstrated in the next code
snippet. This function is a practical implementation of the Harris
corner detection algorithm and is used to identify points in an image
where the pixel intensity exhibits significant changes in multiple
directions—a characteristic trait of corners. The function accepts the
following arguments:

* img: Input image. It should be grayscale and float32 data type.
This format is essential because the algorithm involves
differentiation and matrix operations that require floating-point
precision.

* blockSize: It is the size of neighborhood (or window) around
each pixel that is considered for computing the covariance matrix
M (refer to the aforementioned equations). A typical value might
be 2 or 3. It determines how many surrounding pixels are used to
compute the gradient structure tensor. n.

» ksize: Aperture parameter of the Sobel operator, which is used to
compute the image gradients I, and Iy (the partial derivatives of



the image). A larger ksize results in a smoother gradient estimate
but may reduce sensitivity to fine details.
* k: This is the empirical constant used in the Harris response

equation.
The function returns a corner response image where each pixel
contains the corresponding corner score R.
To detect corners, a threshold is applied to this response image to
select the most prominent corners. For example, in the following
code snippet, imgl[dst > 0.075 * dst.max()] = [0, 255, 0]
highlights strong corners—those with a Harris response above 7.5%
of the maximum—Dby coloring them green in the original image:

orig_img = cv2.imread('images/cube.png")

img = orig_img.copy()

gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

gray = np.float32(gray)

dst = cv2.cornerHarris(gray,2,3,0.04)

# dilate to mark the corners

dst = cv2.dilate(dst,None)

# Threshold for an optimal value, it may vary depending on the image.
img[dst>0.075*dst.max()]=[0,255,0]

plt.figure(figsize=(10,8))

plt.imshow(cv2.cvtColor(img, cv2.COLOR BGR2RGB)), plt.axis('off")
plt.show()

If you run the preceding code snippet, you should obtain a figure as
follows:

Figure 5.2: Corners detected with Harris Corner detector

Corner with subpixel accuracy

The cv2.cornerSubPix() function refines detected corners to
achieve subpixel accuracy. Here is how it works in the following code
example:
1. First, we detect corners using the Harris method. Then, the
centroids of these corners are passed to the cornerSubPix()



function for further refinement. In the output, the original Harris
Corners are shown in red, while the refined, more accurate
corners are displayed in green.

2. To use this function, we must define criteria for stopping the
iteration: either after a specified number of iterations or when the
desired level of accuracy is reached. Additionally, the size of the
neighbourhood (for example, a 5x5 area) around each corner
must be specified, where the search for more accurate corner
positions will be conducted, as shown in the following code
snippet:

# find Harris Corners
orig_img = cv2.imread(‘images/rcube_cropped.png")
img = orig_img.copy()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
dst = cv2.cornerHarris(gray,2,3,0.04)
dst = cv2.dilate(dst, None)
ret, dst = cv2.threshold(dst,0.01*dst.max(),255,0)
dst = np.uint8(dst)
# find centroids
ret, labels, stats, centroids =\
cv2.connectedComponentsWithStats(dst)
# define the criteria to stop and refine the corners
criteria = (cv2.TERM_CRITERIA EPS + cv2.TERM_ CRITERIA MAX ITER, \
100, 0.001)
corners = cv2.cornerSubPix(gray,np.float32(centroids), (5,5), \
(-1,-1), criteria)
# Now draw them
res = np.hstack((centroids,corners))
res = np.int0(res)
img[res[:,1],res[:,0]1=[0,0,255]
img[np.minimum(res[:,3], img.shape[0]-1), np.minimum (res[:,2], \
img.shape[1]-1)] = [0,255,0]

plt.figure(figsize=(10,8))
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)), plt.axis('off")
plt.show()

If you run the preceding code snippet, you should obtain a figure as
follows:

Figure 5.3: Harris Corner detection with subpixel accuracy

Shi-Tomasi Corner detector
Shi and Tomasi introduced an improvement to the Harris Corner



detector in their paper Good Features to Track. Instead of using the
Harris Corner scoring function, they proposed a simpler criterion
(the minimum eigenvalue of the structure tensor matrix M):

R = min(il,i, Az)
If R exceeds a given threshold, the point is classified as a corner. In
this method, a point is considered a corner only if both eigenvalues (
A4 and A,) are above a minimum threshold 4,,,;,, as shown in the green
region of the plot in 4; — 4, space in the following figure:

A

Amin Y

Figure 5.4: Shi-Tomasi Corner detection with eigenvalue thresholding

This method tends to exclude edge points more effectively and
yields better feature quality for tracking. The OpenCV function
cv2.goodFeaturesToTrack() is used to detect the strongest N
corners in an image using either the Shi-Tomasi or Harris method
(specified by the Boolean flag useHarrisDetector). The input image
must be in grayscale.

Key parameters for this function include:

* Number of corners (maxCorners): Specifies how many corners
you want to detect (for example, 25).

* Quality level (qualityLevel): A value between 0 and 1 that sets
the minimum quality for a point to be considered a corner.
e Minimum distance (minDistance): The minimum Euclidean
distance between detected corners.
The function first filters out corners that fall below the specified
quality level. The remaining corners are then sorted in descending
order based on their quality. Starting with the strongest corner, the
function eliminates any nearby corners within the specified minimum
distance. Finally, it selects and returns the top maxCorners



strongest corners.
The next code snippet shows how to find best corners, both using
Shi-Tomasi and Harris Corner detectors:

plt.figure(figsize=(10,8))

for useHarrisDetector in [True, False]:
img = orig_img.copy()
corners = cv2.goodFeaturesToTrack(gray,25,0.01,10, \
useHarrisDetector = useHarrisDetector)
corners = np.intO(corners)
foriin corners:
x,y = i.ravel()
cv2.circle(img, (x,y),3,(0,0,255),-1)
plt.subplot(1,2,useHarrisDetector+1)
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)), plt.axis('off")
plt.title(f'useHarrisDetector={useHarrisDetector}', size=20)

plt.tight_layout()
plt.show()

If you run the preceding code snippet, you should obtain a figure as
follows:

useHarrisDetector=False useHarrisDetector=True

Figure 5.5: Shi-Tomasi vs. Harris Corner detection output with opencv-python

Image alignment/matching: Image
registration

The goal of image registration in image processing is to align a target
image with a source image by determining the spatial transformation
that maps points in one image to their corresponding points in the
other. This process, commonly referred to as alignment, involves
estimating the transformation, while applying this transformation to
warp the image is known as registration. There are three main
approaches to image alignment:

* Intensity based: Directly compares pixel values between images,
such as using mutual information.

* Segmentation based: Registers the binary segmentation of
objects within the images.



* Landmark (or feature) based: Identifies key points in both
images and computes a transformation that aligns corresponding
landmarks.

The transformations that we will estimate (to register the images)
may be any of the following types:

* Rigid (rotate, translate)

» Affine (rigid + scale and shear/skew)

* Deformable (free-form = affine + vector field)
Many other types of transformations are also possible.

In this section, we shall concentrate on intensity and feature-based
image registration techniques and their applications.

Feature or landmark based image

alignment

We shall now explore how to extract features using a few popular
feature detection (and descriptor extraction) algorithms, such as
Oriented FAST and Rotated BRIEF (ORB), Speeded-Up Robust
Features (SURF), and DIScrete Keypoints (DISK), and use them
to align one image with another. A key advantage of the detectors
like ORB, Binary Robust Invariant Scalable Keypoints (BRISK),
SURF, and SIFT (Scale-Invariant Feature Transform) is their
invariance to scale and rotation, meaning they can reliably detect
and match features even when the object appears at different sizes or
orientations across images. This robustness is crucial in real-world
computer vision applications such as Simultaneous Localization and
Mapping (SLAM), 3D reconstruction, and augmented reality.

With ORB features with opencv-python

ORB is a fusion of two efficient algorithms:

« FAST is used as the keypoint locator, identifying stable and
repeatable points in the image.

« BRIEF is used as the descriptor, providing a binary string that
characterizes the neighborhood around each keypoint. ORB
enhances BRIEF by adding orientation compensation and using a
learning-based approach to improve performance, making it both
fast and rotation-invariant.

In ORB, these two components work together as follows:



Component Role in ORB

Uses FAST to detect keypoints based on corner-like patterns, which

Locator . . . L
are robust under translation, rotation, and minor scale variations.

Uses an orientation-adjusted BRIEF descriptor (BRISK variant) to

Descriptor capture the visual context of the keypoint as a binary vector.

Table 5.2: Working of locator and descriptor

Here we shall demonstrate how to align a couple of (moving) images
with a reference (fixed) image of Tom & Jerry (using ORB features).
Let us start with the original image (as fixed reference image) and
create (simulate) a couple of moving images by applying perspective
and affine transformations, with the functions
cv2.warpPerspective() and cv2.warpAffine() respectively (along
with appropriate transformation matrices), to the fixed image and
subsequently saving them to disk, using the next code snippet. These
transformed images will later be aligned back to the reference image
using ORB features.

im1 = plt.imread(‘images/tom_jerry.jpg")

h, w, _ = im.shape

slope = np.tan(np.radians(30))

perspective_matrix = np.linalg.inv(np.array([[1, 0, 0], \
[-slope/3, 1, slope *h / 3], \
[-slope/w, 0, 1 + slope/2]]))

im2 = cv2.warpPerspective(im, perspective_matrix, (w,h))
plt.imsave('images/tom_jerry persp.jpg’, im2)

rot = np.array([[np.cos(0.5), -np.sin(0.5), 0],\
[np.sin(0.5), np.cos(0.5), 0], \
[0,0,11D

tr = np.array([[1,0, 50],[0, 1, -501], [0,0,11])

sc = np.array([[1.1,0, 01,0, 1.1, O], [0,0,11D)

affine_mat = np.linalg.inv(rot @ tr @ sc)
im3 = cv2.warpAffine(im, affine mat[:2,:], (w,h))
plt.imsave('images/tom_jerry_affine.jpg’, im3)

plt.figure(figsize=(15,7))

plt.imshow(np.hstack((im1, im2, im3))), plt.axis('off")
plt.title('original (fixed) and moving images (created with perspective
& affine transformation respectively)’, size=20)

plt.tight_layout()

plt.show()

If you run the preceding code snippet, you should obtain a figure as
follows:



Figure 5.6: Applying perspective and affine transformation to an image with opencv-python

The preceding figure (Figure 5.6) shows the original (fixed) and the
moving images created from it, the ones that are to be aligned with
fixed image using ORB features.

To align two images using feature-based methods, we follow a series
of systematic steps that involve detecting and matching distinctive
keypoints. Here, we demonstrate this process using the ORB
algorithm from opencv-python.

The steps in feature-based image alignment are as follows:

1. Load and preprocess images: Read the reference image (also
called the fixed or the template image) and the images we want
to align (also called the moving images) to this template. Convert
the images to grayscale, as feature detectors typically operate on
single-channel images.

2. Feature detection and description: Instantiate the ORB
detector using cv2.0RB create() with a maximum number of
features (for example., MAX FEATURES = 500). Then use
detectAndCompute() to find keypoints and compute descriptors
in both images.

3. Feature matching: Find the matching features (keypoints) in
between the images. First instantiate a matcher object using the
function cv2.DescriptorMatcher create() with
BRUTEFORCE_HAMMING metric. That is, use a brute-force
matcher with the hamming distance as a measure of similarity
between two feature descriptors. Then use the match() method
to compare the descriptors from moving and fixed images, to find
the best matches.

4. Filter matches: Subsequently sort the matches (keypoints) by
goodness of match and retain only a top percentage of the best
matches (for example, GOOD_MATCH_PERCENT ). This helps
reduce false matches and improves the robustness of alignment.

5. Visualize matches: Draw and display the good matches on the
images, using the function cv2.drawMatches(). The matched



features are shown in Figure 5.7 by drawing lines connecting
them, which visually confirms whether correct correspondences

were found.

6. Compute alignment using homography: Define the function
compute _alignment() to align a moving image to a fixed image,

using matched keypoints between them.

a. It first extracts matched keypoint coordinates from both
images and uses them to estimate the homography matrix with

cv2.findHomography() (with cv2.RANSAC
estimation robust to outliers).

to make the

b. Then it applies the transformation (warp) to the moving image

with the function cv2.warpPerspective().

Invoke this function to align the simulated images with the original

(fixed) image, as shown in the next code snippet:

MAX_FEATURES = 500
GOOD_MATCH_PERCENT = 0.15

im_ref = cv2.imread('images/tom_jerry .jpg')

iml = cv2.imread('images/ tom_jerry_persp.jpg")
im2 = cv2.imread('images/ tom_jerry_affine.jpg")

im_ref g = cv2.cvtColor(im_ref, cv2.COLOR_RGB2GRAY)
iml_g, im2_g = cv2.cvtColor(iml, cv2.COLOR_RGB2GRAY), \
cv2.cvtColor(im2, cv2.COLOR_RGB2GRAY)

orb = cv2.0RB_create(MAX FEATURES)

keypoints1, descriptors1l = orb.detectAndCompute(im1_g, None)
keypoints2, descriptors2 = orb.detectAndCompute(im2_g, None)
keypoints_ref, descriptors_ref = orb.detectAndCompute(im_ref g, None)

matcher = cv2.DescriptorMatcher create(\
cv2.DESCRIPTOR_MATCHER BRUTEFORCE_HAMMING)

matchesl = matcher.match(descriptorsl, descriptors_ref, None)

matches2 = matcher.match(descriptors2, descriptors_ref, None)

matches1.sort(key=lambda x: x.distance, reverse=False)
matches2.sort(key=lambda x: x.distance, reverse=False)

num_good_matches = int(len(matches1) * GOOD_MATCH_PERCENT)
matches]l = matchesl[:num_good_matches]
num_good_matches = int(len(matches2) * GOOD _MATCH_PERCENT)
matches2 = matches2[:num_good_matches]




plt.figure(figsize=(20,15))
im_matches = cv2.drawMatches(im1, keypoints1, im_ref, keypoints_ref, \
matchesl1, None)

plt.subplot(211)

plt.imshow(cv2.cvtColor(im_matches,cv2.COLOR BGR2RGB)), plt.axis('off")

plt.title('Original vs. Perspective-Transformed Image’', size=20)

im_matches = cv2.drawMatches(im2, keypoints2, im_ref, keypoints_ref, \
matches2, None)

plt.subplot(212)

plt.imshow(cv2.cvtColor(im_matches,cv2.COLOR_BGR2RGB)), plt.axis('off")

plt.title('Original vs. Affine-Transformed Image’', size=20)

plt.show()

def compute_alignment(matches, im, keypoints, keypoints_ref):
# Extract location of good matches
points = np.zeros((len(matches), 2), dtype=np.float32)
points_ref = np.zeros((len(matches), 2), dtype=np.float32)
for i, match in enumerate(matches):
points[i, :] = keypoints[match.queryldx].pt
points_ref[i, :] = keypoints_ref[match.trainIdx].pt
# Find homography
h, mask = cv2.findHomography(points, points_ref, cv2.RANSAC)
# Use homography
height, width, channels = im.shape
im_ref reg = cv2.warpPerspective(im, h, (width, height))
# Print estimated homography
print("\n Estimated homography : \n", h)
return im_ref reg

iml1_reg = compute_alignment(matches1, im1, keypoints1, keypoints_ref)
# Estimated homography:

# [[ 8.21788026e-01 1.61971819e-03 -2.40068712e+00]

# [-1.34251105e-01 8.00578888e-01 2.75024081e+01]

# [-1.52078398e-03 1.31085142e-05 1.00000000e+00]]

im2_reg = compute_alignment(matches2, im2, keypoints2, keypoints_ref)
# Estimated homography:

# [[ 9.83624364e-01 -5.34196484e-01 6.76430982e+01]

# [5.43767499e-01 9.74305147e-01 -2.11468782e+01]
#[1.15192040e-04 -3.90720842e-05 1.00000000e+00]]

plt.figure(figsize=(30,15))

plt.subplot(231), plt.imshow(cv2.cvtColor(im_ref, cv2.COLOR_BGR2RGB))
plt.axis('off"), plt.title('Original Image', size=20)

plt.subplot(232), plt.imshow(cv2.cvtColor(iml, cv2.COLOR BGR2RGB))
plt.axis('off"), plt.title('Image to be aligned', size=20)

plt.subplot(233), plt.imshow(cv2.cvtColor(im1_reg, cv2.COLOR_BGR2RGB))
plt.axis('off"), plt.title('Aligned Image’', size=20)

plt.subplot(234), plt.imshow(cv2.cvtColor(im_ref, cv2.COLOR_BGR2RGB))
plt.axis('off"), plt.title('Original Image', size=20)

plt.subplot(235), plt.imshow(cv2.cvtColor(im2, cv2.COLOR_BGR2RGB))
plt.axis('off"), plt.title('Image to be aligned', size=20)

plt.subplot(236), plt.imshow(cv2.cvtColor(im2_reg, cv2.COLOR_BGR2RGB))
plt.axis('off"), plt.title('Aligned Image’', size=20)

plt.show()

If you run the preceding code snippet, you should obtain a figure as




follows:

Original vs. Perspective-Transformed Image

Figure 5.7: Aligning images with ORB feature matching with opencv-python

The preceding figure shows how the simulated moving images are
aligned with a fixed image (of Tom & Jerry). It shows the fixed and
moving images, along with the matched ORB keypoints, and the

aligned output images obtained by applying the transformations with
the estimated homography matrices.



Note: We may have many incorrect matches (false positives) and hence we need to
use a robust method to calculate homography, for example, using the famous
algorithm Random Sample Consensus (RANSAC), it identifies inliers among
matched feature points by iteratively selecting random subsets and computing the
best-fitting transformation while rejecting outliers.

With ORB features using scikit-image

Now let us demonstrate image matching using the ORB features
again, but this time the detection and binary descriptor computation
algorithm comes from the feature module’s functions from the
library scikit-image (for example, the method
detect_and extract() from the class ORB and the function
match_descriptors(), as shown in the next code snippet, most of
which is self-explanatory). Compared to BRIEF features, ORB offers
better scale and rotation invariance and uses the Hamming distance
for efficient matching, making it a more suitable choice for real-time
applications.

import numpy as np

import matplotlib.pyplot as plt

from skimage.feature import (match_descriptors, ORB, plot_matches)
from skimage.io imread, imsave

from skimage.color import rgb2gray

im1 = imread(‘images/ tom_jerry .jpg")
im2 = imread('images/ tom_jerry persp.jpg')
im3 = imread('images/ tom_jerry_affine.jpg")

iml_g, im2_g, im3_g = rgb2gray(iml), rgb2gray(im2), rgb2gray(im3)
descriptor_extractor = ORB(n_keypoints=100)
descriptor_extractor.detect_and_extract(iml_g)
keypoints1, descriptors1l = descriptor_extractor.keypoints, \
descriptor_extractor.descriptors
descriptor_extractor.detect_and_extract(im2_g)
keypoints2, descriptors2 = descriptor _extractor.keypoints, \
descriptor_extractor.descriptors
matches12 = match descriptors(descriptorsl, descriptors2, \
cross_check=True)
descriptor_extractor.detect_and_extract(im3_g)
keypoints3, descriptors3 = descriptor_extractor.keypoints, \
descriptor_extractor.descriptors
matches13 = match_descriptors(descriptorsl, descriptors3, \
cross_check=True)

fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(20,10))

plt.gray()

plot_matches(axes[0], im1, im2, keypoints1, keypoints2, matches12)

axes[0].axis('off")

axes[0].set_title("Image matching with ORB features: Original Image vs. "
"Perspective-Transformed Image", size=20)




plot_matches(axes[1], im1, im3, keypoints1, keypoints2, matches13)

axes[1].axis('off")

axes[1].set_title("Image matching with ORB features: Original Image vs. "
"Affine-Transformed Image", size=20)

plt.show()

If you run the preceding code snippet, you should obtain a figure as
follows:

Image matching with ORB features: Original Image vs. Perspective-Transformed Image

Figure 5.8: Aligning images with ORB feature matching with scikit-image

With SURF features with opencv-python

The SURF algorithm is a widely used method for detecting and
describing local features in images. It is particularly effective due to
its scale and rotation invariance, making it suitable for robust
matching across different viewpoints. In OpenCV, the SURF features
can be extracted using the function
cv2.xfeatures2d.SURF create(), which requires OpenCV versions
prior to 3.4.2.17 or a custom-built version, as the algorithm is
patented and excluded from later versions.

The SURF create() includes several configurable parameters that
control the behavior and sensitivity of the detector:

* hessianThreshold: This threshold determines the minimum
value for the Hessian matrix at each keypoint location. A higher
value results in fewer keypoints being detected. Typical values
vary between 300 and 500 (depends on image contrast). In this
example, the threshold value used is 400.

* nOctaves: Specifies the number of octaves in the Gaussian

pyramid, controlling the scale of detected features. Increasing
this value detects larger scale features, while decreasing it



focuses on smaller ones (finer details). The default value is 4.

* nOctaveLayers: Determines how many intermediate images are
generated per octave in the pyramid. By default, it is set to 2.

* extended: A boolean that specifies whether to compute the basic
(64-element) or extended (128-element) descriptors. The default
is 0 (basic).

* upright: Another Boolean that decides whether to compute the
orientation of each feature. Setting this to 1 disables orientation
computation, which speeds up processing significantly, especially
for stereo matching or image stitching where similar orientations
can be assumed.

Keypoint detection and matching

The function detectAndCompute() can be used to locate keypoints
and generate their descriptors from a grayscale input image. Once
the descriptors are obtained, matching between feature sets can be
performed using cv2.BFMatcher(), which is a brute-force matcher
that compares the descriptors and finds the closest match for each
one. For improved accuracy, especially in filtering ambiguous
matches, knnMatch() retrieves the k-best matches, ordered by
increasing distance. This process enables the alignment of images
through homography estimation and transformation warping, just as
with other feature detection methods like ORB or SIFT.

The subsequent code demonstrates aligning two images of the
Konark Temple using SURF keypoints and descriptors. The next
code snippet illustrates the practical application of SURF in image
registration tasks, especially when handling scale and rotation
variations:

import numpy as np

import cv2

print(cv2. version )

from matplotlib import pyplot as plt

imgl = cv2.imread('images/konark_big.jpg")
img2 = cv2.imread('images/konark_small.jpg")

imgl_gray = cv2.cvtColor(imgl, cv2.COLOR_BGR2GRAY)
img2_gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

surf = cv2.xfeatures2d.SURF _create(400)




# find the keypoints and descriptors with SURF
kpl, desl = surf.detectAndCompute(imgl_gray,None)
kp2, des2 = surf.detectAndCompute(img2_gray,None)

# BFMatcher with default params
bf = cv2.BFMatcher()
matches = bf.knnMatch(desl,des2, k=2)

# Apply ratio test
good = []
for m,n in matches:
if m.distance < 0.75%*n.distance:
good.append([m])

# cv2.drawMatchesKnn expects list of lists as matches.
img3 = cv2.drawMatchesKnn(imgl,kpl,img2,kp2,good,None,flags=2)

plt.figure(figsize=(20,10))

plt.imshow(cv2.cvtColor(img3, cv2.COLOR_BGR2RGB)), plt.axis('off")
plt.title('Image matching with SURF features', size=20)

plt.show()

If you run the preceding code snippet, you should obtain a figure as
follows:

Image matching with SURF fealures

2 & S
o o b

Figure 5.9: Aligning images with SURF feature matching

With DISK features with kornia

DISK (DIScrete Keypoints) is a learned local feature extraction
method that jointly detects keypoints and computes descriptors using
a deep neural network, trained with a reinforcement learning
approach based on policy gradients. Unlike handcrafted methods
such as SIFT or ORB, DISK is trained end-to-end to maximize
downstream matching performance, making it highly effective and
robust across a variety of tasks such as image matching and
localization. The DISK pipeline operates as follows:

* Keypoint detection and description: A neural network predicts
keypoints and corresponding descriptors jointly from input
images. The keypoints are selected discretely through a learned



sampling policy, and descriptors are extracted from local patches.

* Reinforcement learning training: The network is trained using
policy gradients to directly optimize a reward based on successful
matching outcomes, rather than heuristics or surrogate losses.

* Robust matching: The descriptors and keypoints are optimized
for robustness and discriminative power, making them suitable
for challenging real-world image alignment scenarios.

In this section, we shall use the library kornia for DISK feature
extraction and matching. Let us first install korina with pip, if not
already installed. Import all the libraries required, including korina
and opencv-python. Run the following code on a GPU (for example,
Google Colab), for faster execution:

import cv2

import kornia as K

import kornia.feature as KF

import matplotlib.pyplot as plt

import numpy as np

import torch

from kornia.feature.adalam import AdalamFilter
from kornia_moons.viz import *

device = K.utils.get_cuda_or_mps_device_if available()
print(device)

Now, let us understand the following step-by-step python
implementation:
1. First load the images to be matched using
kornia.io.load_image() function.
2. Load a pretrained model (trained end-to-end with depth-map
supervision) using the function KF.DISK.from _pretrained().
3. Concatenate the input images and extract the DISK features, by
running a forward pass on the model (here we have used
num_features=2048 to detect a maximum of 2048 features).

4. Use the function laf from_center scale ori() to create kornia
local affine frame (LAF) from keypoint center, scale and
orientations. An LAF represents a local coordinate system
associated with an image region, particularly used for local
feature extraction and matching and it is defined by a center, a



scale, and an orientation. It provides a geometric description of a
local image patch, allowing for robust feature matching across
different images, scales, and orientations.

5. Finally, use the kornia.feature.match_adalam() function to
compute descriptor matching, and then apply Adaptive Locally-
Affine Matching (AdaLLAM) filtering. The AdaLAM algorithm is
an outlier rejection approach for local feature matching, designed
to efficiently filter out outliers in matches obtained from
descriptors. The parameters the function accepts are:

a. descl and desc2: Tensors, the image descriptors

b. lafs1 and lafs2: Tensors, corresponding LAFs

c. config (optional): Dictionary with AdaLAM config, defaults
to None

d. dm (optional): Holds the distances between each descriptor
in descl and every descriptor in desc2. If a distance matrix

(dm) is not supplied, the torch.cdist() function is used to
calculate it.
6. The function returns the distance between the matching

descriptors, along with the indices (here it finds tentative
matches, as shown in the next code snippet):

imgl = K.io.load_image("images/tom_jerry.jpg", \
K.io.Imagel.oadType.RGB32, device=device)[None, ...]

img2 = K.io.load_image("images/tom_jerry_affine.jpg", \
K.io.ImageLoadType.RGB32, device=device)[None, ...]

disk = KF.DISK.from_pretrained("depth").to(device)

hw1 = torch.tensor(imgl.shape[2:], device=device)
hw?2 = torch.tensor(img?2.shape[2:], device=device)

adalam_config = KF.adalam.get_adalam_default_config()
adalam_config["force seed mnn"] = False
adalam_config["search_expansion"] = 16
adalam_config["ransac_iters"] = 256

num_features = 2048

with torch.inference_mode():
inp = torch.cat([imgl, img2], dim=0)
featuresl1, features2 = disk(inp, num_features, \
pad_if not_divisible=True)
kpsl, descsl = featuresl.keypoints, featuresl.descriptors
kps2, descs2 = features2.keypoints, features2.descriptors
lafs1 = KF.laf from center scale ori(kps1[None], \
96 * torch.ones(1, len(kpsl), 1, 1, device=device))




lafs2 = KF.laf from_center scale_ori(kps2[None], \
96 * torch.ones(1, len(kps2), 1, 1, device=device))
dists, idxs = KF.match_adalam(descs1, descs2, lafs1, lafs2,
hwl = hwl, hw2 = hw2, config = adalam_config)

print(f"{idxs.shape[0]} tentative matches with DISK AdaLAM")

7. Use the function get matching keypoints() to extract the
matched keypoints using the indices returned.

8. Use the function cv2.findFundamentalMat() to find the inliers
from the matching points. It also computes the fundamental
matrix (which represents the intrinsic relationship between
corresponding points in two stereo images, encoding the
epipolar geometry that governs their correspondence) from
corresponding points in two images. The function takes several
input parameters, here are the important ones:

a. pointsl: Numpy array of points in the first image.

b. points2: Numpy array of corresponding points in the second
image.

c. method: algorithm used to compute the fundamental matrix,
available algorithms are:

i. cv2.FM_8POINT: Uses 8-point algorithm. This method
requires at least 8 corresponding points.

ii. cv2.FM_RANSAC: Uses RANSAC algorithm. This method
is more robust to outliers.

iii. cv2.USAC_MAGSAC: Uses M-estimator Randomized
Sample Consensus (MAGSAC) algorithm, an extension of
RANSAC that incorporates M-estimators, which are robust
estimators of the error distribution of the data. M-
estimators, in general, provide more robustness against
outliers than simple least squares methods.

d. ransacReprojThreshold: Reprojection threshold used in
RANSAC. This is the maximum allowed reprojection error to
treat a point-pair as inlier during the RANSAC algorithm.
Typical values: 0.5 to 3.0 (here we have used the value ,
change the value to see the impact on the matches obtained).

e. confidence: (Optional) Confidence level, between 0 and 1, for
the RANSAC algorithm (Default: 0.99 or 0.999). It is the



probability that the algorithm produces a useful result.
The function returns:
e F: The Fundamental matrix (3x3).
« Mask: The inlier mask, where 1 = inlier, 0 = outlier.

The inlier matches can be identified using the binary mask that
the function returns, with 1 indicating an inlier, and 0 otherwise
(outlier). As can be seen from the next code snippet, out of the
198 tentaive matches, only 71 were considered to be inliers.

Now, refer to the next code snippet:

def get_matching keypoints(kpl, kp2, idxs):
mkptsl = kp1[idxs[:, 0]]
mkpts2 = kp2[idxs[:, 1]]
return mkptsl, mkpts2

mkptsl, mkpts2 = get_matching keypoints(kps1, kps2, idxs)

Fm, inliers = cv2.findFundamentalMat( \
mkptsl.detach().cpu().numpy(), mkpts2.detach().cpu().numpy(), \
cv2.USAC_MAGSAC, 0.5, 0.999, 100000)

inliers = inliers > 0

print(f"{inliers.sum()} inliers with DISK")

9. Finally, draw the matches between the keypoints detected, using

the function draw_LAF matches(), as shown in the next code
snippet:

draw_LAF matches(
KF.laf from center scale_ori(kps1[None].cpu()),
KF.laf from center scale ori(kps2[None].cpu()),
idxs.cpu(),
K.tensor_to_image(imgl.cpu()),
K.tensor_to_image(img2.cpu()),
inliers,
draw_dict={"inlier color": (0.2, 1, 0.2),
"tentative color": (1, 1, 0.2, 0.3),
"feature color": None, "vertical": False},

)

If you run the preceding code snippet, you should obtain a figure as
follows:




Figure 5.10: Aligning images with DISK features with kornia

Image color channel alignment using image
registration with pystackreg

In this section, we shall explore how to align misaligned color
channel images using image registration, leveraging the library
pystackreg. As input, we shall use images from Prokudin-Gorskii
collection, where the red, green, and blue channels were captured
separately and often exhibit noticeable misalignment. Here the
library pystackreg will be used to align (register) green and blue
color channels of an RGB image to a common reference channel -
typically the red channel - using rigid (translational) transformations.
Here are the steps for color-channel alignment:

1. Install pystackreg, if not already installed with pip. Import the
required libraries and modules.

2. Read the RGB image of birds (with misaligned color channels)
using the function skimage.io.imread(). Split the RGB image
into its individual channels.

3. Assuming that the color channels are misaligned due to
translation only, let wus wuse translational transformation
(instantiate a StackReg object with translation type
StackReg. TRANSLATION, to apply translational alignment).

4. Use the method register transform() to align the color
channels. The first argument to be passed to it is the
fixed/reference image (here, the red channel) and the second
argument is the moving image (here, the green and blue
channels, respectively).

5. Merge the aligned (registered) green and blue channel with the



reference red channel to obtain the color-channel-aligned image,
crop the image (with skimage.util.crop() function, which
accepts a tuple argument representing how many pixels to crop
from the left and right sides for each axis of the input numpy
ndarray) to get rid of unpleasant borders (remove alignment
artifacts).

Refer to the following python code snippet:

from pystackreg import StackReg
from skimage import io
from skimage.util import crop

im = io.imread('images/birds.jpg")
r, g, b =iml[...,0], im[...,1], im[...,2]

# load reference and "moved" image

# Translational transformation

sr = StackReg(StackReg. TRANSLATION)
g_ = sr.register_transform(r, g)

b_ = sr.register_transform(r, b)

im_rec = im.copy()

im rec[...,1], im_rec[...,2] =g_, b_

im_rec = crop(im_rec, ((50, 50), (20, 20), (0,0)), copy=False)
plt.figure(figsize=(18,7))

plt.gray()

plt.imshow(np.hstack((r, g, g_, b, b_))), plt.axis('off")
plt.show()

plt.figure(figsize=(15,8))
plt.subplots_adjust(0,0,1,0.95,0.02,0.02)

plt.subplot(121), plt.imshow(im, aspect='auto'), plt.axis('off")
plt.title('original image', size=20)

plt.subplot(122), plt.imshow(im_rec, aspect='auto'), plt.axis('off")
plt.title('color-corrected image', size=20)

plt.show()

If you run the preceding code snippet, you should obtain a figure as
follows:
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Figure 5.11: Correcting an RGB image by aligning the color channels

The preceding Figure 5.11 shows the original image with color-
channel misalignment, the aligned green and blue channels, and the
cropped color- channel-aligned (color-corrected) output image. As
can be seen, the color channels are much better aligned now, and the
output image looks much less blurry that the original input.

Deformable image registration with
pyelastix

PyElastix is a Python wrapper (interface) for the Elastix non-rigid
image registration toolkit. It requires the Elastix command line to be
installed and accessible in your system’s environment, for proper
functionality. You can download Elastix from the following link:
https://github.com/SuperElastix/elastix/releases/tag/5.1.0.

(Choose the correct ZIP file, based on your operating system and
unzip it. Then, add the path to the executable to the environment
variable PATH by appending the path string os.environ["PATH"].
Next, install pyelastix with pip, if not already installed. In this
example, we shall use two palm images (one as the fixed/reference
image and the other as the moving image) and align the moving
image with the fixed one wusing nonrigid (deformable) image


https://github.com/SuperElastix/elastix/releases/tag/5.1.0

registration. Here are the steps:

1. Read the fixed (reference) and moving input images (with the
function imageio.imread()) and convert them to grayscale
images.

2. Use the function pyelastix.register() which accepts moving
image and fixed image as arguments, along with the argument
parameters. We shall use the default registration parameters
obtained using pyelastix.get _default params() and set the
NumberOfResolutions to 3 (to control multi-resolution
registration levels). The function returns the registered moving
image to fixed image, along with the displacement fields (in the x
and y directions).

3. Plot the input fixed and moving images (overlayed), output
registered image and displacement fields, as shown in the
following code snippet:

# ! pip install pyelastix

import pyelastix

import os

from skimage.color import rgh2gray
import imageio

import numpy as np

import matplotlib.pylab as plt

os.environ["PATH"] += os.pathsep + 'elastix-5.1.0-win64'

im_fixed = imageio.imread('images/hands1.jpg")
im_moving = imageio.imread(‘images/hands2.jpg")

im_fixed, im_moving = rgb2gray(im_fixed), rgb2gray(im_moving)

# Get default params and adjust
params = pyelastix.get_default_params()
params.NumberOfResolutions = 3
print(params)
# <10 parameters>
Metric: 'AdvancedMattesMutuallnformation'
NumberOfHistogramBins: 32
ImageSampler: 'RandomCoordinate'
NumberOfSpatialSamples: 2048
NewSamplesEverylteration: True
NumberOfResolutions: 3
Transform: 'BSplineTransform'
FinalGridSpacingInPhysicalUnits: 16
Optimizer: #'AdaptiveStochasticGradientDescent'
MaximumNumberOfiterations: 500
# Found elastix version: 4.900 in 'elastix.exe'
# Register!
im_reg, field = pyelastix.register(im_moving, im_fixed, params, \
verbose=0)
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# Visualize the result

fig = plt.figure(figsize=(15,8));

plt.gray()

plt.clf()

plt.subplot(231); plt.imshow(im fixed), plt.axis('off")
plt.title('fixed image', size=20)

plt.subplot(232); plt.imshow (im_moving), plt.axis('off")
plt.title('moving image', size=20)

plt.subplot(233); plt.imshow(im_reg), plt.axis('off")
plt.title('registered image', size=20)

plt.subplot(234)

plt.imshow(np.dstack((im_fixed, im_moving, im_reg)))
plt.axis('off"), plt.title('comparing fixed, moving, reg', size=20)
plt.subplot(235); plt.imshow(field[0]), plt.axis('off")
plt.title('field-X', size=20)

plt.subplot(236); plt.imshow(field[1]), plt.axis('off")
plt.title('field-Y', size=20)

plt.tight_layout()

plt.show()

If you run the preceding code snippet, you should obtain a figure as
follows:

fixed image maoving image
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Figure 5.12: Deformable image registration with pyelastix

registered imsge

Note: The function pyelastix.get default params() provides a dictionary of default
parameters tailored for nonrigid image registration using B-spline
transformations. These parameters are designed to offer a robust starting point
for general deformable registration tasks. We can customize various aspects of
the registration process, such as the optimizer, similarity metric, and
interpolation method, by modifying the returned dictionary. This flexibility allows
adaptation to specific registration needs, including applications involving
anatomical variability, such as aligning medical scans, or scenarios requiring
nonrigid alignment due to local deformations.

Image registration with SimplelTK

In this section, we shall use the library SimpleITK to perform non-



rigid registration. SimpleITK provides two flavors of non-rigid
registration:

* ITKv4-based registration framework: Supports free-form
deformation, B-Spline based, and Demons algorithms.

* Standalone Demons filters: A set of Demons filters that are
independent of the registration framework (includes
DemonsRegistrationFilter,
DiffeomorphicDemonsRegistrationFilter,
FastSymmetricForcesDemonsRegistrationFilter and
SymmetricForcesDemonsRegistrationFilter).

We shall demonstrate how to implement nonrigid registration
methods, one from each flavor.

With B-Splines

B-Splines are popular for modeling local deformations in medical and
natural images. However, they involve a large number of parameters,
making the optimization of the deformation more complex and time-
consuming. To address this, a multi-resolution B-Spline approach
is employed, which starts the registration process at a lower
resolution with fewer parameters.

At the initial stage, the transformation uses a coarser grid, and as the
registration progresses, the B-Spline control points are resampled at
progressively higher resolutions. This adaptive strategy, combined
with the multi-level feature of the image registration process, allows
for efficient solving of a wide range of registration problems.

The multi-level registration technique enables adjustments to various
parameters at each level, including shrink factors, smoothing sigmas,
sampling percentages, and the B-Spline resolution itself. The process
begins with a low-resolution B-Spline transform, and the resolution
increases at each level, typically doubling with each step. For
instance, if the final resolution level is set to 5, the resolution scaling
factors for each level might progress from 1 to 2, 4, and so on.

It is crucial to monitor the transformation at every stage of the
registration. When the inPlace=True option in
SetlnitialTransformAsBSpline() is activated, the transformation is
updated continuously during the registration process, making it
possible to observe the current transform and apply it in event
commands if needed.



Using consistent pixel types for all images in the process ensures
compatibility when applying filters like the compose filter, which is
often required when combining images or performing multi-stage
transformations.

This adaptive B-Spline method helps efficiently manage complex
image deformation tasks, making the registration process more
scalable and flexible.

The next code snippet uses BSplineTransform from SimplelITK for
image registration. The floor division operator (//) needs to be used
to ensure that all the three images have the same pixel type, as
required by the compose filter (sitk.Compose()).

import SimpleITK as sitk
import sys, os

fixed = sitk.ReadImage('images/handsl.jpg’, sitk.sitkFloat32)
moving = sitk.ReadImage(‘images/hands2.jpg’, sitk.sitkFloat32)

transform_domain_mesh_size = [2] * fixed.GetDimension()
tx = sitk.BSplineTransformInitializer(fixed, transform_domain_mesh_size)

print(f"Initial Number of Parameters: {tx.GetNumberOfParameters()}")

registration_method = sitk.ImageRegistrationMethod()
registration_method.SetMetricAsJointHistogramMutuallnformation()
registration_method.SetOptimizerAsGradientDescentLineSearch(5.0, 100, \
convergenceMinimumValue=1e-4, convergenceWindowSize=5)
registration_method.SetInterpolator(sitk.sitkLinear)
registration_method.SetlnitialTransformAsBSpline(tx, inPlace=True, \
scaleFactors=[1, 2, 5])
registration_method.SetShrinkFactorsPerLevel([4, 2, 1])
registration_method.SetSmoothingSigmasPerLevel([4, 2, 1])

outTx = registration_method.Execute(fixed, moving)

resampler = sitk.ResamplelmageFilter()
resampler.SetReferencelmage (fixed)
resampler.SetInterpolator(sitk.sitkLinear)
resampler.SetDefaultPixelValue(100)
resampler.SetTransform (outTx)

out = resampler.Execute(moving)

simg1 = sitk.Cast(sitk.RescaleIntensity(fixed), sitk.sitkUInt8)
simg?2 = sitk.Cast(sitk.Rescalelntensity(moving), sitk.sitkUInt8)
simg3 = sitk.Cast(sitk.RescaleIntensity(out), sitk.sitkUInt8)

fig = plt.figure(figsize=(15,6))

plt.gray()
plt.clf()




plt.subplot(131)

plt.imshow(sitk.GetArrayFromImage (sitk.Compose(simgl, simg2, \
simgl // 2.0 + simg?2 // 2.0)))

plt.axis('off"), plt.title('fixed and moving image', size=20)

plt.subplot(132); plt.imshow(sitk.GetArrayFromImage(out)), plt.axis('off")

plt.title('registered image’', size=20)

plt.subplot(133)

plt.imshow(sitk.GetArrayFromImage(sitk. Compose(simg1l, simg3, \
simgl // 2.0 + simg3 // 2.0)))

plt.axis('off"), plt.title('fixed and registered image’', size=20)

plt.suptitle('Image Regsitration with Simpleltk BSpline', size=22)

plt.tight_layout()

plt.show()

If you run the preceding code snippet, you should obtain a figure as
follows:

Image Regsitration with Simpleltk BSpline
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Figure 5.13: Image registration using B-Spline with SimpleITK

The preceding figure shows the moving image overlayed on the fixed
image before and after registration - observe the alignment of the
registered image is way better than the initial moving image.

With Demons

In this section, we will explore how to apply the Fast Symmetric
Forces Demons algorithm for deformable image registration using
FastSymmetricForcesDemonsRegistrationFilter() from
SimpleITK. Unlike traditional algorithms, this method uses
symmetric forces, instead of asymmetric displacement assumptions.

The algorithm’s key parameters include the number of iterations,
configured using the SetNumberOflterations() method, and the
Gaussian smoothing standard deviations for the total displacement
field, set with SetStandardDeviations(). Additional controls allow
for fine-tuning regularization, as well as smoothing the total field for
the elastic model or the update field for the viscous model.

The core assumption of the Demons algorithm is that its intensities at
corresponding points in the images are equal. To address this



assumption, histogram matching
(HistogramMatchingImageFilter()) is applied to make the images
more comparable before registration. This approach is particularly
useful when the intensity similarity assumption does not hold.
Furthermore, the command design pattern can be employed to track
the progress of the registration process.

The fixed image input used in the next code snippet is the Lena
image and the moving image is a distorted version of the image. Use
the demons algorithm to register the moving image with the fixed
image. Display the registered image, along with the fixed and moving
images.

Now let us dive into the implementation, using the following code
snippet:

import SimpleITK as sitk
import sys, os

fixed = sitk.ReadImage(‘images/lenag2.png’, sitk.sitkFloat32)
moving = sitk.ReadImage(‘images/lenagl.png’, sitk.sitkFloat32)

matcher = sitk.HistogramMatchingImageFilter()
matcher.SetNumberOfHistogramLevels(1024)
matcher.SetNumberOfMatchPoints(7)
matcher.ThresholdAtMeanIntensityOn()

moving = matcher.Execute(moving, fixed)

transformDomainMeshSize = [2] * fixed.GetDimension()
tx = sitk.BSplineTransformInitializer(fixed, transformDomainMeshSize)

print(f"Initial Number of Parameters: {tx.GetNumberOfParameters()}")

demons = sitk.FastSymmetricForcesDemonsRegistrationFilter()
demons.SetNumberOfIterations(200)

demons.SetStandardDeviations(1.0)
displacement_field = demons.Execute(fixed, moving)

print(f"Number Of Iterations: {demons.GetElapsedIterations()}")
print(f" RMS: {demons.GetRMSChange()}")

outTx = sitk.displacement_fieldTransform(displacement field)

resampler = sitk.ResamplelmageFilter()
resampler.SetReferencelmage(fixed)
resampler.SetInterpolator(sitk.sitkLinear)




resampler.SetDefaultPixelValue(100)
resampler.SetTransform (outTx)

out = resampler.Execute(moving)

simgl = sitk.Cast(sitk.Rescalelntensity(fixed), sitk.sitkUInt8)
simg2 = sitk.Cast(sitk.Rescalelntensity(moving), sitk.sitkUInt8)
simg3 = sitk.Cast(sitk.Rescalelntensity(out), sitk.sitkUInt8)

# Visualize the result
fig = plt.figure(figsize=(15,9))
plt.gray()

plt.clf()

plt.subplot(231); plt.imshow(sitk.GetArrayFromImage(fixed))

plt.axis('off")

plt.title('fixed image', size=20)

plt.subplot(232); plt.imshow(sitk.GetArrayFromImage(moving))

plt.axis('off"), plt.title('moving image', size=20)

plt.subplot(233)

plt.imshow(sitk.GetArrayFromImage (sitk. Compose(simg1l, simg2, \
simgl // 2.0 + simg?2 // 2.0)))

plt.axis('off"), plt.title('fixed and moving image', size=20)

plt.subplot(234); plt.imshow(sitk.GetArrayFromImage(out)), plt.axis('off")

plt.title('registered image’', size=20)

plt.subplot(235)

plt.imshow(sitk.GetArrayFromImage(sitk. Compose(simgl, simg3, \
simgl // 2.0 + simg3 // 2.0)))

plt.axis('off"), plt.title('fixed and registered image', size=20)

plt.suptitle('Image Regsitration with Simpleltk Demon', size=22)

plt.tight_layout()

plt.show()

If you run the preceding code snippet, you should obtain a figure as
follows:

Image Regsitration with Simpleltk Demon
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registered image fived and registered image

Figure 5.14: Image registration with SimpleITK Demon



Deep deformable image registration with
VoxelMorph with tensorflow/keras

Image registration involves aligning different datasets into a common
coordinate system. These alignments can range from simple rigid
transformations, such as translations and rotations, to more complex
transformations, such as affine (shear) or homography transforms,
and even deformable models. The goal of deformable registration is
to compute a pixel-wise displacement field between a source image
and a target image. When applied to the source image, this
displacement field ensures that the source and target images match
as closely as possible, as shown in the following figure:

deformable registration

Source lmage

Y

Target Image

Figure 5.15: Schematic for deformable registration

In this section, we shall explore a state-of-the-art technique for
deformable image registration using deep learning. The following
figure illustrates a schematic of the training process for a deep
learning-based pipeline designed for deformable image registration:



Training a Deep Deformable Registration Network (VoxelMorph) on MNIST subset
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Figure 5.16: Training VoxelMorph on MNIST
Source: https://www.sicara.fr/blog-technique/deformable-image-registration

Training a CNN for registration

Let us first understand of how to train a deep CNN to perform image
registration:

1. To perform image registration, a pair of images—a source
(moving image) and a target (fixed image)—are provided as input
to a registration network, typically a convolutional neural
network (CNN) such as a U-Net. This network processes the
input pair and generates a Displacement Field, which is a
tensor mapping each pixel (x,y) from source image to (4x,4y), a
displacement vector.

2. Using the displacement field, the source image can be
transformed by computing new pixel coordinates
(x',y") = (x + 4x,y + Ay), for each pixel. The source image is then
sampled at these new coordinates to produce the warped image.
This transformation is performed in the warping layer (shown in
Figure 5.16).

3. To evaluate the quality of the registration and provide an
optimization objective for the network, a loss function is
employed. Two common loss functions used for image registration
are as follows (also shown in Figure 5.16):


https://www.sicara.fr/blog-technique/deformable-image-registration

a. The mean squared error (MSE) is a pixel-wise loss metric
that metric compares two images pixel by pixel, and quantifies
the average of the squares of the differences between
corresponding pixel intensities of two images. A perfect match
results in an MSE of 0.

b. The normalized cross correlation (NCC) is a similarity
measure that evaluates how well two image patches or signals
align as one is shifted over the other as a function of their
relative displacement, similar to the concept of convolution
between two functions.

4. These loss functions guide the network during training to
improve the alignment of the source and target images, by
updating the weights of the CNN with backpropagation.

5. To train the deformable image registration network, loop over
the training dataset and execute steps 1-4 for each source, target
image pair.

Prediction with the trained CNN

Given a pair of (moving, fixed) test images, the trained network
predicts the registered (output) image and the displacement field.

Let us instantiate VoxelMorph, which is a CNN (convolution neural
network) for deep deformable image registration, using the library
voxelmorph (install it with pip, if not already installed). Follow the
next steps to run training and inference on the network:

1. We need tensorflow 2.0 (or later) for the implementation.
Handwritten digits dataset MNIST (with each digit image having
size 28x28) will be used as input dataset. We shall use a subset
(for example, use only the images with label , as shown in the
next code snippet) to train the network.

2. The next code snippet creates the training/test splits from the
dataset and pads the images to have the size of the nearest power
of 2, that is, 32x32:

import os, sys

import numpy as np
import tensorflow as tf




assert tf._ version__.startswith('2."), 'We need Tensorflow 2.0+

# local imports
import voxelmorph as vxm
import neurite as ne

from tensorflow.keras.datasets import mnist

# load MNIST data.

# Split the data into train and test.

(x_train_load, y_train_load), (x_test load, y_test_load) =\
mnist.load_data()

x_train_load = x_train_load / x_train_load.max()
x_test load = x_test load / x_test_load.max()

digit_sel = 8

# extract only instances of the digit 8

x_train = x_train_load[y_train_load==digit_sel, ...]
y_train = y_train_load[y_train_load==digit_sel]
x_test = x_test_load[y_test_load==digit_sel, ...]
y_test = y_test_load[y_test_load==digit_sel]

# let's get some shapes to understand what we loaded.

print(‘'shape of x_train: {}, y_train: {}'.format(x_train.shape, \
y_train.shape))

# shape of x_train: (5851, 28, 28), y train: (5851,)

nb_val = 1000 # keep 1,000 subjects for validation

x_val = x_train[-nb _val:, ...] # this indexing means "the last nb val
# entries" of the zeroth axis

y_val = y_train[-nb_val:]

x_train = x_train[:-nb_val, ...]

y_train = y_train[:-nb_val]

pad_amount = ((0, 0), (2,2), (2,2))

# fix data

x_train = np.pad(x_train, pad amount, 'constant')
x_val = np.pad(x_val, pad_amount, 'constant')
x_test = np.pad(x_test, pad amount, 'constant')
# verify

print(‘'shape of training data', x_train.shape)

# shape of training data (4851, 32, 32)

3. Let us create a U-Net framework (using the function
voxelmorph.networks.VxmDense() with the input shape and
nbfeatures specifying the layers in the encoder and decoder
networks).

4. The loss functions to be used are voxelmorph.losses.MSE()
along with voxelmorph.losses.Grad('12'), to compute the loss,
and the optimizer to be used is Adam.



5. Let us plot the network architecture using
tf.keras.utils.plot model() function, using the next code
snippet:

# configure unet input shape (concatenation of moving and fixed images)
ndim = 2

unet_input features = 2

inshape = (*x_train.shape[1:], unet_input features)

# configure unet features

nb_features = [
[32, 32, 32, 32], # encoder features
[32, 32, 32, 32, 32, 16] # decoder features

]

# build model using VxmDense
inshape = x_train.shape[1:]
vxm_model = vkm.networks.VxmDense(inshape, nb_features, int_steps=0)

# voxelmorph has a variety of custom loss classes
losses = [vxm.losses.MSE().loss, vxm.losses.Grad('12"').loss]

# usually, we have to balance the two losses by a hyper-parameter
lambda_param = 0.05
loss_weights = [1, lambda_param]

vxm_model.compile(optimizer='Adam’', loss=losses, \
loss_weights=loss_weights)

tf.keras.utils.plot_model(vxm_model, to_file="model.png’, \
show shapes=True)

Refer to the following figure, for the architecture of the deep neural
net (U-Net) framework:
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Figure 5.17: U-Net architecture

6. The function plot_history() shown in the next code block can be
used to visualize the loss decreasing over epochs (training
history).



7. The function vxm_data_generator() is a python generator (that
yields values lazily using the yield keyword, allowing efficient
memory usage by producing values one at a time instead of
storing them all in memory), it will be used to generate train data
(inputs and outputs for the CNN) now and validation data later.
It takes in data of size [N,H,W], and yields data for our custom
voxelmorph model. Note that we need to provide numpy data
for each input, and each output.

8. The function yields the tuple (inputs, outputs) where:

a. The variable inputs is assigned the tuple (moving, fixed)
images of sizes [batch_size, H, W, 1] and [batch_size, H, W,
1]), respectively. It acts as input pair of images for the CNN
(here H = W = 32 and batch_size=32 by default).

b. The variable outputs is assigned the tuple (moved image,
zero-gradient displacement field) of sizes [batch_size, H, W,
1] and [batch_size, H, W, 2] respectively, to be used as the
corresponding output pair of images for the CNN.

9. The output of the U-Net will be (fixed, ¢), where ¢ is the
displacement field (in x and y directions). The first term in the
output tuple refers to the registered image and we want it to be
close to the fixed image.

10. The displacement field is initialized with zero. Plot the moving
(to be aligned), fixed (the reference), target (registered/aligned)
ground-truth images and the displacement field (for example, in
the x direction), using the function ne.plot.slices(), prior to the
start of the training process.

def plot_history(hist, loss_name="'loss"):
plt.figure()
plt.plot(hist.epoch, hist.history[loss_name], '.-')
plt.ylabel('loss’, size=20)
plt.xlabel(‘epoch’, size=20)
plt.grid()
plt.show()

def vxm data generator(x_data, batch size=32):

vol_shape = x_data.shape[1:]
ndims = len(vol _shape)

zero_phi = np.zeros([batch_size, *vol _shape, ndims])




while True:

#prepare inputs: images need to be of sz [batch_size, H, W, 1]
idx1 = np.random.randint(0, x_data.shape[0], size=batch_size)
moving_images = x_data[idx1, ..., np.newaxis]

idx2 = np.random.randint(0, x_data.shape[0], size=batch_size)
fixed_images = x_data[idx2, ..., np.newaxis]

inputs = [moving images, fixed images]

# prepare outputs (the 'true' moved image):

# of course, we don't have this, but we know we want to compare
# the resulting moved image with the fixed image.

# we also wish to penalize the deformation field.

outputs = [fixed_images, zero_phi]

yield (inputs, outputs)

# let's test it
train_generator = vxm_data_generator(x_train)
in_sample, out_sample = next(train_generator)

print(len(in_sample), in_sample[0].shape)
#2 (32, 32,32,1)

# visualize

images = [img[O0, :, :, 0] for img in in_sample + out_sample]

titles = ['moving’, 'fixed', 'moved ground-truth (fixed)', 'zeros']

ne.plot.slices(images, titles=titles, cmaps=['gray'], \
do_colorbars=True);

If you run the preceding code snippet, you should obtain a figure as
follows:
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Figure 5.18: Deep image registration with U-Net

Now, let us train the model for 10 epochs (by invoking the model’s
fit() method), using the following code snippet:

nb_epochs = 10
steps_per_epoch = 100
hist = vxm_model.fit(train_generator, epochs=nb_epochs, \
steps_per epoch=steps per epoch, verbose=2)
# Epoch 1/10
#1/] [r=============================] - 05 321ms/step
# 100/100 - 19s - loss: 0.0530 - vxm_dense_transformer loss: 0.0506 -
# vxm_dense_flow_loss: 0.0481 - 19s/epoch - 194ms/step
# Epoch 2/10
#1/] [r=============================] - 05 31ms/step




# 100/100 - 14s - loss: 0.0234 - vxm_dense_transformer_loss: 0.0187 -

# vxm_dense_flow_loss: 0.0954 - 14s/epoch - 137ms/step

# Epoch 3/10

#1/]1 [r=============================] - 05 29ms/step
# 100/100 - 14s - loss: 0.0191 - vxm_dense_transformer_loss: 0.0144 -

# vxm_dense_flow_loss: 0.0941 - 14s/epoch - 135ms/step

# Epoch 4/10

#1/1 [r=============================] - 05 29ms/step
# 100/100 - 13s - loss: 0.0175 - vxm_dense_transformer _loss: 0.0128 -

# vxm_dense flow_loss: 0.0940 - 13s/epoch - 128ms/step

# Epoch 5/10

# 100/100 - 14s - loss: 0.0159 - vxm_dense_transformer loss: 0.0113 -

# vxm_dense_flow_loss: 0.0924 - 14s/epoch - 137ms/step

# Epoch 6/10

#1/]1 [m=============================] - 05 31ms/step
# 100/100 - 14s - loss: 0.0151 - vxm_dense_transformer loss: 0.0105 -

# vxm_dense_flow_loss: 0.0922 - 14s/epoch - 139ms/step

# Epoch 7/10

#1/1 [r=============================] - 05 32ms/step
# 100/100 - 13s - loss: 0.0145 - vxm_dense_transformer loss: 0.0099 -

# vxm_dense_flow_loss: 0.0924 - 13s/epoch - 129ms/step

# Epoch 8/10

#1/]1 [m=============================] - 05 29ms/step
# 100/100 - 14s - loss: 0.0137 - vxm_dense_transformer_loss: 0.0092 -

# vxm_dense_flow_loss: 0.0907 - 14s/epoch - 142ms/step

# Epoch 9/10

#1/]1 [r=============================] - 05 87ms/step
# 100/100 - 14s - loss: 0.0135 - vxm_dense_transformer _loss: 0.0089 -

# vxm_dense flow _loss: 0.0912 - 14s/epoch - 139ms/step

# Epoch 10/10

# 100/100 - 13s - loss: 0.0131 - vxm_dense_transformer_loss: 0.0086 -
# vxm_dense_flow_loss: 0.0913 - 13s/epoch - 127ms/step

Once the network is trained, it is time to register/align images with
prediction. We shall use images from the validation dataset for this
purpose (ideally you should use the held-out test dataset, try it on
your own). Generate (moving, fixed) image pairs from the validation
data, to be input to the network, and run a forward pass on the
network (using the predict() method), predicting the registered
image (i.e., the moving image aligned to the fixed image) and the
displacement fields.

Plot all the images, using the next code snippet, to visualize the
alignment, along with the flow. Moreover, plot the loss with training
epoch, to see how the loss function decreases over epochs during
training phase.

val_generator = vxm_data_generator(x_val, batch_size = 1)

val_input, _ = next(val_generator)
val pred = vxm_model.predict(val_input)
# visualize

images = [img][O0, :, :, 0] for img in val_input + val_pred] + \



[np.dstack((val_input[0][O0,:,:,0], val input[1][O0,:,:,0], \
val _input[0][0,:,:,0]/2 + val input[1][0,:,:,01/2))] + \
[np.dstack((val_input[1][0,:,:,0], val_pred[0][O0,:,:,0], \
val_input[1][0,:,:,0]/2 + val _pred[0][0,:,:,0]1/2))]
titles = ['moving’, 'fixed', 'moved’, 'flow’, 'before reg’, \
'after reg']
ne.plot.slices(images, titles=titles, cmaps=['gray'], \
do_colorbars=True, show=False)
ne.plot.flow([val_pred[1].squeeze()], width=5, show=False);

If you run the preceding code snippet, you should obtain a figure as
follows:
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Figure 5.19: Image registration with VoxelMorph

Conclusion

In this chapter, we discussed about various feature extraction
techniques and application of them in important image processing
and computer vision problems such as image registration. You learnt
how to implement extraction of features like SURF, BRISK, BRIEF
with python libraries such as scikit-image, SimplelTK, cv2.

This chapter provided a detailed exploration of image feature
extraction and its applications, with a focus on image registration. It
began by introducing different types of feature detectors and
descriptors, laying the groundwork for effective image alignment.
Feature detection techniques were highlighted, including the Harris
Corner detector and Shi-Tomasi Corner detector, implemented with
OpenCV to extract prominent features in images.



The discussion then shifted to image registration, showcasing
practical implementations using both classical and advanced
techniques. Registration with ORB features was demonstrated using
OpenCV and Scikit-image, while SURF features with OpenCV and
DISK features with kornia illustrated additional robust methods for
feature-based matching. The chapter also covered color channel
alignment using the pystackreg library for precise registration of
misaligned image channels.

Advanced registration techniques included deformable image
registration with PyElastix, enabling flexible transformations for non-
rigid alignment. The chapter further explored registration with
SimplelTK, detailing methods using B-Splines for smooth, flexible
transformations and Demons for intensity-based approaches. Finally,
cutting-edge deep deformable image registration was introduced
with VoxelMorph, leveraging TensorFlow/Keras to achieve state-of-
the-art results in medical and other complex image registration tasks.
By integrating traditional methods with deep learning approaches,
this chapter provided readers with a comprehensive understanding of
feature extraction and its applications, equipping them to tackle a
variety of image registration challenges in research and practical
settings.

Key terms

Harris Corner, Shi-Tomasi, ORB, SURF, DISK, B-Splines, Demons,
VoxelMorph.

Questions

1. Rotation invariance of ORB: Show that the ORB is rotation
invariant. For example, take the following image of the Victoria
Memorial Hall and its rotated version as input images. Choose a
single ORB feature (for example, the one on its fairy) detected in
the original image (mark it red), show that the same feature is
detected from the rotated image too. You should obtain a figure
as follows:



ORB feature in rotated image

ORB feature

P

Figure 5.20: Rotation invariance of ORB features

Similarly, show that the ORB is scale- invariant too.

2. Finding near-duplicate images (up to rotation/scaling): Use
ORB features to find near-duplicate images, for example from the
following images of the Victoria Memorial Hall and Taj Mahal.
Notice that there are 2 unique images and all the other images
are obtained by applying rotation/scaling/changing background.

Figure 5.21: Input images for near-duplicate image detection

Extract ORB feature descriptors (for example, 50 features) and
concatenate the features to obtain a single vector from each
image. Now, use a nearest-neighbor algorithm (for example,
ball tree from sklearn.neighbors.NearestNeighbors) to find the
nearest descriptors from the images and display the top 4 (for
example, k = 4) near-duplicate images found, as shown in the
following figure. As can be seen, querying with a Victoria image
(descriptor vector) fetches all the images obtained with
rotation/scaling/changing the background of the original image



(also report the NN-distances obtained).

query image

search result: near-duplicate images based on ORB descriptors (with NN-distances)
0000

66,776 66,978

Figure 5.22: Finding near-duplicate images with ORB features
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CHAPTER 6

Applications of Image
Feature Extraction

Introduction

As discussed in Chapter 5, Image Feature Extraction and Its
Applications: Image Registration, image feature extraction
involves identifying and encoding important elements of an
image (edges, corners, blobs, textures, etc.) to create a
simplified, informative representation. It plays a pivotal role in
a wide range of computer vision applications, enabling the
detection, recognition, and analysis of objects in both static
and dynamic scenes. By isolating key visual attributes from
images, feature extraction serves as the foundation for tasks
such as stitching, recognition, and detection. This chapter
delves into various practical applications of feature extraction
techniques, highlighting their effectiveness in solving real-
world problems across domains like multimedia, security, and
surveillance.

Structure

This chapter covers the following topics:



* Panorama with opencv-python
* NMF for extracting face features with Nimfa
* Face recognition using LBPH with opencv-python

* Face feature extraction and recognition using Gabor filter
banks

e Pedestrian detection with HOG vs HAAR-Cascade features
with opencv-python

Objectives

This chapter explores diverse applications of image feature
extraction techniques, focusing on their implementation and
practical utility. Key topics include the creation of panoramas
through image and video stitching using opencv-python,
leveraging non-negative matrix factorization (NMF) for
facial feature extraction, and implementing Local Binary
Patterns Histogram (LBPH)-based face recognition with
opencv-pthon. Advanced methods, such as facial feature
extraction and recognition using Gabor filter banks, and a
comparative analysis of HOG and HAAR Cascade features for
pedestrian detection, are also covered. By the end of the
chapter, you will gain hands-on experience and insights into
applying these techniques effectively in various image
processing and computer vision tasks.

Panorama with opencv-python

Image stitching (also called image mosaicing) refers to the
image processing task of combining multiple overlapping
images to create a (segmented) panorama image
(alternatively called an image mosaic). There are three major
components of image stitching:

* Register images so that corresponding features align
accurately



* Determine overlap between adjacent images

 Blend the overlapping regions to create a coherent,
artifact-free composite

In this section, we shall use the stitching module pipeline
from opencv-python to perform image stitching, as
illustrated in the following Figure 6.1. Using the Stitcher
class, it is possible to configure and remove some steps, that
is, adjust the stitching pipeline according to the particular
needs. All building blocks from the pipeline are available in
the detail namespace, and one can combine and use them
separately.
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Figure 6.1: Image stitching pipeline

Image stitching

The following code demonstrates image stitching, here we
stitch eleven images together to obtain a panorama image,
using opencv-python’s Stitcher.stitch() method. Here are
the steps involved:

1. Create the stitcher object: Use cv2.createStitcher() if
you are using OpenCV 3.x or cv2.Stitcher create() for
OpenCV 4.x, to instantiate a Stitcher object. You can
optionally pass the boolean parameter try use _gpu=True
if you have a GPU available, which can significantly
accelerate the stitching process.

2. Stitch the images: Call the stitch() method on the
Stitcher object, passing a list of input images. This
method will attempt to align and combine the images into
a single panoramic view and return the resulting
panorama.

3. Check the stitching status: The stitch() method
returns two values: a status code and the resulting
panorama image. The status code indicates the success or
failure of the stitching process. The possible status codes
from the OpenCV documentation are:

a. OK = 0: Stitching was successful.

b. ERR_NEED MORE_IMGS = 1: Not enough keypoints
were detected in the images, requiring additional input
images.

c. ERR_ HOMOGRAPHY EST FAIL = 2: The RANSAC
algorithm for homography estimation (which robustly
finds the best transformation between images by
iteratively selecting point correspondences and
rejecting outliers) failed, likely due to insufficient or
poorly matched keypoints between the input images.



d. ERR_CAMERA PARAMS ADJUST FAIL = 3: Failed
to estimate camera parameters from the input images.
In such cases, providing more images might improve
keypoint detection and estimation.

4. Handling black borders in the panorama: Even after
successful stitching, the output panorama image often has
black borders caused by the perspective warping
necessary to align the images. To remove these borders,
you can use the trim() method from the wand library’s
Image class. Pass the parameters
color=Color(‘'rgh(0,0,0)") and
percent_background=0.0, to trim the panorama image
to its minimal bounding box, removing the black regions,
as shown in the next code snippet.

By following these steps, you can successfully stitch images
into a panorama and clean up any unnecessary background
artifacts that may result from the stitching process. First let
us load the images to be stitched and display them with
matplotlib.pylab, using the following code snippet:

import numpy as np

import glob

import matplotlib.pylab as plt
import cv2
print(cv2._version_ )

from wand.image import Image
from wand.color import Color

images = [cv2.imread(img) for img in glob.glob(‘images/Imgp *")]
print('Number of images to stitch: {}'.format(len(images)))

fig = plt.figure(figsize=(20, 15))

foriin range(len(images)):
plt.subplot(3,4,i+1)
plt.imshow(images[i])
plt.axis('off")

fig.subplots_adjust(left=0, right=1, bottom=0, top=0.95, \
hspace=0.05, wspace=0.05)

plt.suptitle('Images to stich', size=25)

plt.show()




If you run the preceding code snippet, you should obtain a
figure like the next one, displaying all the images to be
stitched as subplots:

Images 1o stich

Figure 6.2: 11 input images to stitch

Now, run the image stitching with the stitcher.stitch()
method, as explained, using the following code snippet:

# Iinitialize OpenCV's image sticher object & perform image stitching
stitcher = cv2.createStitcher()

(status, stitched) = stitcher.stitch(images)

# If status is 0, then image stitching is successful

if status ==

plt.figure(figsize=(20,10))
plt.imshow(cv2.cvtColor(stitched, cv2.COLOR_BGR2RGB))
plt.axis('off"), plt.title('Stitched output image’', size=20)
plt.tight_layout()

plt.show()

stitched = Image.from_array(stitched)
stitched.trim(color=Color('rgh(0,0,0)"), \

percent_background=0.0, fuzz=0)
stitched = np.array(stitched)

# write the output stitched image to disk
cv2.imwrite('images/output_panorama.jpg’, stitched)
plt.figure(figsize=(20,10))
plt.imshow(cv2.cvtColor(stitched, cv2.COLOR_BGR2RGB))

plt.axis('off")
plt.title('Stitched output image (after trimming with wand)’, \




size=20)
plt.tight layout()
plt.show()

else: # stitching failed, not enough keypoints detected
print("image stitching failed ({})".format(status))

If you run the preceding code snippet, you should obtain a
figure, displaying the panorama images (with and without
border artifacts) as follows:

Stitched output image

Stitched output image (after trimming with wand)
. »-

Figure 6.3: Creating panorama image with opencv-python

Video stitching

A straightforward approach to video stitching is to stitch
corresponding frames from the input videos sequentially. This
approach assumes that the input videos:

« Have the same number of Frames Per Second (FPS).
 Have identical durations, i.e., the same number of frames.

Stitching two videos can be simply done by stitching individual
frames from the videos, in a synchronized manner, with the
assumption that the videos have the same FPS and length. The
next code snippet demonstrates a basic video stitching
pipeline using opencv-python and imageio, with the
following steps:
1. Ensure frame rate consistency: Assert that the videos
have same FPS. Read the left and right video frames
sequentially with imageio.get_reader().



2. Read and resize frames: Resize the left and right video
frames to same size for consistency into a panoramic view.

3. Stitch frames: Use Stitcher.stitch() method to align
and blend each pair of frames.

4. Append stitched frames: Append the output frame to
the output video (opened with imageio.get writer()
function, using the same FPS as the input videos), if
stitching is successful.

5. Save final output: After all frames are processed, close
the writer and save the stitched video to disk.

Now refer to the next code snippet:

import numpy as np
import datetime
import imutils
import time

import cv2

import imageio

stitcher = cv2.Stitcher create()
total = 0

readerl = imageio.get_reader('images/vid3.mp4")
reader?2 = imageio.get_reader('images/vid4.mp4")
fpsl = readerl.get_meta data()['fps']
fps2 = reader2.get_meta_data()['fps']

assert(fpsl == fps2)
writer = imageio.get_writer('video_stitched.mp4', fps = fpsl)

for i, (left, right) in enumerate(zip(readerl, reader2)):
# resize the frames
left = imutils.resize(left, width=400)
right = imutils.resize(right, width=400)
# stitch the frames together to form the panorama
(status, result) = stitcher.stitch([left, right])

if status: continue

# no homograpy could be computed

if result is None:
print("[INFO] homography could not be computed")
break

writer.append_data(cv2.resize(result, (800, 600)))




plt.figure(figsize=(20,8))
plt.subplots_adjust(0,0,1,0.95,0.05,0.05)
plt.subplot(131), plt.imshow(left, aspect='auto')
plt.axis('off")

plt.title('Left Frame', size=20)

plt.subplot(132), plt.imshow(right, aspect='auto’)
plt.axis('off"), plt.title('Right Frame', size=20)
plt.subplot(133), plt.imshow (result, aspect='auto')
plt.axis('off"), plt.title('Stitched Frame', size=20)
plt.savefig(‘out {:03d}.png'.format(i))

plt.close()

writer.close()

If you run the preceding code snippet, you should obtain a
figure as follows:
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Figure 6.4: Stitching video frames with opencv-python



For advanced video stitching, consider:

« Temporal consistency: Apply smoothing or filtering
techniques to avoid flickering or jitter between stitched
frames over time.

 Global motion estimation: Track camera or scene motion
across frames to maintain alignment continuity.

e  Multi-camera synchronization: Handle slight
desynchronization in multi-camera systems by aligning
frames using timestamps or motion cues.

« Exposure compensation over time: Adjust for
brightness/lighting variations that occur across the video
duration.

« Stitching failure handling: Add fallback mechanisms
(e.g., previous frame reuse or interpolation) when stitching
fails temporarily.

The aforementioned points are specifically focused on

ensuring smooth, coherent, and robust video stitching
output over time.

NMF for extracting face features with
Nimfa

NMF is a widely used unsupervised learning technique that
decomposes (factorizes) a non-negative matrix (V) into two
lower-rank non-negative matrices (W and H). This
decomposition reveals latent structures in the data and is
widely used in image analysis, especially face recognition. The
key idea is that face images can be represented as additive
combinations of sparse basis features.

Refer to the following figure for a mathematical definition of
NMF:



Non-Negative Matrix Factorization (NMF)

e
(nonnegative) matrix 'V ¢ R P

Factorize V = WH

Optimization Problem: [::_ilill DIVIWH) s.t. W=0,H=0

Figure 6.5: Non-negative matrix factorization

The goal is to minimize the reconstruction error, typically
measured using the Frobenius norm:

miny 4||V — WH||%, so that W,H > 0
This non-negativity constraint leads to a part-based, additive
representation of the data, making it particularly useful for
facial feature extraction.

The steps for NMF-based face feature extraction are as
follows:

1. Data preparation: Collect a set of face images and
represent each image as a matrix of pixels. The image
matrix should be non-negative, and the dimensionality of
the matrix should be the same for all images.

2. Data normalization: Standardize (normalize) the image
data to have zero mean and unit variance. This step
ensures that the NMF algorithm converges faster and
produces better results.

3. Component selection: The number of components (or
features) to extract is an important hyperparameter to
choose in NMF. You can use techniques such as the elbow
method or cross-validation to determine the optimal
number of components.

4. Applying NMF: Apply NMF to the normalized image
matrix to factorize it into two non-negative matrices

i. W: basis matrix, containing the feature vectors (part-

based features)
ii. H: coefficient matrix (weights for each basis vector),



that represent each image as a linear combination of
the features.

5. Feature selection: Identify the most significant
(informative) basis vectors (features) in W using sparsity
or thresholding to discard noisy or uninformative features.

6. Feature extraction: Extract the features from the
original image matrix by multiplying it with the selected
feature vectors from the matrix W.

7. Final normalization: Normalize the feature vectors to
have zero mean and unit variance for downstream tasks.

The extracted features can be used for face recognition tasks,
such as classification or clustering. Overall, NMF can be a
powerful technique for face feature extraction.

Now, let us use the python library nimfa's implementation of
NMF, to extract features from the faces from the CBCL face
database. Nimfa includes implementations of several
factorization methods, initialization approaches, and quality
scoring. Both dense and sparse matrix representation are
supported. Let us walk through the code step by step:

1. Start by importing the required packages and modules:

from os.path import dirname, abspath
from os.path import join
from warnings import warn

import numpy as np

import nimfa

from matplotlib.pyplot import savefig, imshow, set_cmap, show, axis, \
figure, subplot

from PIL.Image import open, fromarray, new

from PIL.ImageOps import expand

2. Read face images from the MIT-CBCL database
(download from the following link:
http://www.ai.mit.edu/courses/6.899/lectures/faces.ta
r.gz and unzip); each face is a grayscale image of size
19x19.

3. Create a data matrix V by stacking 2429 flattened images
along the columns. The matrix’s shape is 361 (pixels) x


http://www.ai.mit.edu/courses/6.899/lectures/faces.tar.gz

2429 (faces).

# print("Reading CBCL faces database")

dir = join('faces', 'train’, 'face")

V = np.zeros((19 * 19, 2429))

for image in range(2429):
im = open(join(dir, "face0%s.pgm" % str(image + 1).zfill(4)))
V[:, image] = np.asarray(im).flatten()

Normalize the matrix , using the next code snippet.
# print("Data preprocessing")

= (V- V.mean()) / np.sqrt(np.multiply(V, V).mean())
V = np.maximum(np.minimum((V + 0.25) * 0.25, 1), 0)
V.shape
#(361, 2429)

4. Use the following code snippet to visualize 225 randomly
chosen faces from the matrix V:

indices = np.random.choice(range(2429), 225)

figure (figsize=(20,20))

foriin range(225):
subplot(15,15,i+1)
imshow(np.reshape(V[:,i],(19,19)), cmap='gray')
axis('off")

show()

If you run the preceding code snippet, you should obtain a
figure as follows:
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Figure 6.6: Input image samples from CBCL face dataset
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5. Define the function factorize() that accepts a data matrix



V as input argument and returns basis and mixture
matrices of the fitted factorization model, using the
nimfa.Lsnmf() function which implements the
alternating non-negative least squares matrix
factorization using projected gradient (bound constrained
optimization) method for each subproblem (LSNMEF). It
converges faster than the popular multiplicative update
approach.

6. Compute 49 basis vectors (pass rank =49 as argument of
the function nimfa.Lsnmf()), experiment with different
values of this parameter and observe the impact on the
basis vector returned.

7. Invoke the function factorize() on the CBCL faces data
matrix V to get the basis faces W, using the next code
snippet:

def factorize(V):

Isnmf = nimfa.Lsnmf(V, seed="random vcol", rank=49, \
max_iter=50, sub_iter=10, inner sub iter=10, \
beta=0.1, min_residuals=1e-8)

print("Algorithm: %s\nInitialization: %s\nRank: %d" % \

(Isnmf, Isnmf.seed, Isnmf.rank))

fit = Isnmf()

sparse_w, sparse_h = fit.fit.sparseness()

print("""Stats:

- iterations: %d

- final projected gradients norm: %5.3f

- Euclidean distance: %5.3f

- Sparseness basis: %5.3f, mixture: %5.3f""" %

(fit.fit.n_iter,

fit.distance(),

fit.distance(metric="'euclidean'),

sparse_w,

sparse_h))

return fit.basis(), fit.coef()

W, = factorize(V)
W.shape




# - final projected gradients norm: 2.157
# - Euclidean distance: 365.337
# - Sparseness basis: 0.708, mixture: 0.467
blank = new("L", (133 + 6, 133 + 6))
for i in range(7):
for j in range(7):
basis = np.array(W[:, 7 *i + j])[:, O].reshape((19, 19))

8. Plot the basis vectors. As can be seen from the next

Figure 6.7, the basis images are sparse (representing parts
of faces), that is, NMF computes part-phased features.

basis = basis / np.max(basis) * 255

basis = 255 - basis

ima = fromarray(basis)

ima = ima.rotate(180)

expand(ima, border=1, fill='black")
blank.paste(ima.copy(), G * 19 +j,1* 19 + 1))

figure(figsize=(7,7))
set_cmap('gray'), imshow(blank),axis('off")
show()

If you run the preceding code snippet, you should obtain a
figure as follows:
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Figure 6.7: Sparse basis features obtained with NMF

Face recognition using LBPH with
opencv-python

Face recognition is a biometric technology that identifies (or



verifies) individuals by analyzing and comparing facial
features from images or video. It works by detecting a face,
aligning it, extracting unique features, and matching these
features to a database of known faces. It is widely used in
security, authentication, and surveillance applications. In this
section we will explore how to use the local binary patterns
histogram (LPPH) algorithm to implement a basic face
recognition system. The process begins with extracting local
binary pattern (LBP) features from face images by following
these steps:

1. Dividing a face into regions: The face image is first
divided into a grid of cells, for example, an 8x8 grid
resulting in R = 64 regions. Each region captures local
texture information, which is crucial for recognizing key
facial features such as the eyes, nose, and mouth.

2. Computing LBP histograms: For each cell, a LBP
histogram is computed. LBP encodes pixel-level texture by
comparing each pixel with its neighbors, producing a
binary pattern. The histograms from all the cells are then
combined into a single feature vector, with spatial
advanced features, as shown in the following figure:

A histogram formula of the LBP image

Hij =Y I{fi(z,y) =i}I{(z.y) € R;}

i=0,...,n—1

n: number of different labels produced by the LBP operator
m: number of sub-regions
A3 = l, A istrue
410, Ais false

binary indicator function

Figure 6.8: Computing LBP histogram for a grayscale image

3. Spatial information encoding: Although individual



histograms discard spatial relationships, combining
histograms from different cells retains some level of spatial
encoding. This approach helps distinguish between various
facial features by capturing their relative positions within
the face.

a. Weighted histograms: To enhance discriminative
power, the histograms from different regions of the face
are weighted differently:

i. White regions (for example, eyes) are given a weight
of 4x.

ii. Light gray regions (for example, mouth and ears) are
weighted 2x.

iii. Dark gray regions (for example, cheeks and
forehead) are weighted 1x.

iv. Black regions (for example, nose and outer cheeks)
are ignored, with a weight of 0x.

These weighted histograms are then concatenated to form the
final feature vector. It provides higher discriminative power to
more distinguishing features of the face, as shown in the
following figure:
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Figure 6.9: Weighting scheme for LBPH



Face recognition

To perform face recognition, the following steps are needed to
be followed:

1. Input and feature extraction: When a new face is
presented, LBP features are extracted following the same
procedure used during training. The resulting histogram is
weighted and concatenated just like the training data.

2. Nearest neighbor classification: The system compares
the extracted histogram with those in the training set
using the k-NN algorithm (typically with k = 1, to find the
best match). The chi-squared (}?) distance is commonly
used as the similarity metric, but other distance measures
can be considered, too, as shown in the following figure:

Several possible dissimilarity measures
Histogram intersection: D(S, M) - Z min(.S;, M;)
Log-likelihood statistic: [L(S, M) = — Z S; log M,
. ['qa J‘-‘r.":li

Chi square statistic (v*): \2{& M) = L g+ M

 p—
Euclidean distance: d(S.M) = \I_"Z{.‘:f, — M;)?
| =

S and M are two LBP histograms

Figure 6.10: Dissimilarity measures for LBPH-based face recognition

3. Classification: The system identifies the face by selecting
the training face with the smallest y? distance (or some
other chosen metric). The label associated with the closest
match is returned as the final classification.

Adaptability
One advantage of the LBPH method is that it can be updated

incrementally. As new faces are added to the dataset, the
model does not need to be retrained from scratch, unlike other



methods such as eigenfaces. This makes LBPH a flexible and
scalable solution for face recognition.

Let us implement a face recognition system with LBPH
features using Python. We shall use LFW dataset from scikit-

learn’s datasets module here. Start by importing the
required libraries, modules and functions, as follows:

import cv2,o0s

import numpy as np

from PIL import Image

import pickle, time

import matplotlib.pylab as plt

from sklearn.datasets import fetch_Ifw_people

from sklearn.model selection import train_test_split

from sklearn.metrics import classification_report, confusion_matrix

Now follow the steps listed as follows:

1. Load the LFW dataset with the function
fetch_lfw _people() from sklearn.datasets. Let us ensure
that the extracted dataset will only retain faces of people
that have at least min faces per person=70 different
images.

2. The extracted face dataset (to be accessed by
Ifw _people.data) contains 1288 faces each of them of size
50 x 37, belonging to 7 different persons (check
Ifw _people.target names and number of unique ids in
Ifw _people.target). We want to associate a face with an
id, that is, the label we want to predict is the id of the
person given his face.

3. Split the dataset randomly into training and test set with
the function train_test_split() from
sklearn.model_selection, with 25% data in the test set

(specified by the argument test size=0.25), as done in
the following code snippet:

Ifw_people = fetch_lfw_people(min_faces_per person=70, resize=0.4)
n_samples, h, w = Ifw_people.images.shape

X = lfw_people.data
n_features = X.shape[1]




print(X.shape, h, w)
y = lfw_people.target
print(np.unique(y))

target_names = lfw_people.target_names
n_classes = target_names.shape[0]
print(target_names)

print("n_samples: %d" % n_samples)
print("n_features: %d" % n_features)

print("n_classes: %d" % n_classes)

X_train, X _test, y_train, y_test = train_test_split( \
X, y, test_size=0.25, random_state=42)

faces, ids =[], []

foriin range(X_train.shape[0]):
faces.append(np.reshape(X_train[i,...], (h,w)))
ids.append(y_train[i])

ids = np.array(ids)

4. With the training and test datasets prepared, we can now
create an instance of the LBPH face recognizer using the
function cv2.face.LBPHFaceRecognizer create(). This
function accepts several parameters, which we will use
with their default values:

a. radius: Defines the radius for constructing the circular
local binary pattern. A larger radius results in a
smoother image while capturing more spatial
information. The default value is 1.

b. neighbors: Specifies the number of sample points

used to build the circular local binary pattern. The
default is 8, which strikes a balance between
computational cost and accuracy. Increasing the
number of neighbours improves detail but also
increases computational requirements.



c. grid x and grid_y: These determine the number of
cells in the horizontal and vertical directions,
respectively. The default value of 8 is commonly used in
studies. More cells produce a finer grid and result in a
higher-dimensional feature vector.

d. threshold: This value sets the limit for face prediction.
If the distance to the nearest neighbour exceeds the
threshold, the recognizer returns -1, indicating no
match.

Note: It is important to note that circular local binary pattern algoritl
requires the input images to be in grayscale for both training a

prediction.

5. Let us use the train() method to train the model using the
following code snippet, which accepts the faces and the
corresponding ids:

recognizer = cv2.face.LBPHFaceRecognizer create()
recognizer.train(faces, ids)
recognizer.save('recognizer training.yml')

6. Now, let us use the model’s predict() method to

recognize faces from the unseen test dataset, using the
next code snippet:

y_pred =[]

for i in range(X_test.shape[0]):
pred = recognizer.predict(X_test[i,...].reshape((h,w)))
y_pred.append(pred[0])

7. Display the classification report and the confusion
matrix to evaluate how the face recognition worked on the
test dataset:

print(classification_report(y_test, y_pred, target_ names=target_names))
people’s




Hugo Chavez 0.82 0.60 0.69 15
Tony Blair 0.80 0.89 0.84 36

#
#
#
# accuracy 0.88 322

# macro avg 0.83 0.79 0.80 322

#  weighted avg 0.88 0.88 0.87 322
print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))
#[[10 0 1 1 0 1 O]

[1 54 1 0 3 1 0]

#[1 0 18 6 1 0 1]

# [0 1 1 140 1 0 3]

# [0 0 1 119 0 4]
#
#

H*

[1 0 0 3 2 9 0]
[0 0 0 2 2 0 32]]

8. Plot 12 faces from the test dataset, their ground-truth
labels and the predictions by the face recognizer, using
the function plot_gallery(), using the following code
snippet:

def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
plt.subplots_adjust(bottom=0, left=.01, right=.99, \
top=.90, hspace=.35)
foriin range(n_row * n_col):
plt.subplot(n_row, n_col, i + 1)
plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
plt.title(titles[i], size=12)
plt.xticks(())
plt.yticks(())

def title(y_pred, y_test, target_names, i):
pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
return 'predicted: %s\ntrue: %s' % (pred_name, true_name)

prediction_titles = [title(y_pred, y_test, target_names, i) \
foriin range(len(y_pred))]

plot_gallery(X_test, prediction_titles, h, w)

If you run the preceding code snippet, you should obtain a
figure as follows:
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Figure 6.11: Face recognition with LBPH

As can be seen from the preceding figure, the face recognizer
achieved a decent F, score on the test dataset, and the faces
we have shown in Figure 6.11 have been correctly recognized.
Finally, let us use an image from outside the dataset where
two of the subjects are present simultaneously and use the
recognizer to recognize the faces, using the next code snippet.
Before we recognize the face, we need to be able to detect
the faces in the images first. Let us use the popular pretrained
Haar feature-based cascade classifier from opencv-python
(namely, cv2.CascadeClassifier()) for frontal face detection.
Follow these steps:

1. Detect faces wusing detector.detectMultiScale()
function, which detects objects of different sizes in the
input image. The detected objects are returned as a list of
rectangles:

a. The parameter scaleFactor=1.2 specifies how much
the image size is reduced at each image scale.

b. The parameter minNeighbors=5 specifies how many
neighbors each candidate rectangle should have to
retain it.

2. Once a face is detected, the recognizer is used to



recognize the face, as shown in the next code snippet:

detector = cv2.CascadeClassifier( \
"models/haarcascade_frontalface default.xml")
im = cv2.imread('images/leaders.jpg")
img = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
print(im.shape)
# (190, 265, 3)
all faces = detector.detectMultiScale(img, scaleFactor=1.2, \
minNeighbors=5)
for (x,y,w,h) in all faces:
cv2.rectangle(im, (x,y), (x+w,y+h),(225,0,0),2)
id, conf = recognizer.predict(img[y:y+h,x:x+w])
cv2.putText(im,str(target_names[id].rsplit(' ', 1)[-1]), \
(x,y+h//5), cv2.FONT HERSHEY SIMPLEX, \
0.5, (0, 255, 0), 1, cv2.LINE_AA) # Draw the text
plt.figure(figsize=(10,10))
plt.gray()
plt.imshow(cv2.cvtColor(im, cv2.COLOR_BGR2RGB)), plt.axis('off")
plt.show()

If you run the preceding code snippet, you should obtain a
figure as follows:

Figure 6.12: Face detection/recognition with Haar Cascade/LBPH

As can be seen from the preceding figure, the faces are
recognized correctly by the recognizer.

Face feature extraction and recognition

using Gabor filter banks
In this section, we shall learn how to use the Gabor filter

banks extracted from face images for face recognition. As
before, there are two steps: feature extraction and



recognition.

Feature extraction with Gabor filter
bank

Gabor filters are widely used for detecting edges and texture
variations in an image. When a Gabor filter is applied to a
specific feature, it produces a prominent response at the
spatial location of that feature. This is particularly useful when
working with convolution kernels in the spatial domain. Each
Gabor filter consists of two components: a real part and an
imaginary part, which represent orthogonal orientations.
These components can be combined into a complex number or
used separately, depending on the specific application, to
capture different directional information, as illustrated in the
following figure:

The Gabor Filter

Complex

glz,y; A, 0,9, 0,7) = exp(— %) exp (z’ (2'??:; - 1,!)))
Real |

gz, 1 A, 0,9, 0,7) = axp(— %) cos (2#% + 1,{':)
Imaginary

g(z, 45 M, 0,9, 0,7) = exp(-n%) sin (23% + 1;')
where 2’ = zcos@ + ysinfandy = —zsinf + ycosf.

Figure 6.13: Computing the Gabor kernels

Here, A is the wavelength = %,where f is the frequency) of the

sinusoidal wave, @ is the orientation, o is the standard
deviation of the Gaussian envelope, ¥ is the spatial aspect
ratio, and ¢ is the phase offset.



The Gabor filter bank is created by varying the parameters 2
and @ to capture different scales and orientations. This allows
the filters to respond to various features in the image, such as
edges and textures at different angles and frequencies. The
Gabor filter’s frequency and orientation characteristics closely
resemble those of the human visual system.

With scikit-image

Let us now explore how to compute Gabor filter banks using
the filters module from the library scikit-image. Gabor filters
are computed at 5 scales and 8 orientations, which convolve
each filter with the image to get 40 features (8 x 5 = 40); the
function build_filters() defined in the following code snippet
computes the filter bank using the function
skimage.filters.gabor kernel() (which expects frequency
and orientation as parameters) and then we visualize the
filters.

The different representations (response matrices) of the same
image generate a feature vector. Hence, a feature vector may
consist of mean/phase amplitude, local energy or orientation
corresponding to maximum energy. Now, refer to the next
code snippet:

from skimage.filters import gabor kernel
from scipy.signal import convolve2d

def build_filters():

freqs =[]

filters = []

for freq in np.arange(0.1,0.6,0.12):

for theta in np.arange(0, np.pi, np.pi / 8):

kern = np.real(gabor_kernel(freq, theta=theta))
filters.append(kern)

return filters

filters = build_filters()

i=1

plt.figure(figsize=(15,10))
plt.subplots_adjust(0,0,1,1,0.05,0.05)
for f in filters:




plt.subplot(5,8,i), plt.imshow(f), plt.axis('off")
i+=1
plt.show()

If you run the preceding code snippet, you should obtain a
figure as follows, displaying the Gabor filter bank computed:
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Figure 6.14: Gabor kernels with scikit-image

With opencv-python

Now, let us compute the Gabor filter bank again, but this time
using the function cv2.getGaborKernel(). The next code
snippet defines a function build_filters(), which returns a
filter bank and subsequently defines another function
process() that uses cv2.filter2D() to convolve the filters
obtained with input Lena image and compute the maximum
response of the filters:

import numpy as np
import cv2
import sys

def build_filters():
filters = []
ksize = 31

for theta in np.arange(0, np.pi, np.pi / 16):
kern = cv2.getGaborKernel((ksize, ksize), 4.0, theta, \
10.0, 0.5, 0, ktype=cv2.CV_32F)
kern /= 1.5*kern.sum()
filters.append (kern)
return filters

def process(img, filters):
accum = np.zeros_like(img)
for kern in filters:
fimg = cv2.filter2D(img, cv2.CV_8UC3, kern)




np.maximum (accum, fimg, accum)
return accum

img_fn = 'images/lena.jpg’
img = cv2.imread(img_fn)
filters = build_filters()

res = process(img, filters)
plt.imshow(cv2.cvtColor(res, cv2.COLOR_BGR2RGB))
plt.show()

If you run the preceding code snippet, you should obtain a
figure as follows:

50 100 150 200

Figure 6.15: Applying Gabor filter banks to Lena image

Face recognition with Gabor features

with opencv-python and scikit-learn

Once we know how to extract Gabor features from face
images using the filter banks, we are ready to use it for face
recognition. Let us use the ORL database of faces this time
(download from the following link:
https://www.kaggle.com/datasets/tavarez/the-orl-
database-for-training-and-testing and extract the faces
inside the images/orl folder), it contains 10 different images
for each of 40 distinct subjects (the pictures were captured at
different points in time, varying the lighting, facial expressions
and facial details.

Let us start our implementation by importing the required
libraries and reading the face images. Note that we shall use
only 90 faces from the downloaded dataset belonging to first 9


https://www.kaggle.com/datasets/tavarez/the-orl-database-for-training-and-testing

persons.

import matplotlib.pyplot as plt
import numpy as np

import cv2

from glob import glob

faces = sorted(glob(‘images/orl/* [1-9].jpg"))
len(faces)

Now follow the next steps to extract the Gabor features from
the face images and create a dataset ready to be used by a
supervised ML classification model:

1. Prepare filter bank kernels wusing the function
cv2.getGaborKernel(), as before.

2. The images are processed using the real components of
multiple Gabor filter kernels through the cv2.filter2D()
function. The mean and variance of the filtered outputs are
extracted as features, which are then wused for
classification, with the least squares error method
employed for simplicity. Hence, there are 2 features
generated for each of the 40 kernels, with a total of 80
features per face image, resulting in the dataset of size 90
x 80 (each column represents a feature).

3. The id/label of a person can be found from the last part of
the file name, as shown in the next code snippet:

ksize = 5
kernels = []

sigma, gamma = 1, 0.5
for freq in np.arange(0.1,0.6,0.12):
for theta in np.arange(0, np.pi, np.pi / 8):
kernel = cv2.getGaborKernel((ksize, ksize), sigma, theta, \
1/freq, gamma, 0, ktype=cv2.CV_32F)
kernels.append (kernel)
X = np.empty((0,2*len(kernels)))

y =1]
for imfile in faces:
im = cv2.imread (imfile, 0)
label = int( split(" H[-11[01)
features =[]
for kernel in kernels:




# Now filter the image and add values to a new column
fim = cv2.filter2D(im, cv2.CV_8UC3, kernel)
features.append(np.abs(fim).mean())
features.append(np.sumfim**2)) #fim.var())

X = np.append (X, np.array([features]), axis=0)

y.append (label)

4. Plot the filters from the filter bank computed:

X.shape, len(y)
#((90, 80), 90)
plt.figure(figsize=(8,5))
plt.gray()
foriin range(len(kernels)):
plt.subplot(5,8,i+1), plt.imshow (kernels[i]), plt.axis('off")
plt.show()

If you run the preceding code snippet, you should obtain a
figure as follows:

Figure 6.16: Gabor filter bank with opencv-python

5. Let us visualize how the Gabor features look like for a
single face image, using the following code snippet:

plt.figure(figsize=(15,10))

im = cv2.imread (faces[0], 0)

label = int(imfile.split(" )[-1]1[0])

i=0

plt.subplots_adjust(0,0,1,0.95,0.025,0.025)

for kernel in kernels:
#Now filter the image and add values to a new column
fim = cv2.filter2D(im, cv2.CV_8UC3, kernel)
plt.subplot(5,8,i+1), plt.imshow(fim), plt.axis('off")
i+=1

plt.show()

If you run the preceding code snippet, you should obtain a
figure as follows:



Figure 6.17: Applying Gabor filter bank on a face

6. Once the dataset is generated using (mean and variance
of) Gabor features, we can use our regular train-test
splitting of the dataset with the function train_test_split()
from scikit-learn’s model_selection module.

With random forest ensemble classifier

First, let us train a random forest ensemble classifier on the
training dataset using the
sklearn.ensemble.RandomForestClassifier(). The follow
the next steps:

1. Let us use the classifier (trained on the training split) to
predict the label (id) of a face from the test dataset, using
the following code snippet.

2. Evaluate the performance of the classifier on the unseen
test dataset, using accuracy and confusion matrix.

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import plot_confusion_matrix
import warnings

warnings.filterwarnings(‘'ignore"')

X_train, X _test, y_train, y_test, indices_train, indices_test =\
train_test_split(X, y, range(len(y)), test_size=0.25, random_state=1)

clf = RandomForestClassifier(max_depth=2, random_state=1)

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

print(‘accuracy: {}'.format(sum(y_pred==y_test) / len(y_test)))

# accuracy: 0.8260869565217391

plot_confusion_matrix(clf, X_test, y_test)




| plt.show()

The following figure shows the confusion matrix obtained (on
the unseen test dataset) with the random forest classifier:

FT4e
! 1

=

Tue labed

I T .
W& W & w8

(=11}

1 2 ¥ 4 % & 7 B 9
Predicied labe

Figure 6.18: Confusion matrix with random forest classifier

As can be seen, we obtained 82.6% accuracy on the test
dataset.

With 2-NN classifier

Now, let us use a different classifier, namely, a 2-nearest
neighbors (2-NN) classifier using the function
sklearn.neighbors.NearestNeighbors(). Plot the test
images, along with the ground-truth and the predicted labels
(ids), using the next code snippet:

from sklearn.neighbors import NearestNeighbors

neigh = NearestNeighbors(n_neighbors=2, radius=0.4)
neigh.fit(X_train)

nn_indices = neigh.kneighbors(X_test, 2, return_distance=False)
n = len(X_test)

plt.figure(figsize=(20,3))

plt.gray()

plt.subplots_adjust(0,0,1,0.95,0.05,0.05)

foriin range(n):
im = cv2.imread(faces[indices_test[i]], 0)
plt.subplot(2,n,i+1), plt.imshow(im), plt.axis('off")
plt.title('True: {}'.format(y_test[i]), size=12)
im = cv2.imread(faces[indices_train[nn_indices[i][0]]], 0)
plt.subplot(2,n,i+n+1), plt.imshow(im), plt.axis('off")
plt.title('NNbr: {}'.format(y[indices_train[nn_indices[i][0]]]), \

size=11)

plt.show()




If you run the preceding code snippet, you should obtain a
figure as follows:
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Figure 6.19: Ground-truth vs. predicted face label with 2-NN classifier

Pedestrian detection with HOG vs HAAR
Cascade features with opencv-python

In this section, we shall explore how to use pretrained
classifiers for people detection in an image using two different
types of features extracted from the image, namely, HOG and
HAAR.

Extracting HOG features

Histogram of Oriented Gradients (HOG) is a widely-used
feature descriptor in computer vision and image processing,
especially for object detection tasks. First introduced by
Navneet Dalal and Bill Triggs for pedestrian detection, HOG
has proven effective for identifying not only pedestrians but
also other objects such as animals, faces, and text. It works by
extracting gradient orientation histograms from an input
image, which describe the local features of objects. The HOG
descriptor can be computed using the following steps:

1. Gradient calculation: The gradient magnitudes and
orientations are computed for each pixel in the image.

2. Orientation binning: The image is divided into small
connected regions called cells, and for each cell, a
histogram of gradient orientations is created.

3. Block normalization: Cells are grouped into larger
blocks and the histograms are normalized within each
block to account for variations in lighting and contrast.



Pedestrian detection with HOG NMS

To perform pedestrian detection using HOG-SVM, you first
need to compute HOG descriptors, which capture gradient
and edge information in localized regions of an image, making
it ideal for detecting objects with distinct shapes, such as
pedestrians. The HOG descriptors are extracted by sliding a
fixed-size window (typically 64x128 pixels) across the image,
and for multi-scale detection, this process is repeated at
various scales of the image using a scale pyramid, where the
image is progressively scaled down.

Classification with the SVM model

The HOG features are typically computed by sliding a fixed-
size window, commonly 64x128 pixels, across the image. Since
objects in the image may appear at different scales, the HOG
computation is applied at multiple levels using a scale
pyramid. The image is scaled down repeatedly, with a scaling
factor between 1.05 and 1.2, until the window can no longer
fit within the frame. For each window, the HOG features are
extracted and passed to a binary support vector machine
(SVM) classifier. The SVM, trained to distinguish between
pedestrians and non-pedestrians, then predicts whether a
window contains an object of interest. If a pedestrian is
detected at any scale, the classifier returns a bounding box for
that region.

The following figure shows a typical HOG object (pedestrian)
detection workflow:



Positive Training Positive __, | Non-max |

Positive Training images E examples

| Y (Block Descriptors)

L ] 1 *
HOG Feature

Descriptor
Generator

ﬁqaﬁue Training images

SVM Train |

— =
| Learn SVM weighlsl

Classify
[

Support vector machine (SVM) Classifier

filLs Negative Training
examples
(Block Descriptors)

Potithe Nogatva?

D Sliding Window
(Block
Descriptor)

Training Flow

HOG Scale

ramid
Py Test Image

(Block
Descriptor) Test Flow

Figure 6.20: Schematic for pedestrian detection with HOG-SVM classifier

This method is more accurate than Viola-Jones Haar-
cascade detection but comes with higher computational
complexity due to the multi-scale analysis.

Computing Bounding-Boxes with HOG-
SVM

In this section, we will explore how to use the OpenCV library
in Python to detect pedestrians using HOG-SVM. The process
involves computing HOG descriptors for each sliding window
and using a pre-trained SVM classifier to predict the presence
of a person within the image. The detectMultiScale()
function in OpenCV simplifies this process by automatically
handling multi-scale detection and applying non-maximum
suppression (NMS) to eliminate redundant bounding boxes.

Let us start by importing the required libraries:



import numpy as np

import cv2

import matplotlib.pylab as plt

from imutils.object_detection import non_max_suppression

Follow the next steps, which explain the next python code
snippet in details:

1. Create a HOG descriptor using default people
(pedestrian) detector (with cv2.HOGDescriptor()).

2. Instantiate a pretrained SVM detector with the functions
cv2.HOGDescriptor_getDefaultPeopleDetector() and
setSVMDetector().

3. Given a pedestrian image, run detection on the image
with the function detectMultiScale(), using a spatial
stride (winStride) of 4 pixels (horizontal and vertical), a
scale stride of 1.02, and zero grouping of rectangles (to
demonstrate that HOG will detect at potentially multiple
places in the scale pyramid; precisely it detects 69
bounding boxes as shown in the next figure, see the output
of the next code snippet).

4. Draw bounding boxes on the image.

5. Next, use the function non _max suppression() from
imutils.object_detection module, in order to avoid
detection of the same object at multiple times and scales.
It will reduce the number of detections to 3.

6. You can also use MeanShift grouping to eliminate
multiple detections of the same object (set the boolean
argument useMeanshiftGrouping=True passed to the
function detectMultiScale()).

def draw_bounding boxes(img, found_bounding boxes, title):

img with_raw_bboxes = img.copy()

for (hx, hy, hw, hh) in found bounding boxes:
cv2.rectangle(img with_raw_bboxes, (hx, hy), \

(hx + hw, hy + hh), (0, 0, 255), 2)
img with raw_bboxes = cv2.cvtColor(img with_raw_bboxes, \




cv2.COLOR BGR2RGB)
plt.figure(figsize=(20, 12))
plt.imshow(img_with_raw_bboxes, aspect="'auto'), plt.axis('off")
plt.title(title, size=20)
plt.show()

img = cv2.imread("images/pedestrians.png")

hog = cv2.HOGDescriptor()
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())

(found_bounding boxes, weights) = hog.detectMultiScale(img, \

winStride=(4, 4), padding=(8, 8), scale=1.1, finalThreshold=0)
print(len(found_bounding boxes)) # number of boundingboxes
# 69
draw_bounding boxes(img, found _bounding boxes, \
'‘Boundingboxes found by HOG-SVM without grouping')

(found_bounding boxes, weights) = hog.detectMultiScale(img, \
winStride=(4, 4), padding=(8, 8), scale=1.1, finalThreshold=0)

print(len(found_bounding boxes)) # number of boundingboxes

# 69

found_bounding_boxes[:,2] = found_bounding_boxes[:,0] + \
found_bounding_boxes[:,2]

found _bounding_boxes[:,3] = found _bounding boxes[:,1] + \
found_bounding boxes[:,3]

found bounding boxes = non_max_suppression(found bounding boxes, \
probs = weights.ravel(), overlapThresh = 0.2)
found_bounding_boxes[:,2] = found_bounding_boxes[:,2] - \
found _bounding_boxes[:,0]
found_bounding_boxes[:,3] = found_bounding_boxes[:,3] - \
found_bounding_boxes[:,1]
print(len(found_bounding boxes)) # number of boundingboxes
# 3

draw_bounding boxes(img, found_bounding boxes, \
'Boundingboxes found by HOG-SVM after non-max suppression')

(found_bounding boxes, weights) = hog.detectMultiScale(img, \
winStride=(4, 4), padding=(8, 8), scale=1.01, \
useMeanshiftGrouping=True)

print(len(found_bounding boxes)) # number of boundingboxes

# 3

draw_bounding boxes(img, found_bounding boxes, \

'‘Boundingboxes found by HOG-SVM with meanshift grouping")

If you run the preceding code snippet and draw bounding



boxes on the extracted video frames after pedestrian
detection, you should obtain figures like the following ones

(results obtained without and with NMS suppression shown
separately):



Figure 6.21: HOG-SVM for pedestrian detection



HAAR-like features for HAAR Cascade

classifier

Haar-like features are effective in object detection, especially
for tasks like object detection (for example, face detection,
as demonstrated by the famous Viola-Jones algorithm). These
features operate by comparing the brightness of adjacent
rectangular regions within an image, capturing key patterns
such as edges, lines, and textures that are wuseful for
distinguishing objects. To efficiently compute Haar-like
features at various scales and locations, integral images are
used, allowing for rapid calculation in constant time, which is
a major advantage over other feature types.

Despite their speed, each Haar-like feature alone is weak,
meaning it only provides limited classification accuracy. To
accurately detect an object, such as a person, a large number
of these features are generated across all possible positions
and scales in the image. An AdaBoost ensemble classifier is
then employed during training to sift through the vast number
of features, selecting the most informative ones and
combining them into a robust detection model. Once the
model is trained, it uses these selected features to scan
regions of an image, identifying objects like faces or other
target items with high accuracy. This combination of fast
feature computation and strong ensemble learning makes
Haar-like features particularly powerful for real-time object
detection tasks.

Computing Bounding Boxes with HAAR-

Cascade classifier

Now, let us dive into the demonstration part. This time, first
demonstrate the pedestrian detection task using a pretrained
HAAR-Cascade-AdaBoost classifier:

1. Download the pre-trained model as an XML file from the
following link:



https://github.com/opencv/opencv/blob/master/data/h
aarcascades/haarcascade_fullbody.xml

2. Use the function cv2.CascadeClassifier() to perform the
actual object detection and compare it with HOG-SVM
detection, as shown in the next code snippet:

ped_cascade = cv2.CascadeClassifier('models/haarcascade fullbody.xml")

img = cv2.imread("images/pedestrians.png")

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

peds = ped_cascade.detectMultiScale(gray, scaleFactor=1.01, minNbr=3)
print(len(peds))

img_haar = img.copy()

HAAR-cascade vs. HOG-SVM in pedestrian
detection

Haar-cascade is faster but less accurate, while HOG-SVM
offers better accuracy and robustness at the cost of higher
computational demand.

Haar-cascade classifiers and HOG-SVM classifiers are both
widely used for pedestrian detection, but they have distinct
differences in performance and application. Haar-cascade
classifiers are faster due to efficient feature computation
using integral images, making them suitable for real-time
detection tasks. However, they can struggle with accuracy,
particularly in complex environments, and are sensitive to
variations in lighting and pose.

In contrast, HOG-SVM classifiers provide higher accuracy by
capturing detailed shape and texture information through
gradient analysis. They are more robust to changes in lighting,
pose, and background clutter, making them more reliable for
pedestrian detection in complex scenes. However, HOG-SVM
is computationally more intensive, leading to slower
performance than Haar-cascade.

Now let us compare these two approaches using the next code
snippet:

|(found_bounding_boxes, weights) = hog.detectMultiScale(img, \ |


https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_fullbody.xml

winStride=(4, 4), \
padding=(8, 8), scale=1.01, \
useMeanshiftGrouping=True)
print(len(found_bounding boxes)) # number of bounding boxes
#3
# copy original image to draw bounding boxes on it for now, as we'll
# use it again later
img_hog = img.copy()
for (hx, hy, hw, hh) in found bounding boxes:
cv2.rectangle(img_hog, (hx, hy), (hx + hw, hy + hh), (0, 0, 255), 2)

for (x,y,w,h) in peds:
img_haar = cv2.rectangle(img_haar, (x,y),(x+w,y+h),(0,0,255),2)

plt.figure(figsize=(15,7))

plt.subplots_adjust(0,0,1,0.95,0.05,0.05)

plt.subplot(121)

plt.imshow(cv2.cvtColor(img_haar, cv2.COLOR_BGR2RGB)), plt.axis('off")
plt.title('Pedestrian detection with HAAR-Cascade-AdaBoost', size=20)
plt.subplot(122)

plt.imshow(cv2.cvtColor(img_hog, cv2.COLOR_BGR2RGB)), plt.axis('off")
plt.title('Pedestrian detection with HOG-SVM-NMS', size=20)
plt.tight_layout()

plt.show()

If you run the preceding code snippet, you should obtain a
figure like the following one, which shows pedestrian
detection with HAAR-Cascade-AdaBoost vs HOG-SVM:

Pedestrian detection with HAAR-CasCade-AdaBoost

Pedestrian detection with HOG-5VM-NMS

Figure 6.22: Pedestrian detection with Haar-Cascade vs. HOG-SVM

As can be seen from the preceding figure, both HAAR-
Cascade-AdaBoost and HOG-SVM detected all persons in the
pedestrian image. Try these person detectors on videos and
compare the performances in terms of accuracy and time
complexity.

Conclusion



This chapter continued to explore diverse techniques for
feature extraction and their practical applications. It
commenced with a detailed discussion on the creation of
panoramas, including image stitching and video stitching
(using OpenCV-Python), that demonstrates the practical
applications of feature-based image alignment in producing
seamless and immersive visual content. NMF is introduced as
a tool for extracting face features, showcasing its utility in
tasks related to facial image analysis. Face recognition
techniques (with hand-crafted features) are covered
extensively, employing LBPH features with OpenCV-Python.
Additionally, the application of Gabor filter banks for face
feature extraction and recognition further enriches the
chapter, emphasizing the diversity of approaches available.
The chapter concludes with a comparative analysis of
pedestrian detection methods, pitting HOG against HAAR
Cascade features with OpenCV-Python. The exploration of
HOG NMS and the comparison of HAAR Cascade versus HOG
SVM provide valuable insights into object detection strategies.

Key terms

Panorama, NMF, face recognition, LBPH, Gabor filter, HOG,
HAAR Cascade, SVM.

Questions

1. Feature extraction from deep neural nets: The deep
neural networks learn hierarchical representations, which
allows them to capture both local and global features.
Lower layers tend to focus on local details, while higher
layers aggregate information to recognize more complex
structures that may span the entire input.

Use pretrained models (for example, torchvision models
trained on imagenet dataset) to extract the deep features



(embeddings) from the last layer prior to the classification
layer. Use the following cats and dogs images to extract
the deep features for each of them:

Figure 6.23: Cats and dogs input image for deep features instruction

For example, you can use the deep neural net architecture
ResNet50 to extract a 2048 dimensional vector
embedding corresponding to each image. Next, use the
dimension reduction technique t-
distributed_stochastict-distributed stochastic
neighbor embedding (TSNE) - feel free to wuse
sklearn.manifold module’s implementation, to reduce the
embedding corresponding to each images to 2 dimensions
and use scatterplot to visualize the images in the projected
dimensions. Overlay the images on top, corresponding to
their reduced 2D coordinates.

You should obtain a figure like the following one; the cats
and dogs are clearly separated even in the low dimensional
embedding, as can be seen:
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Figure 6.24: Classifying cats and dogs images with ResNet embedding / T-SNE
visualization

2. Semantic image search engine: Use deep image
features to search similar images. Download the Kaggle
fast food dataset from  the following  link:
https://www.kaggle.com/datasets/utkarshsaxenadn/fa
st-food-classification-dataset. The following figure
shows a few sample images from the dataset (you may
want to reduce the dataset, for example, create a small
dataset with 81 pizzas, burgers and sandwiches, selected
randomly, to start with):


https://www.kaggle.com/datasets/utkarshsaxenadn/fast-food-classification-dataset
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Figure 6.25: Fast food Kaggle dataset for image search engine

Use a pretrained neural net (for example, EfficientNet) to
obtain the embeddings for the images and use a nearest-
neighbor algorithm (for example, ball tree from
sklearn.neighbors.NearestNeighbors) to find the nearest
embeddings from the search images and display the top k
(for example, k=5) similar images found, as shown in the
following figure (along with the NN-distance: lower the
distance, higher the similarity):
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Figure 6.26: Retrieving images using EfficientNet embeddings with image search

You can use your code to recommend similar food items to
customers. As you can see from Figure 6.26, querying with
a burger image returns 5 most similar food-item images
(by searching in the NN-embedding space), all but the last
image are burger images. The last image returned is
wrong; it is not a burger. Fine-tune the pre-trained model
on the training dataset to improve the accuracy of the
model, and test the accuracy (for example, with precision-5
metric) on the held-out test dataset.
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CHAPTER 7
Image Classification

Introduction

In this chapter, as well as the succeeding one, we shall transition from low-level
image processing tasks to the exciting realm of advanced computer vision, including
image classification, object detection/recognition, and high-level image
interpretation tasks. This chapter will provide a practical, in-depth exploration of
various topics in computer vision, guiding you through more complex concepts step
by step.

Image classification is a computer vision task that categorizes images by
automatically assigning predefined labels to them based on their visual content. It is
done by training machine-learning models to recognize image patterns or features,
allowing them to categorize new images into predefined classes. The goal of the task
is to teach machines to interpret and understand the content of an image and then
assign a class label, from a set of predefined labels or categories. It goes beyond
basic image processing since it focuses on high-level semantic understanding or
categorization.

To classify images with classical supervised machine learning classification models,
handcrafted features (like HOG, SIFT) are first extracted from images, and then the
classification models (for example, SVM, KNN, random forest) used for
classification. They learn statistical relationships between the (handcrafted) features
and the corresponding class labels (in training phase), which enables the models to
classify new (unseen) images based on similar feature patterns (in test phase). In
contrast, the deep learning models, particularly Convolutional Neural Networks
(CNN), can learn hierarchical features automatically from raw pixel data,
eliminating the need for manual feature extraction. Popular CNN architectures
include LeNet-5, AlexNet, VGG16, residual networks (ResNet), and
EfficientNet, which have demonstrated high accuracy in various computer vision
tasks. Deep learning has gained widespread popularity in the past decade due to its
superior performance in image classification and related tasks.

Structure

This chapter focuses on the following topics:
* Classifying Fashion-MNIST images using machine learning models with scikit-



learn

* Classifying Fashion-MNIST images using deep learning models with
tensorflow/keras

* Image classification with pretrained models with tf.keras

* Image classification with custom classes using transfer learning with pytorch

Objectives

This chapter aims to provide a comprehensive understanding of image classification
techniques, from traditional machine learning to state-of-the-art deep learning
approaches. Through practical examples, you will learn to classify Fashion-MNIST
images using machine learning models with scikit-learn and deep learning models
with tensorflow and keras. Next you will learn how to use pre-trained models with
tensorflow/keras for efficient classification tasks and implement transfer learning
using pytorch to build custom classifiers for specific applications. By the end of the
chapter, you will be equipped with the knowledge and skills to apply various image
classification methods to diverse image datasets and problem domains.

Classifying Fashion-MNIST images using machine
learning models with scikit-learn

Fashion-MNIST is a dataset that provides a more challenging alternative to the
classic MNIST dataset, which consists of handwritten digits. Fashion-MNIST
contains grayscale images of different types of clothing and accessories, with each of
the images labeled with one of ten product types (classes). This dataset is often used
for benchmarking image classification algorithms and offers a more realistic
scenario for testing machine learning models.

In this section, we will explore how to perform image classification using the
Fashion-MNIST dataset using scikit-learn, a powerful and accessible machine
learning library in Python. We shall cover the theoretical aspects of image
classification, the mathematical foundations behind classification algorithms, and
provide practical examples with working code.

Understanding the Fashion-MNIST dataset

The Fashion-MNIST dataset is similar to the MNIST dataset of handwritten digits
but consists of images of fashion items. Each image is a 28 x 28 pixel grayscale
image, and there are 10 classes of clothing items, including:

* Ankle boot
* Bag

* Coat

* Dress

e Pullover

* Sandal

e Shirt



e Sneaker
» T-shirt/top
e Trouser

The dataset consists of 70,000 images, each image is labeled with its corresponding
class.

This section explores how to perform image classification on the Fashion-MNIST
dataset using scikit-learn. The goal is to predict the type of clothing or accessory in
the image. You will learn:

* How to train a machine learning model on the images from a training split

* Use the model to predict the labels (classes) for the images from the held-out
test split

* Evaluate the performance of the model (for example, how well it generalizes) on
the unseen data using the accuracy metric.

Now follow the given steps to implement image classification with ML models:

1. Let us start the implementation by importing the following required libraries,
modules, and functions, as done in the following code snippet:

a. urllib.request.urlretrieve: Downloads files from the internet.

b. gzip: Provides functionalities to work with gzip compressed files.

c. os: Offers a way to interact with the operating system, such as checking file
existence.

d. numpy: A fundamental package for numerical computations in Python, used
here for array manipulations.

e. scipy.stats.multivariate_normal: Used for multivariate normal
distributions.

f. matplotlib.pyplot: Used for creating visualizations and plots.

g. warnings.simplefilter: Configures warning filters to  ignore
FutureWarnings, the required libraries, modules, and functions.

Now, the following code snippets demonstrate how to train a few popular
classification models on Fashion-MNIST training dataset and evaluate those models
on the test dataset, by comparing the ground-truth labels with the ones predicted by
the classification models:

%matplotlib inline

import gzip, os

import numpy as np

from scipy.stats import multivariate_normal

from urllib.request import urlretrieve

import matplotlib.pyplot as plt

import warnings

warnings.simplefilter(action='ignore', category=FutureWarning)

Here are the steps you need to follow:

1. Data downloading: Use the function download() to download the Fashion-
MNIST dataset files from the specified URL. Invoke the function to obtain the
training and test images. Here is the description of the function in details:

a. Purpose: Downloads a file from the specified URL.
b. Parameters:



i. filename: The name of the file to be downloaded.

ii. source: Base URL where the file is located. The default is the Fashion-
MNIST dataset URL.

c. Functionality: Constructs the full URL by appending filename to the base
source URL and downloads it using urlretrieve.

2. Data loading and preprocessing: There are two stages here:

a. Preparing the dataset: Before diving into classification, it is essential to
load and prepare the Fashion-MNIST dataset. scikit-learn does not directly
provide access to Fashion-MNIST, so we first need to download the data
from the specified link provided (http://fashion-mnist.s3-website.eu-
central-1.amazonaws.com/) and then process it for use with scikit-learn
classification models.

b. Feature extraction and preprocessing: Before applying classification
algorithms, we need to preprocess the data. For image classification,
preprocessing typically involves:

i. Normalization: It involves rescaling pixel values to a specific range (such
as 0 to 1) to enhance the performance of machine learning algorithms.

ii. Flattening: It implies converting 2D images into 1D vectors, since most
traditional machine learning algorithms expect feature vectors as input.

C. Use the functions load_fashion_mnist_images() and
load_fashion_mnist labels() to load image and label data from the
downloaded files, for each of the training and test data splits, along with
performing the preprocessing required. The dataset comprises a total of
70000 images, split into 60000 training examples and 10000 test examples.

d. Now, let us understand the function load_fashion_mnist_images() in detail:
i. Purpose: Loads the image data from a Fashion-MNIST file.

ii. Parameters: This is filename, that is, the name of the file containing the
image data.

iii. Functionality: Checks if the file exists locally. If not, it downloads it. It
also opens the file using gzip for reading and then reads the file into a
numpy array, skipping the first 16 bytes of header information
(offset=16). It reshapes the data to a 2D array where each row is a
flattened 28x28 image (784 pixels), and normalizes the data to have values
in between 0 and 1.

e. When loading the image data, you need to skip past the header of the
compressed .gz file to access the actual pixel values. The offset parameter in
np.frombuffer is used to specify how many bytes to skip from the start of the
file before starting to read the data.

i. For images: The header is 16 bytes long. Therefore, you use offset=16 to
start reading the pixel data immediately after the header.

ii. For labels: The header is 8 bytes long. Therefore, you use offset=8 to
start reading the label data immediately after the header.



Now, refer to the next code snippet:

# downloads a MNIST data file from zalandoresearch website
def download (filename, \
source="http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/'):
print("Downloading %s" % filename)
urlretrieve(source + filename, filename)

# Invokes download() if necessary, then reads in images
def load_fashion_mnist_images(filename):
if not os.path.exists(filename):
download (filename)
with gzip.open(filename, 'rb') as f:
data = np.frombuffer(f.read(), np.uint8, offset=16)
data = data.reshape(-1,784)
data = data / data.max() # normalization
return data

def load_fashion _mnist_labels(filename):
if not os.path.exists(filename):
download (filename)
with gzip.open(filename, 'rb') as f:
data = np.frombuffer(f.read(), np.uint8, offset=8)
return data
train_data = load_fashion_mnist_images('train-images-idx3-ubyte.gz")
train_labels = load_fashion_mnist_labels('train-labels-idx1-ubyte.gz")
test_data = load_fashion_mnist images('t10k-images-idx3-ubyte.gz")
test_labels = load_fashion_mnist_labels('t10k-labels-idx1-ubyte.gz")
print(train_data.shape)
# (60000, 784) ## 60k 28x28 handwritten digits
print(test_data.shape)
# (10000, 784) ## 10k 28x28 handwritten digits

The 10 classes include items such as T-shirts/tops, trousers, pullovers, dresses,
coats, sandals, shirts, sneakers, bags, and ankle boots, as follows:

products = ['T-shirt/top', "Trouser', 'Pullover', 'Dress', 'Coat’, \
'Sandal’, 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

print(len(products))

#10

3. Visualization: The function show_image(x, label) displays an image given its
1D vector representation. The function also does the following things:

a. Reshapes the flattened image x data back to a 28x28 pixel format.
b. Uses matplotlib.pylab imshow() function to display the image in grayscale.
c. Sets the title of the plot to the corresponding label description from products.
d. Removes axis labels for clarity.

The next code snippet performs the following steps:
a. Iterates over the first 100 test images.

b. Visualizes the image using the function show_image() and the ground-truth
labels with the image title.

c. Uses plt.subplot() to arrange these images in a 10x10 grid.

d. Applies plt.tight_layout() to adjust spacing and plt.show() to display the
plot.

def show_image(x, label):
plt.imshow(x.reshape((28,28)), cmap=plt.cm.gray)
plt.title(products[label], size=15)
plt.axis('off")

plt.figure(figsize=(20,20))
foriin range(100):



plt.subplot(10, 10, i+1)
show_image(test_datali,:], test_labels[i])
plt.tight layout()
plt.show()

If you run the preceding code snippet, you should obtain a figure like the next one:
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Figure 7.1: Sample test images with labels from the Fashion-MNIST dataset

Classification with machine learning models

A machine learning model is a mathematical or computational framework that learns
patterns and relationships from data, enabling it to make predictions or decisions
without explicit programming. Training and test datasets are crucial components in
machine learning and statistical modeling. Figure 7.2 shows the basic machine
learning pipeline that we shall use. The two main phases in the pipeline are as
follows:

« Training: During the training phase, a machine learning model learns patterns,
relationships, and features from the labeled examples in the training dataset. The
model adjusts its parameters based on the input features and their corresponding
labels to reduce the gap between the predicted and actual outcomes (that is,
class labels).

« Evaluation: The held-out test dataset, distinct from the training dataset, is used
to evaluate the ability of the model to generalize on new, unseen examples (must
not be used for training to avoid overfitting), by comparing the model-predicted
labels against the ground-truth labels.



Machine Learning Pipeline
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Preprocess (e.g., GaussianNaiveBayes Classifier)
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Model Predictions on Test Data

v_pred = model.predict(X_test)

Model Evaluation on Test
(with EvaluationMetric e.g., accuracy)

(X_test, y_test)

mean(y_pred == y_test)

Figure 7.2: Machine learning pipeline

Using scikit-learn, we shall now navigate through the implementation of Fashion-
MNIST images classification with a few classification models listed as follows and
apply these models one-by-one to classify the image dataset:

* Gaussian Naive Bayes

e Stochastic Gradient Descent (SGD)

* Random forest

Gaussian Naive Bayes model

The Gaussian Naive Bayes model assumes that the likelihood of the features given
the class P(X|Y) follows a multivariate Gaussian (normal) distribution. The naive
aspect refers to the assumption that the features are (conditionally) independent of
each other, given the class.

For a feature vector X = (xq,%5,...,X,) and a class Y =y, the probability density
function (PDF) of the multivariate Gaussian distribution is given by:

n
2m)Z oy \To-1ry_
P(X | Y=:V)=We (X-ny) 23" (X-ny)

Where, My is the mean vector for class ¥, 2y is the covariance matrix for class ¥, | 2y |
is the determinant of 2,,.

Naive assumption: The naive part of Gaussian Naive Bayes comes from assuming
that the features Xi,X3,...,Xy are conditionally independent given the class y. This
simplifies the covariance matrix 2y to a diagonal matrix, with the variances of



individual features on the diagonal.

During training, the model estimates the parameters (“y and 2y) for each class
based on the training data.

During prediction, the model uses the Bayes theorem (as shown) to compute the

posterior probability (for each of the class labels) and assigns the class with the
highest probability as the predicted class:

PX|Y)P(Y
P(YlX)=(;,T))()

Which implies:
PY=y|X)xP(X|Y=y)P(Y =y)
(up to a normalization constant)

Where P(Y | X) is the posterior probability of class Y given the features X, P(X | Y)
is the likelihood of the features given the class, P(Y) is the prior probability of class
Y, and P(X) is the probability of the features.
In summary, Gaussian Naive Bayes leverages Bayes theorem with the assumption
of Gaussian distribution for feature likelihoods and naive independence to make
predictions in a computationally efficient manner. The model is particularly useful
for continuous feature spaces. Gaussian Naive Bayes is a generative model
because it models the joint probability distribution P(X,Y) by learning P(X|Y) and
P(Y), allowing it to generate data samples for each class.
The next code snippet shows how we can classify Fashion-MNIST images using a
Gaussian Generative Model, specifically with the Gaussian Naive Bayes classifier
(in this case, we have n = 784 dimensional feature vector X). Here is how it works:

1. Import the modules:

a. First import the function time from the library time. This function is used to
measure the time elapsed during training/prediction.

b. Import the class GaussianNB from sklearn.naive_bayes. This is the Naive
Bayes classifier based on Gaussian distributions. The underlying assumption is
that the features are normally distributed.

2. Train the model:

a. start = time() records the current time just before starting the training
process. This is used to measure how long the training process takes.

b. GaussianNB(var_smoothing=1e-2) instantiates a Gaussian Naive Bayes
classifier (GaussianNB class) with the value of the var_smoothing
parameter as 1 x 10~2. This is a regularization parameter; it is used to avoid
numerical instability (prevents division by zero) by adding a small value to the
variance of each feature. This helps ensure that variance estimates do not
become zero, which is particularly useful when working with features that
may have very small variance.

c. clf.fit(train_data, train_labels) trains the Gaussian Naive Bayes classifier
(clf) on training data (train_data), using the training labels (train_labels).



d. end = time() records the current time immediately after the training process

is completed. Now end - start will give you the time taken to train the model.
3. Visualize the learned means:

a. plt.figure(figsize=(20,8)) creates a new figure with a size of 20 inches by 8
inches, suitable for displaying multiple images.

b. Loop over each of the 10 product classes from the list of products.

c. plt.subplot(2,5,i+1) creates a subplot in a 2 x 5 grid (2 rows and 5 columns)
for each class, positioning each subplot according to i + 1.

d. plt.imshow(np.reshape(clf.theta [i], (28,28)), cmap=plt.cm.gray)
displays the mean image for class i. The mean image is obtained from
clf.theta_, which contains the mean of the features (pixel values) for each
class. np.reshape(clf.theta_[i], (28,28)) reshapes this mean vector into a
28 x 28 pixel image. The cmap=plt.cm.gray argument sets the color map to
grayscale.

e. plt.axis(‘off') hides the axis for each subplot to focus on the image itself.

f. plt.title(productsli], size=20) sets the title for each subplot to the name of
the class from the products list, making it clear which class the displayed
mean image corresponds to.

g. plt.show() displays the figure with all the subplots.

Now refer to the next code snippet:

from time import time
from sklearn.naive_bayes import GaussianNB

start = time()

clf = GaussianNB(var_smoothing=1e-2)
clf.fit(train_data, train_labels)

end = time()

print(‘Training Time: {} seconds'.format(end-start))

plt.figure(figsize=(20,8))
for i in range(len(products)):
plt.subplot(2,5,i+1)
plt.imshow(np.reshape(clf.theta_[i], (28,28)), cmap=plt.cm.gray)
plt.axis('off")
plt.title(productsl[i], size=20)
plt.show()

If you run the preceding code snippet, you should obtain a figure as follows:
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Figure 7.3: Mean image for each class label from Fashion-MNIST with Gaussian Naive Baysian classifier




Now, predict the labels for the test images using the trained Gaussian Naive Bayes
classifier, by computing P(Y|X) that is, Prob(label|image) for each (test image, label)
pair (using the predict() method) and measure the time taken to compute the label
to be predicted. Compute the accuracy of prediction (proportion of test images for
which the labels are correctly predicted by the model, that is, the predicted labels
are identical to the ground-truth labels), using the next code snippet. Here is a
detailed explanation of how it works:

1. Measuring prediction time:

a. start = time(): Records the current time just before making predictions with
the classifier. This helps in measuring how long it takes to make predictions
on the test dataset.

b. test_predictions = clf.predict(test_data): Uses the trained Gaussian Naive
Bayes classifier (clf) to predict the labels for the test dataset (test_data). The
predict method returns an array of predicted labels for each test sample.

c. end = time(): Records the current time immediately after making
predictions.

d. print('Prediction Time: {} seconds'.format(end-start)): Calculates the
total time taken for prediction by subtracting start from end, and prints this
time in seconds. This provides insight into the efficiency of the model during
inference.

2. Evaluating prediction accuracy:

a. errors = np.sum(test_predictions != test_labels): Calculates the number
of misclassified predictions. It compares the predicted labels
(test_predictions) with the actual labels (test_labels) and counts the
number of mismatches. test_predictions != test_labels produces a Boolean
array where true indicates an incorrect prediction and np.sum() then counts
the number of true values corresponding to the number of errors.

b. print("The GaussianNB (generative model) makes " + str(errors) + "
errors out of 10000"): Prints the total number of errors made by the
Gaussian Naive Bayes classifier out of 10,000 test samples. The actual number
of errors is inserted into the string to be output.

3. Calculating and printing accuracy:
t_accuracy = sum(test_predictions == test_labels) / float(len(test_labels)):

a. test_predictions == test_labels: Produces a Boolean array where True
indicates a correct prediction and False indicates an incorrect one.

b. sum(test_predictions == test_labels): Counts the number of correct
predictions (the number of True values).

c. sum(test_predictions == test_labels) / len(test_labels): Calculates the
classifier’s accuracy by dividing the number of correct predictions by the total
number of predictions made.

d. t_accuracy: Stores the accuracy value, representing the proportion of
correct predictions from all test samples.

In summary, the next code snippet evaluates the performance of the trained



Gaussian Naive Bayes classifier on the test dataset:

start = time()

test_predictions = clf.predict(test_data)

end = time()

print('Prediction Time: {} seconds'.format(end-start))

errors = np.sum(test_predictions != test_labels)
print("The GaussianNB (generative model) makes " + str(errors) + \
" errors out of 10000")

t_accuracy = sum(test_predictions == test_labels) / len(test_labels)
t_accuracy

As can be seen from the preceding code, around 67% accuracy is obtained on the
test dataset using the GaussianNB classifier, which is not good. Let us try a few
more models to see if the accuracy improves.

Linear classifier with SGD training

The SGDClassifier in scikit-learn is an implementation of a linear classifier using
SGD optimization. It is a variant of the traditional gradient descent algorithm that
processes a single (randomly selected) training example at a time, updates the
parameters (weights) using the gradient of the loss computed, making it particularly
suitable for large datasets.
The goal of the classifier is to determine the optimal weights for a linear decision
boundary that demarcates the classes in the input space. Let us go through the key
mathematical concepts involved in SGDClassifier:
* Linear model: The SGDClassifier is based on a linear model that makes
predictions using the following equation for binary classification (with two
classes present):

o Decision function: f(x) = sign(w - x + b)
Here w is the weight vector, x is the input feature vector, b is the bias term,
w - x + b represents the dot product and sign(-) is the sign function defined as

follows:
-1 ifx<0
sign(x) =10 ifx=0
1 ifx>0

The decision function outputs the sign of the linear combination of input
features and weights, determining the predicted class.

o Loss function: The optimization process involves minimizing a loss
computing the prediction error (that is, the difference in between predicted
and true labels). In the case of SGDClassifier, the loss function typically used
for binary classification is the hinge loss. For a sample with the ground truth
(true label) ¥ and classifier-predicted score f(x), the hinge loss is defined as:

Ly, f(x)) = max(0,1 —y - f(x))
* Regularization: To prevent overfitting, the SGDClassifier often includes a
regularization term in the objective function. The regularization term encourages
the model to use smaller weights. The two common types of regularization used



are L, regularization (Lasso) and L, regularization (Ridge). The regularized
objective function becomes:

J(w) = Hinge Loss + a.Regularization Term,
Where a is the regularization strength, J(w) being the objective function.

* SGD: The optimization is performed using SGD. The update rule for the weight
vector in each iteration is:

Wnew < Wora — 1 V] (Woiq)
Here 7 is the learning rate, VJ(w,,;;) is the gradient of the objective function with
respect to the weights.
The gradient is computed based on a single randomly chosen training example
(stochastic gradient). This randomness often helps the algorithm escape local
minima and makes it computationally efficient for large datasets.
Since the problem we are trying to solve is a multi-class classification problem (with
ten class labels) here, the One-vs-All (OvA) technique is used to train multiple
binary classifiers, each focusing on distinguishing one class from the rest. The final
class label is selected based on the binary classifier that outputs the highest
confidence score among all classifiers.
Performing prediction with linear classifiers using SGD training in scikit-learn
involves a series of steps, as shown in the following code snippet:

1. Start by importing sklearn.linear model.SGDClassifier.

2. Initialize and train the SGD classifier. Create an instance of the SGDClassifier
class and train it on your training data (with the fit() method). The default loss
function is hinge (for SGDClassifier and also for linearSVM classifier), but you
can adjust it based on your specific classification task. For example, here we
shall use the modified Huber loss instead, which is a smoothed variant that
combines both a quadratic and linear loss. It is defined as:

1
Huber(y, f(x)) = {5(1 —yfEh i yf@ 2 -1
—4yf(x),  if yf(x)<-1
The modified Huber loss works as follows:
a. When y.f(x) = —1, the loss is quadratic for predictions close to the boundary,
i.e., the error grows quadratically.
b. When yf(x) < —1 (meaning the classification is very wrong), the loss
transitions to a linear penalty to avoid overly penalizing large error.
The following figure shows what the loss functions look like:
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Figure 7.4: Loss functions

3. Measure the training time using the time() function and compute the difference
in time:

from sklearn.linear_model import SGDClassifier
params = dict({"loss":"modified_huber","penalty":"12"})
clf = SGDClassifier(**params)

start = time()

clf.fit(train_data, train_labels)

end = time()

print(‘Training Time: {} seconds'.format(end-start))
#Training Time: 140.620023727417 seconds

4. Make predictions: Use the classifier (trained on the training dataset) to make
predictions on your test set, using the method predict(), and also measure the
time required to predict:

start = time()

pred_labels = clf.predict(test_data)

end = time()

print('Prediction Time: {} seconds'.format(end-start))
#Prediction Time: 0.07095885276794434 seconds

5. Evaluate the model: Assess the performance of your model using the accuracy
metric. As can be seen from the following code snippet, the accuracy increased to
79.5%:

t_accuracy = sum(pred_labels==test_labels) / float(len(test_labels))
t_accuracy
#0.7958

6. This code snippet computes the confusion matrix using the function
confusion_matrix() from the library scikit-learn for the classification model,
and visualizes using the heatmap() function from the library seaborn.

a. cm = confusion_matrix(test_labels, pred_labels): Computes the
confusion matrix from the true labels (test_labels) and the predicted labels
(pred_labels). Here we have
i. test_labels: The actual labels of the test dataset.

ii. pred_labels: The labels predicted by the classifier for the test dataset.

b. cm: Confusion matrix, a 2D array (or matrix/table) that summarizes the
performance of a classification model, by showing the counts of true
positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN). It summarizes the results of the model’s predictions on a set



of data, providing insight into the model’s ability to correctly or incorrectly
classify instances.

7. For multiclass classification problems with more than two classes, the confusion
matrix is a square matrix where each row corresponds to the actual class, and
each column corresponds to the predicted class. The element at position (i, j) in
the table represents the number of samples with true label i and predicted label
j. In other words, each element in the matrix shows how often the model
predicted class j when the actual class was i.

8. The diagonal elements in the confusion matrix represent the number of correct
predictions for each class, while the off-diagonal elements represent
misclassifications, as shown in the next figure.

9. pd.DataFrame(cm, range(10), range(10)) converts the confusion matrix
array (cm) into a pandas DataFrame (df cm) for easier manipulation and
visualization.

10. sns.heatmap(df cm, annot=True, annot kws={"size": 8}, fmt="g")
creates a heatmap using the library seaborn to visualize the confusion matrix.
Here:

a. df cm: The DataFrame containing the confusion matrix.

b. annot=True: Adds the numeric values from the confusion matrix to each cell
in the heatmap.

c. annot_kws={"size": 8}: Sets the font size of the annotations to 8.

d. fmt="g": Formats the annotations to be displayed as general integers (not in
scientific notation).

from sklearn.metrics import confusion matrix
import pandas as pd
import seaborn as sns

cm = confusion_matrix(test_labels, pred_labels)

df cm = pd.DataFrame(cm, range(10), range(10))
sns.set(font_scale=1.2)

sns.heatmap(df_cm, annot=True,annot_kws={"size": 8}, fmt="g")
plt.show()

If you run the preceding code snippet, you should obtain a figure like the next one:
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Figure 7.5: Confusion matrix for the linear classifier

By following these steps, you can effectively perform prediction with linear
classifiers using SGD training in scikit-learn.

Random forest ensemble classifier



Random forest is an ensemble learning technique that creates several decision
trees and combines (for example, using majority voting) their predictions to enhance
accuracy and robustness. The basic building block of a random forest is decision tree
(a supervised machine learning / classification model that makes decisions by
recursively splitting data based on feature values, with each leaf node representing a
final prediction or outcome). Here is how a random forest model is created:

1. Bootstrap aggregating (Bagging): Random Forest employs a technique
called bagging. Multiple decision trees are trained on different subsets of the
training data, sampled with replacement (bootstrapping). Each tree sees a
slightly different perspective of the dataset, introducing diversity.

2. Feature randomization: At each split in a decision tree, a random subset of the
original features is considered. This prevents a single dominant feature from
influencing all trees and contributes to the ensemble’s diversity. The default
number of features to consider at each split is the square root of the total
number of features.

3. Prediction aggregation (Voting): For classification, each tree predicts a class,
and the final prediction is often determined by a majority vote.

4. Decision tree training: Given a dataset D with features X and labels Y, each
decision tree T; is trained on a bootstrapped sample D; from D. At each split in a
tree, a random subset of features is considered.

5. Voting/averaging: For classification, the final prediction J is determined by a
majority vote:

N
9 = argmax ) 1{Ti(X) =y}
Y=

6. Ensemble effect: The ensemble reduces overfitting and generalizes well to
unseen data by aggregating the predictions of multiple diverse trees. The
diversity comes from randomization and bootstrapping.

The model is less prone to overfitting compared to individual decision trees.
Random forest combines the strengths of multiple decision trees through bagging
and feature randomization to create a robust and accurate ensemble model. The
diversity introduced by the individual trees, coupled with the majority voting or
averaging mechanism, makes it a robust and widely used machine learning
algorithm.

Let us use the following steps for classification with the random forest classifier from
scikit-learn:

1. Create an instance of the RandomForestClassifier (imported from
sklearn.ensemble module) and train it on the training split obtained earlier,
using the method fit(). Measure the training time as earlier (compare with those
of earlier models).

2. Adjust the n_estimators parameter, which represents the number of trees in

the forest (for example, set n_estimators=100, as in the following code
snippet):

from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_estimators=100, max_depth=20, \
random_state=0)



start = time()

clf.fit(train_data, train_labels)

end = time()

print('Training Time: {} seconds'.format(end-start))

3. Use the classifier (trained on the training set) to make predictions on your test
set, using the method predict(). Measure the prediction time.

start = time()

pred_labels = clf.predict(test_data)

end = time()

print('Prediction Time: {} seconds'.format(end-start))

4. Assess the performance of your model using relevant evaluation metrics such as
accuracy and classification report.

a. classification _report: A function from the sklearn.metrics module that
generates a report showing the precision, recall, F1-score, and support for
each class in a classification problem.

b. classification_report(test_labels, pred_labels, target_names=products):
The arguments to the function are:

i. test_labels: The true labels for the test dataset.
ii. pred_labels: The predicted labels for the test dataset.

iii. target_names=products: A list of class names to display in the report.
This should match the class indices in test_labels and pred_labels.

c. Classification report output: The classification_report function generates

a report with the following evaluation metrics for each class:

i. Precision: The ratio of correctly predicted positive observations to the total
predicted positives. It answers the question: Of all the samples that were
predicted to be in class X, how many actually belong to class X? Precision is
calculated as:

TP

TP + FP

ii. Recall (sensitivity): The ratio of correctly predicted positive observations
to all observations in the actual class. It answers the question: Of all the
samples that actually belong to class X, how many were correctly predicted
to be in class X? Recall is calculated as:

Precision =

TP

TP+ FN

iii. F1-score: The harmonic mean of precision and recall. It provides a single
metric that balances both precision and recall. The F1l-score is particularly
useful when dealing with imbalanced datasets. It is calculated as:

Recall =

2 X Precision X Recall

Precision + Recall
iv. Support: The number of actual occurrences of the class in the dataset. It

indicates how many samples belong to each class.

F1-Score =



By following these steps, you can effectively evaluate the random forest classifier
from scikit-learn, on the test dataset, as shown in the following code snippet:

from sklearn.metrics import classification_report

print(classification_report(test_labels, pred_labels, \
target_names=products))

precision recall fl-score support

# H#*

# T-shirt/top 0.82 0.86 0.84 1000
Trouser 1.00 0.96 0.98 1000
Pullover 0.77 0.79 0.78 1000

Dress 0.87 0.91 0.89 1000
Coat 0.76 0.82 0.79 1000
Sandal 0.97 0.96 0.96 1000
Shirt 0.72 0.59 0.65 1000
Sneaker 0.93 0.95 0.94 1000
Bag 0.95 0.97 0.96 1000

Ankle boot 0.96 0.95 0.95 1000
accuracy 0.88 10000
macro avg 0.87 0.88 0.87 10000

#weighted avg 0.87 0.88 0.87 10000
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t_accuracy = sum(pred_labels == test_labels) / float(len(test_labels))

t_accuracy
#0.8751

As can be seen from the preceding result, the test accuracy improved to 87%. The
next code snippet plots the confusion matrix, which shows the correctly classified
test images, for each individual class, along the diagonal:

cm = confusion_matrix(test_labels, pred_labels)

df cm = pd.DataFrame(cm, range(10), range(10))
sns.heatmap(df cm, annot=True,annot_kws={"size": 10}, fmt="g")
plt.show()

If you run the preceding code snippet, you should obtain a figure like the next one:

Figure 7.6: Confusion matrix with random forest classifier

The following code snippet plots a few of the test images classified wrongly by the
model. The output is shown in the following figure, along with the true and predicted

labels for each image.

wrong_indices = pred_labels != test_labels
wrong_images, wrong_preds, correct_labs = test_data[wrong_indices], \
pred_labels[wrong_indices], test_labels[wrong_indices]

print(len(wrong_preds))

# 1249

plt.figure(figsize=(20,20))

plt.gray()

j=1

for i in np.random.choice(len(wrong preds), 81):
plt.subplot(9,9,j), plt.imshow(np.reshape(wrong_images[i],(28,28)))
plt.axis('off")




plt.title(products[wrong_preds[i]] + '->' + \
products[correct_labs[i]])
j+=1

plt.show()

If you run the preceding code snippet, you should obtain a figure as follows:

Figure 7.7: Fashion items wrongly classified with random forest classifier

Classifying Fashion-MNIST images using deep
learning models with tensorflow/keras

The need for better performance and accuracy in image classification tasks drives
the transition from traditional machine learning to deep learning models. As image
data becomes more complex and voluminous, traditional models often fall short due
to their reliance on manual feature engineering and limited capacity to capture
intricate patterns. Deep learning models offer a more robust and scalable solution
with their ability to automatically learn features and their hierarchical structure.

While traditional machine learning models have been valuable tools in the past, the
advent of deep learning has provided a paradigm shift in how we approach image
classification tasks. Error rates on the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) demonstrated dramatic improvements with the advent of deep
learning in 2012, and these improvements have continued since, as shown in the
following figure. Human performance, in contrast, achieves an error rate of
approximately 5%.
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Figure 7.8: ImageNet challenge visual recognition error rates
Source: https://www.researchgate.net/figure/Error-rates-on-the-ImageNet-Large-Scale-Visual-Recognition-
Challenge-Accuracy figl 332452649

Even for datasets such as Fashion-MNIST, which consist of relatively simple and low-
dimensional image data, deep learning models still offer superior performance and
efficiency, making them the preferred choice for achieving state-of-the-art results. In
this section, we shall explore how to harness the power of deep learning with
tensorflow/keras to classify Fashion-MNIST images and achieve high levels of
accuracy.

A neural network is generally considered a deep learning model when it has multiple
hidden layers (deep architecture), employs non-linear activation functions, can learn
hierarchical feature representations, requires substantial training data, and
necessitates significant computational resources. First, let us understand the basic
concepts and components of a deep convolutional neural network.

Convolution Neural Networks (CNN) are a type of deep neural network optimized
for handling structured grid data, like images. They utilize convolution layers to
autonomously learn and adaptively detect spatial patterns and feature hierarchies
from the input data, benefiting from parameter sharing (thereby reducing the
number of parameters), and increasing the field of view to capture broader
contextual information. Now, let us go over the basic concepts and building blocks of
CNN:

* Convolution operation: The core idea of a convolutional layer is to apply a set
of filters (kernels) to the input image. Each filter is a small matrix that slides over
the input image, performing element-wise multiplication and summing the results
to produce a feature map. Mathematically, the convolution operation can be
expressed as:

M-=1N-1
UKy = Y D 1G+iy+) KG)
i=0 j=0
Where:

o ] is the input image.
o K is the filter (kernel).


https://www.researchgate.net/figure/Error-rates-on-the-ImageNet-Large-Scale-Visual-Recognition-Challenge-Accuracy_fig1_332452649

o (x,y) denotes the position of the filter in the image.
o M and N are the dimensions of the filter.
e Activation function: After convolution, an activation function (such as ReLU) is

applied to introduce non-linearity into the model. The ReLU function is defined
as:

ReLU(x) = max(0,x)

This function helps the model learn complex patterns.

* Pooling layer: Pooling layers reduce the spatial dimensions of the feature maps,
helping decrease computation and control overfitting. The most common pooling
operation is max pooling, which retains the maximum value in a defined window.
Mathematically, for a 2x2 max pooling operation:

max-pool(x,y) = max{I(x,y),1(x + 1,¥), 10,y + 1),I(x + 1,y + 1)}
Where | is the feature map and (x, y) is the top-left corner of the pooling window.

* Fully connected layers: After several convolutional and pooling layers, the
output is flattened and fed into fully connected (dense) layers. These layers
perform classification based on the learned features.

* Dropout layer: A dropout layer is a type of regularization technique used in
neural networks to prevent overfitting and improve the model’s generalization to
unseen data. It operates differently during training and testing phases as follows:

o Training phase: During training, each neuron (or unit) has a probability P
(the dropout rate) of being dropped out (that is, the output is set to zero).
For example, if the dropout rate is 0.5 (or 50%), then each neuron has a 50%
chance of being dropped out during a particular forward pass. This dropout
rate is applied independently for each neuron and each forward pass.

o Testing phase: During testing (or inference), dropout is not applied. All
neurons are used, but their activations are scaled down by the dropout rate to
account for the fact that they were only active part of the time during training.
This scaling is done to maintain the balance of activations.

* Forward pass: Forward pass refers to the process of passing input data through
the neural network to obtain an output or prediction. This involves computing the
activations of each layer sequentially from the input layer to the output layer.
The forward pass can be understood as a layer-by-layer transformation of the
input, where each layer applies learned weights, biases, and activation functions
to extract increasingly abstract features until the final output is produced. Here
are the layers:

1. Input layer: The input data is fed into the input layer of the network.

2. Hidden layers: Each neuron in a hidden layer computes a weighted sum of
its inputs and applies an activation function to produce an output.

Mathematically, for a neuron j in layer I:

o _ n,0-1) ®
i



Where, W::(j{) are the weights, xf“” are the inputs from the previous layer, and
b}.(” is the bias term.

The activation function a}@ is applied: a}” = (r(zjm) where is the activation

function (for example, ReLU, sigmoid).

3. Output layer: The final layer computes the output or prediction of the
network. For a classification problem, this is typically a softmax activation
function to produce class probabilities, as shown in the following figure:
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Figure 7.9: Forward propagation in a feedforward neural network

* Backward pass: Backward pass is the process of propagating the error
backward through the network to update the weights and biases. This step
involves calculating the gradients of the loss function with respect to each weight
using the chain rule, as shown in the following Figure 7.10. The steps in the
backward pass are as follows:

1. Compute loss: Calculate the loss (or error) between the network’s
prediction and the actual target value using a loss function (for example,
cross-entropy loss for classification).

2. Compute gradients: Compute the gradient of the loss with respect to each
weight and bias in the network using the chain rule of partial derivatives.
This involves propagating the gradients backward from the output layer to the
input layer.

For each layer I: Compute the gradient of the loss function with respect to
the activation values 6}.(”:
0
o _ oL oL aaf oL 0]
' o' (%)

i T a0 A0
62), 6(1), azj ri‘zJf

Where ¢’ (zj(”) is the derivative of the activation function.

Compute the gradients for the weights wg) and biases b}l):
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The next figure summarizes the math equations corresponding to the update

of the weights in the neural network, in backward pass, with the backward
propagation algorithm:
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Figure 7.10: Math for neural-net weight update with backpropagation

* Backpropagation: Backpropagation is the algorithm used to perform the
backward pass efficiently. It is an optimization algorithm that leverages the
chain rule for partial derivatives to compute the gradients of the loss function
with respect to the weights and biases. The steps in backpropagation are as
follows:

1. Initialize gradients: Start with the output layer and compute the gradient of
the loss function with respect to the activations.

2. Propagate gradients backward: Use the chain rule to propagate these
gradients backward through the network, layer by layer.

3. Update weights and biases: Use an optimization algorithm (for example,
Gradient Descent or Adam) to update the weights and biases using the

computed gradients. For example, in gradient descent, the weight-update
equation is:

oL

3w,;j

Wij & Wi — 1
Where, 1 is the learning rate.

* Loss function and optimization: The model is trained by minimizing a loss
function [, using optimization algorithms like SGD or Adam. For multi-class



classification tasks (such as this one, since we have 10 class labels here), the
common loss function is categorical cross-entropy (also called softmax loss),
defined as:

C
Loss = — Z yilog(p;)

i=1
Where:

o ( is the number of classes.
0 Yi is the true label (one-hot encoded).
0 P; is the predicted probability for class i.

The next python code snippet uses tensorflow and keras to build, train, and
evaluate a CNN for classifying images from the Fashion-MNIST dataset. The code
demonstrates the complete pipeline, including loading data, preprocessing, defining
a CNN model, training, and evaluation.

Let us first import the required libraries using the following code snippet. The
following list explains the purpose of each library, module, class or function used:

* tensorflow as tf: Imports TensorFlow for deep learning tasks.

* fashion_mnist: The dataset module from Keras that provides the Fashion-
MNIST dataset.

* Sequential: A type of model in Keras where layers are stacked sequentially.
* Conv2D: Convolutional layer used for feature extraction from images.

* MaxPooling2D: Layer used for downsampling the feature maps.

* Dropout: Regularization layer to reduce overfitting.

* Flatten: Converts 2D matrices to 1D vectors.

* Dense: Fully connected layer used for classification.

* to_categorical: Converts integer labels to one-hot encoded vectors.

* matplotlib.pyplot: For plotting training and validation metrics.

* device_lib: Provides functions to list available devices like GPUs.

import tensorflow as tf

from tensorflow.keras.datasets import fashion_mnist

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, \
BatchNormalization, Flatten, Dense

from tensorflow.keras.utils import to_categorical

import matplotlib.pyplot as plt

from tensorflow.python.client device_lib

Note that graphics processing units (GPU) are used for training deep neural
networks, due to their ability to handle the massive parallelism and simultaneous
computations required by deep learning algorithms efficiently, leading to significant
speedups (otherwise, the training process can be very slow on CPUs). You are
recommended to create a notebook in Google colab
(https://colab.research.google.com/), run the code in this section there using
their GPU / TPU runtime, if you do not have GPU available on your local machine.

The function get_available gpus() can be used to retrieve the names of available
GPU devices, as shown in the next code snippet, where we have:

* device_lib.list_local_devices(): Lists all devices available to TensorFlow.



* x.name for x in local device_protos if x.device _type == 'GPU'": Filters out
only GPU devices.

Now, refer to the next code snippet:

def get_available_gpus():
local_device_protos = device_lib.list_local_devices()
return [x.name for x in local_device_protos if x.device_type == 'GPU']

print(get_available_gpus())

The following code snippet loads and preprocesses the Fashion-MNIST dataset,
creates a CNN model using keras Sequential API (with tf.keras.models) and
displays the summary of the model. Let us understand how it works in details (step-
by-step):

* tf.random.set_seed(221) sets the random seed for TensorFlow’s pseudo-
random generator, to ensure that the sequence of random numbers is consistent
across different runs of the code. This practice is crucial for achieving
reproducible results.

* fashion_mnist.load_data() loads the Fashion-MNIST dataset, splitting it into
training and test sets.

* Reshape and normalize: Here are the key functions:

o reshape((60000, 28, 28, 1)): Reshapes the training images to be 4D tensors
with shape (60000,28,28,1), where 60000 is the number of images, 28x28 is
the image dimension, and 1 represents a single-color channel (grayscale).

o astype(‘float32') / 255: Converts pixel values to float32 and normalizes
them to the range [0,1].

* One-hot encoding: One-hot encoding (OHE) is a method of converting
categorical labels into a binary matrix representation. Each class label is
represented by a binary vector where only one element is 1 (indicating the
presence of the class), and all other elements are 0 (indicating the absence of the
class).

* For Fashion-MNIST, there are 10 (product) classes. Thus, each label needs to be
converted into a vector of length 10. Here are couple of example OHE vectors
(from 10 possible unique vectors): class 0: [1,0,0,0,0,0,0,0,0,0], class 3:
[0,0,0,1,0,0,0,0,0,0]. We need to convert the training and test labels to OHE
representation in the following way:

o to_categorical(train_labels): Converts the class labels into a one-hot
encoded format for the training labels.

o to_categorical(test_labels): Similarly converts the test labels.
* Building the CNN model: Here,
o Sequential([...]): Defines a sequential model with layers stacked in the given
order.
o Conv2D(64, (3, 3), activation='relu', input_shape=(28, 28, 1)): First
convolutional layer with 64 filters of size 3x3, with ReLU activation function
and an input shape of 28x28 pixels with 1 channel.

0 MaxPooling2D((2, 2)): Applies max-pooling with a 2x2 window to reduce
the dimensions of the feature maps.



o0 Dropout(0.2): Applies dropout with a rate of 0.2 (20%) after the max-pooling
layer.

o Flatten(): Flattens the 3D output from the last convolutional layer to 1D.
o0 Dense(256, activation='relu'): Fully connected layer with 256 neurons and
ReLU activation.
o0 Dense(10, activation='softmax'): Output layer with 10 neurons for the 10
classes, uses the softmax activation function to produce class probabilities.
* Model architecture overview:

The function model.summary() prints a detailed summary of the model’s
architecture, including the layers, their output shapes, and the number of
parameters in each layer. This is particularly useful for understanding the
structure of the model and verifying that it has been built as expected.

Refer to the next code snippet:

# Reproducible output
tf.random.set_seed(1)

# Load and preprocess the Fashion-MNIST dataset
(train_images, train_labels), (test_images, test_labels) =\
fashion_mnist.load_data()

# Reshape and normalize the images
train_images=train_images.reshape((60000,28,28,1)).astype('float32')/255
test_images=test_images.reshape((10000,28,28,1)).astype('float32') /255

# One-hot encode the labels
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

# Build the CNN model
model = Sequential([
Conv2D(64, (3, 3), activation='relu’, input_shape=(28, 28, 1)),
MaxPooling2D((2, 2)),
Dropout(0.2),
Conv2D (256, (3, 3), activation='relu"),
MaxPooling2D((2, 2)),
Dropout(0.2),
Flatten(),
Dense(256, activation='relu'),
Dropout(0.4),
Dense(10, activation="'softmax")

D

model.summary()
#Model: "sequential"

#

# Layer (type) Output Shape Param #

# conv2d (Conv2D) (None, 26, 26, 64) 640

# max_pooling2d (MaxPooling2D) (None, 13, 13, 64) 0
# dropout (Dropout) (None, 13, 13, 64) 0

# conv2d_1 (Conv2D) (None, 11, 11, 256) 147712
# max_pooling2d_1 (MaxPooling2D) (None, 5, 5, 256) 0
# dropout_1 (Dropout) (None, 5, 5, 256) 0

# flatten (Flatten) (None, 6400) 0

# dense (Dense) (None, 256) 1638656

# dropout_2 (Dropout) (None, 256) 0

# dense_1 (Dense) (None, 10) 2570
ff=================================================================

#Total params: 1,789,578
#Trainable params: 1,789,578
#Non-trainable params: 0




The following figure shows the architecture of the model (dropout layers are
shown):
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Figure 7.11: Schematic diagram for Fashion-MNIST image classification with Keras sequential model

Let us deep dive into the next steps:
* Compiling the model:

not

o optimizer='adam' Specifies the Adam optimizer, which adapts learning

rates during training.

o loss='categorical_crossentropy': The loss function used for multi-class

classification with OHE labels.

o metrics=['accuracy']: Metrics to monitor during training and evaluation,

specifically accuracy in this case.
* Training the model:
o model.fit(): Trains the model on the training data.
o train_images and train_labels: Training data and labels.

o epochs=5: Number of epochs (iterations over the entire dataset) for training.

o batch_size=64: Number of samples per gradient update.
o validation_split=0.2: Fraction of training data to be used as validation
(20%).
* Evaluating the model:

data

o model.evaluate(): Evaluates the model’s performance on the test dataset.

o test_images and test_labels: Test data and labels.

o test_loss and test_accuracy: Loss and accuracy of the model on the test set.
o print(f'Test accuracy: {test_accuracy:.4f}'): Prints the test accuracy

formatted to four decimal places.
* Plotting training and validation accuracy:
o plt.plot(): Plots the training and validation accuracy over epochs.

o history.history['accuracy'l: Training accuracy recorded during training.
Validation accuracy recorded during

o history.history['val_accuracy']:
training.

o plt.xlabel() and plt.ylabel(): Label the x-axis and y-axis, respectively.

o plt.ylim([O0, 1]): Set the y-axis limits from 0 to 1.

o plt.legend(loc='lower right'): Adds a legend to the plot.



o plt.show(): Displays the plot.

The next code snippet complies the CNN model created previously, trains the model
on training dataset and evaluates the model on the held-out test dataset. As can be
seen, the accuracy on the held-out dataset with the deep learning model is more
than 90.3%, higher than the one obtained with the classical machine learning
models.

# Compile the model

model.compile(optimizer='adam’,
loss='categorical_crossentropy’,
metrics=['accuracy'])

# Train the model

history = model.fit(train_images, train_labels, epochs=5, batch_size=64, \
validation_split=0.2)

#Epoch 1/5

#750/750 [==============================] - 135 16ms/step - loss: 0.5117 -

#accuracy: 0.8145 - val_loss: 0.3266 - val_accuracy: 0.8827

#Epoch 2/5

#750/750 [==============================] - 11s 15ms/step - loss: 0.3381 -

#accuracy: 0.8767 - val_loss: 0.3064 - val_accuracy: 0.8877

#Epoch 3/5

#750/750 [==============================] - 95 12ms/step - loss: 0.2940 -

#accuracy: 0.8932 - val_loss: 0.2921 - val_accuracy: 0.8899

#Epoch 4/5

#750/750 [==============================] - 125 16ms/step - loss: 0.2659 -

#accuracy: 0.9023 - val_loss: 0.2563 - val_accuracy: 0.9066

#Epoch 5/5

#750/750 [==============================] - 135 18ms/step - loss: 0.2428 -

#accuracy: 0.9091 - val_loss: 0.2494 - val_accuracy: 0.9068

#313/313 [==============================] - 25 5ms/step - loss: 0.2633 -
#accuracy: 0.9030

# Evaluate the model

test_loss, test_accuracy = model.evaluate(test_images, test_labels)

print(f'Test accuracy: {test_accuracy:.4f}")

#Test accuracy: 0.9030

# Plot training and validation accuracy
plt.plot(history.history['accuracy'], label='accuracy")
plt.plot(history.history['val accuracy'], label = 'val_accuracy')
plt.xlabel('"Epoch")

plt.ylabel('Accuracy")

plt.ylim([0, 11)

plt.legend(loc='lower right")

plt.show()

If you run the preceding code snippet, you should obtain a figure like the next one:
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Figure 7.12: Increase in training/validation accuracy w.r.t. number of training epochs



Image classification with pretrained models with
tf.keras

Pre-trained models are deep learning models that have previously been trained on a
large dataset (for example, a few widely used datasets in computer vision:
ImageNet, CIFAR-10, CIFAR-100, MS COCO). These models can be used as is, for
classifying images into the categories they were trained on, or can be fine-tuned for
specific image classification tasks. The strength of pre-trained models lies in their
ability to capture high-level image features, making them highly versatile for various
image classification tasks.

Pre-trained models can offer a powerful approach to image classification,
significantly reducing the time and resources required to develop high-performing
models. Keras provides an accessible interface to these models, making it easier for
practitioners to leverage deep learning for their image classification tasks. Whether
used directly or as a starting point for fine-tuning, pre-trained models in keras can
accelerate the development of sophisticated image classification solutions.

Popular pre-trained models in tf.keras
tf.keras offers several state-of-the-art pre-trained models, including:

* VGG16 and VGG19: Models from the VGG team, known for their simplicity and
depth.

* ResNet50: A model from Microsoft, known for its residual connections, which
help in training very deep networks.

* InceptionV3: A model from Google, known for its efficiency and depth with
fewer parameters.

* MobileNet: Also from Google, designed for mobile and embedded vision
applications.

Using pretrained models for image classification

Image classification with pretrained models in tf.keras involves loading a pre-
trained model, adapting it to your specific task, and making predictions. Before
classification, images must be pre-processed to match the input format expected by
the model. This typically involves resizing the image and scaling pixel values. In this
example, we shall use several popular pre-trained models for image classification:
VGG16, VGG19, InceptionV3, ResNet50, MobileNet, and Xception.

This following Python code snippet demonstrates how to use several pre-trained
deep learning models from tf.keras for image classification. It involves loading
multiple models, preparing images for prediction, making predictions, and
visualizing the results. Here is a step-by-step explanation:

1. Import libraries and functions: The next code snippet imports necessary
libraries including keras, numpy for numerical operations, several pre-trained
models from tf.keras.applications (vggl6, vggl9, inception_v3, resnet50,
mobilenet, xception), and functions for image processing and visualization, for
example:

a. load_img, img_to_array: Functions for image preprocessing.



b. decode_predictions: Function to decode the predictions from the model into
human-readable labels on the model you are using.

import numpy as np

from tensorflow.keras.applications

import vggl6, vggl9, inception_v3, resnet50, mobilenet, xception

from tensorflow.keras.preprocessing.image import load_img

from tensorflow.keras.preprocessing.image import img_to_array

from tensorflow.keras.applications.imagenet_utils import \
decode_predictions

import matplotlib.pyplot as plt

import cv2

2. Load pretrained models: The following code snippet carries out the steps as
defined:

a. Loads several pretrained models (VGG16, VGG19, InceptionV3, ResNet50,
MobileNet, Xception) with weights trained on ImageNet dataset.

b. Instantiates the models from the corresponding list of model classes.
c. Displays the summary of the VGG16 model’s architecture.

vggl6_model = vgg16.VGG16(weights='imagenet')

# Downloading data from https://storage.googleapis.com/tensorflow/keras-

# applications/vggl6/vggl6_weights_tf dim_ordering_tf kernels.h5

# 553467096/553467096 [==============================] - 335 Qus/step

vggl6_model.summary()
#Model: "vggle"

#

# Layer (type) Output Shape Param #
ff=================================================================
# input_1 (InputLayer) [(None, 224, 224,3)] O

# blockl_convl (Conv2D) (None, 224, 224, 64) 1792

# blockl conv2 (Conv2D) (None, 224, 224, 64) 36928
# blockl_pool (MaxPooling2D) (None, 112, 112, 64) 0

# block2_convl (Conv2D) (None, 112, 112, 128) 73856
# block2_conv2 (Conv2D) (None, 112, 112, 128) 147584
# block2_pool (MaxPooling2D) (None, 56, 56, 128) 0

# block3 convl (Conv2D) (None, 56, 56, 256) 295168
# block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
# block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
# block3_pool (MaxPooling2D) (None, 28, 28, 256) 0

# block4_conv1l (Conv2D) (None, 28, 28, 512) 1180160
# block4 conv2 (Conv2D) (None, 28, 28, 512) 2359808
# block4 conv3 (Conv2D) (None, 28, 28, 512) 2359808
# block4 pool (MaxPooling2D) (None, 14, 14, 512) 0

# block5 convl (Conv2D) (None, 14, 14, 512) 2359808
# block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
# block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808
# block5_pool (MaxPooling2D) (None, 7, 7, 512) 0

# flatten (Flatten) (None, 25088) 0
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vggl9 model = vggl19.VGG19(weights='imagenet')

inception_model = inception_v3.InceptionV3(weights='imagenet')
resnet_model = resnet50.ResNet50(weights='imagenet')
mobilenet_model = mobilenet.MobileNet(weights='imagenet')
xception_model = xception.Xception(weights='imagenet')

3. Process and classify images: Executes the following steps, using the next
code snippet:

a. Iterate through a list of image filenames (that you want to classify).

b. For each image in the specified list, load the image (with the function
load_img()) and resize to the input size expected by the models (224x224
pixels for most models). The target_size parameter for the function should
match the input size expected by the model to be used.

c. Convert the image from a PIL Image to a numpy array (with img_to_array()
function) and adds an extra dimension to create a batch (using the function
np.expand_dims()), as tf.keras models expect inputs in batch form.

d. For each model, the image batch is preprocessed according to the
requirements of that model. This typically involves scaling pixel values in a
way that matches how the model was originally trained (use the method
preprocess_input()).

e. Classifying the image is as simple as calling the predict() method (running a
forward pass) on the model with the preprocessed image as input. The model
makes predictions on the input image, outputting the probabilities across all
(1000) ImageNet classes.

4. Decode predictions: The predictions (probabilities) are decoded into human-
readable class labels, with the top predictions (for example, top ) being extracted
for each model.

5. Visualization: For each of the input images, the following steps are executed:

a. The original image is resized for display and annotated with the top 5
predictions from each model, including the class labels and the associated
probabilities.

b. The image is annotated with text showing the top prediction for each model,
including the label and the probability score.

c. Uses cv2.putText() to add this information onto the image.

d. The annotated image is displayed using matplotlib, with the axis turned off
for clarity, using the following code snippet:

modules = [vgg16, vggl9, inception_v3, resnet50, mobilenet, xception]
models = [vggl6_model, vgg19_model, inception_model, resnet_model, \
mobilenet_model, xception_model]



for img in ['clock.jpg’, 'bee.jpg’, 'peacock.jpg’, \
'zebra.jpg’, 'elephant.jpg’, 'broccoli.jpg']:

img = 'images/' + img

# load an image in PIL format

original = load_img(img, target_size=(224, 224))
numpy_image = img_to_array(original)

image_batch = np.expand_dims(numpy_image, axis=0)

labels = {}
for i in range(len(modules)):
module, model = modules[i], models[i]
# prepare the image for the VGG model
processed_image = module.preprocess_input(image_batch.copy())
# get the predicted probabilities for each class
predictions = model.predict(processed_image)
labels[model.name] = decode_predictions(predictions)
numpy_image = np.uint8(img_to_array(original)).copy()
numpy_image = cv2.resize(numpy_image,(900,900))
y =40
for model in models:
cv2.putText(numpy_image, "{}: {}, {:.2f}".format(\
model.name, \
labels[model.name][0][0][1], \
labels[model.name][0][0][2]), \
(350, y), cv2.FONT _HERSHEY_SIMPLEX, 1, (255, 0, 0), 3)
y +=35
numpy_image = cv2.resize(numpy_image, (700,700))

plt.figure(figsize=[10,10])
plt.imshow(numpy_image)
plt.axis('off")

plt.show()

If you run the preceding code snippet, you should obtain a figure like the next one:
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Figure 7.13: Image classification with pretrained popular deep learning models

Image classification with custom classes using
transfer learning with pytorch

Pretrained models alone cannot classify custom classes they weren’t originally



trained on. To adapt them, transfer learning is used—this involves reusing a
pretrained model’s learned features and fine-tuning it on the new, task-specific
dataset. In this section, we shall demonstrate how to implement transfer learning
with pytorch, to perform image classification with custom classes. We shall use a
pretrained model as feature extractor and train a new classifier (for example, the
popular ResNet model) on top of it. Make sure you have pytorch installed (pip
install torch), before we start.

Understanding transfer learning

Transfer learning is a powerful technique in deep learning that involves starting
from a pretrained model and adapting it to a new, but related task. For image
classification, this means leveraging the knowledge a model has gained from a large
and diverse dataset like ImageNet and applying it to classification of images into
custom categories.

Transfer learning typically involves two main steps:

1. Feature extraction: In feature extraction, the pre-trained model’s layers are
frozen except for the final layer(s), which are replaced with new ones tailored to
the new task.

2. Fine-tuning: In fine-tuning, a part of the model, typically the last part (seldom
the entire model) is then trained on the new dataset, allowing the model to adjust
its weights to the new task.

PyTorch, a popular deep learning library, offers an accessible and efficient way to
implement transfer learning. This section will demonstrate transfer learning with
PyTorch for image classification with custom classes. The merits of transfer learning
are as follows:

* Efficiency: Training a deep learning model from scratch requires significant
computational resources and time. Transfer learning allows you to leverage
existing models to achieve high performance with less computational effort.

* Data requirements: Deep learning models generally require large amounts of
data to train. Transfer learning enables you to achieve high performance with
smaller datasets.

Setting up the environment

You need to run the codes in this section on Google Colab, use their GPU / TPU
runtime to speed-up the training process needed for transfer learning. First, we
need to prepare the dataset, as explained.

Uploading the Dataset

Follow the next steps for data uploading / extraction:

1. First download the compressed image dataset from Kaggle through the
following link: https://www.kaggle.com/amadeus1996/fruits-360-transfer-
learning-using-keras/data.

2. Upload the .tar file it to your Google Drive.

3. Mount your Google Drive, using the following commands:

from google.colab import drive
drive.mount("/content/drive")
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4. Extract the contents of the .tar file) containing image data, using the following
sequence of commands in a terminal shell (first uncomment them and then run):

| Itar -xvf /content/drive/MyDrive/256_ObjectCategories.tar

5. Then use the following three commands to create subdirectories within images
for each animal category:

‘ Imkdir images/goat!mkdir images/elk!mkdir images/raccoon

6. Use the final three commands to copy images from specific folders in the
extracted archive to their respective category directories:

Icp -r 256_ObjectCategories/085.goat/* images/goat
Icp -r 256_ObjectCategories/065.elk/* images/elk
Icp -r 256_ObjectCategories/168.raccoon/* images/raccoon

The dataset contains images of goats, elks, and raccoons—custom classes we aim
to classify using image classification with transfer learning.

Using the pretrained ResNet-18 model

The ResNet-18 model is a deep CNN that is part of the ResNet family (the
architecture shown in the following figure). It is designed to address some of the
challenges faced by very deep neural networks, such as vanishing gradients and
degradation of performance with increasing depth. It incorporates residual
learning to address training challenges associated with deep neural networks. Its
use of residual blocks with identity shortcuts makes it easier to train and
optimize, even though it has fewer layers compared to deeper models in the ResNet
family. Its architecture balances performance and computational efficiency, making

it a popular choice for various applications in computer vision. Refer to the following
figure:

ResNet-18 Architecture
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Figure 7.14: ResNet-18 model architecture

The following Python code snippet demonstrates how to use transfer learning with
pytorch to classify a custom image dataset. The code effectively demonstrates how
to leverage a pretrained ResNet-18 model using transfer learning to classify
images into custom categories with pytorch. Transfer learning allows for significant
improvements in model performance with relatively small datasets by fine-tuning a

model pretrained on a large and general dataset. The code can be broken down into
the following key steps:



1. Importing libraries:

import torch

import torch.nn as nn

import torch.optim as optim

from torch.optim import Ir_scheduler

import torchvision

from torchvision import datasets, models, transforms
import numpy as np

import os, time, copy

from shutil import copyfile

import matplotlib.pyplot as plt

2. Preparing dataset:

a. The function create_training_validation_dataset() organizes the image
dataset into training and validation sets.

b. It defines three classes (‘raccoon’, 'goat’, 'elk'), corresponding to the new
categories and creates separate directories for training and validation
datasets (images/train and images/valid, respectively) for each class.

c. It randomly splits the images for each class into training (80%) and
validation (20%) sets, copying the images into the respective directories
(using the function copyfile()).

Now, refer to the next code snippet:

def create_training validation_dataset():

classes = ['raccoon’, 'goat’, 'elk']
if not os.path.exists('images/train'):
os.makedirs('images/train')

for label in classes:
if not os.path.exists(os.path.join('images/train', label)):
os.makedirs(os.path.join('images/train’, label))

if not os.path.exists(‘images/valid'):
os.makedirs(‘images/valid")

for label in classes:
if not os.path.exists(os.path.join('images/valid’, label)):
os.makedirs(os.path.join(‘images/valid', label))

for label in classes:
images = os.listdir(os.path.join(‘images/', label))
train_indices = np.random.choice(len(images), \
int(0.8*len(images)), replace=False)

valid_indices = list(set(range(len(images))) - \
set(train_indices))
print(len(images), len(train_indices), len(valid_indices))
for index in train_indices:
copyfile(os.path.join(‘images/', label, images[index]),
os.path.join(‘images/train/', label, images[index]))
for index in valid_indices:
copyfile(os.path.join('images/', label, images[index]),
os.path.join('images/valid/', label, images[index]))

create_training_validation_dataset()
#140 112 28

#112 89 23

#101 80 21

3. Data augmentation and normalization:
a. Apply transformations to the training dataset, such as resizing, random



cropping, and horizontal flipping, in order to augment the data and help the
model generalize better.

b. Normalizes training and validation datasets using predefined mean and
standard deviation values to match the pretrained model’s requirements.
c. Applies data augmentation and normalization for training, but just
normalization for validation.
d. data_transforms: A dictionary defining different image transformations for
training and validation datasets.
4. Loading dataset:
a. Uses pytorch’s ImageFolder to load images from the directory structure,
applying the defined transformations (data_transforms).
b. Creates Dataloader objects for both training and validation datasets to
iterate over the data in batches.
c. data_dir: The directory where the image data is stored.
d. DataLoader: A dictionary mapping train and valid to DataLoader objects.
i. torch.utils.data.DataLoader: A pytorch class for loading data in batches
and managing shuffling and parallel data loading.
ii. batch_size=4: Number of samples per batch.
iii. shuffle=True: Shuffles the data at every epoch, which is generally used
for training to ensure varied mini-batches.
iv. num_workers=4: Number of subprocesses used for data loading. This
speeds up data loading by utilizing multiple CPU cores.
5. Setting up the computation device:
a. The training will be done on GPU. Otherwise, it will be too slow.
b. torch.device: Determines the device to be used for computation.
c. "cuda:0": Uses the first GPU if available.
d. "cpu": Falls back to the CPU if no GPU is available.
e. device: Stores the selected computation device. This ensures that the model

and data are moved to the appropriate hardware (for example, GPU in this
case) for training.

The following code snippet is part of a data preparation pipeline for training and
validating a deep learning model using pytorch. It sets up image transformations
for data augmentation, loads datasets from specified directories, creates data
loaders for efficient data handling, calculates dataset sizes, and selects the
appropriate computation device. This setup is crucial for training machine
learning models efficiently and effectively.

data_transforms = {

'train': transforms.Compose ([
transforms.Resize(224),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], \

[0.229, 0.224, 0.225])




'valid': transforms.Compose ([
transforms.Resize (256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], \

[0.229, 0.224, 0.225])

D,

}

data_dir = 'images'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), \
data_transforms[x]) for x in ['train’, 'valid']}
dataloaders = {x: torch.utils.data.Datal.oader(image_datasets[x], \
batch_size=8, shuffle=True, num_workers=4) \
for x in ['train’', 'valid']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train’, 'valid']}
class_names = image_datasets['train'].classes
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
device

. Visualizing the image:

a. The function next(iter(dataloaders['train'])) retrieves the next batch of
images (note that batch_size is 4 here) and their corresponding class labels
from the training data loader: inputs variable is a batch of images, and
classes variable contains the corresponding class indices.

b. torchvision.utils.make_grid(inputs): Combines a batch of images into a
single grid image, which is useful for visualizing multiple images at once.

c. The plt.imshow() function is designed to display a pytorch tensor as an
image using matplotlib. It also handles image normalization and
denormalization.

i. .numpy() converts the pytorch tensor to a numpy array.

ii. .transpose((1, 2, 0)) changes the array shape from (C,H,W) i.e.,
(channels, height, width) to (H,W,C), i.e, (height, width, channels) which is
required for displaying an image with matplotlib.pylab.

iii. Denormalize image: The mean and std (standard deviation) values are
used to reverse the normalization applied to the images.

iv. np.clip() ensures that pixel values are within the valid range [0,1] after
denormalization.

def imshow(inp, title=None):
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
plt.axis('off")
if title is not None:
plt.title(title)

inputs, classes = next(iter(dataloaders['train']))
out = torchvision.utils.make_grid(inputs)

plt.figure (figsize=(10,5))

imshow(out, title=[class_names[x] for x in classes])
plt.show()

print(class_names, classes)



|# [‘elk', 'goat', 'raccoon'] tensor([2, 0, 2, 1])

If you run the preceding code snippet, you should obtain a figure like the next
one:

['raccoon’, 'elk’, 'raccoon’, 'goat']

Figure 7.15: Sample training images

7. Training the model:
Now, it is the time to train. The next python code snippet defines a function
train_model() which will be used to train and validate a pytorch model (with
RestNet-18 backbone and pretrained ImageNet weights) over a specified
number of epochs. The function handles both training and validation phases,
updates the model weights, and tracks the best performing model, based on
validation accuracy. Here is a detailed explanation of each part of the code:

a. The function train_model() accepts the following arguments:

o0 model: The neural network model (with pretrained weights) to be trained
(using transfer learning).

o criterion: The loss function used to compute the loss.

o optimizer: The optimization algorithm used to update model
parameters.

o0 scheduler: A learning rate scheduler to adjust the learning rate during
training.

o num_epochs: The number of epochs for which the model will be trained.

b. Training initialization: The variable best_model_wts is initialized to the
current state dictionary of the pretrained model. It will be updated to hold the
weights of the best performing model during training. The variable best_acc
keeps track of the highest validation accuracy achieved.

c. Training epochs: It iterates through each epoch of training.

o if (epoch + 1) % 10 == 0: It prints the current epoch number and the
total number of epochs every epochs. This helps in monitoring the progress
of training without cluttering the output.

o if phase == 'train': It sets the model to training mode (using
model.train(), which enables behaviors specific to training, such as
dropout and batch normalization updates and so on), otherwise to the
evaluation mode (using model.eval()).

o inputs, labels = inputs.to(device), labels.to(device): It moves the data
to the computation device (CPU or GPU).

o optimizer.zero_grad(): Clears old gradients to prevent accumulation.



o with torch.set_grad_enabled(phase == 'train'): Enables gradient
calculation only if we are in the training phase.

o outputs = model(inputs): Performs a forward pass through the model.
0o _, preds = torch.max(outputs, 1): Retrieves predicted class labels
(corresponding to the highest probability).
o loss = criterion(outputs, labels): Computes the loss.
o if phase == 'train': It performs backpropagation and model parameter
update through optimization only in the training phase.
loss.backward(): Computes gradients.
scheduler.step(): Updates the learning rate.
optimizer.step(): Updates model parameters.

o running _loss accumulates the loss for the epoch and running_corrects
counts the number of correct predictions so far.

def train_model(model, criterion, optimizer, scheduler, num_epochs=25):

since = time.time()

best_model wts = copy.deepcopy(model.state_dict())
best_acc =0

for epoch in range(num_epochs):

if (epoch + 1) % 10 == 0:
print('Epoch {}/{}'.format(epoch + 1, num_epochs))
print('-' * 10)

for phase in ['train', 'valid']:

if phase == 'train':
model.train()
else:

model.eval()

running_loss, running corrects = 0, 0

for inputs, labels in dataloaders[phase]:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()

with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train":
loss.backward()
scheduler.step()
optimizer.step()
running _loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)

epoch_loss = running loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]

if (epoch + 1) % 10 == 0:
print('{} Loss: {:.4f} Acc: {:.4f}' .format( \
phase, epoch_loss, epoch_acc))
if phase == 'valid' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model _wts = copy.deepcopy(model.state_dict())

time_elapsed = time.time() - since

print(‘Training complete in {:.0f}m {:.0f}s'.format( \
time_elapsed // 60, time_elapsed % 60))

print('Best val Acc: {:4f}'.format(best_acc))



model.load_state_dict(best_model wts)

return model

d. Model preparation: sets up the model using the following steps:

i. models.resnetl18(weights=models.ResNet18 Weights.DEFAULT):
Loads the ResNet-18 model with weights pre-trained on ImageNet.

ii. Freezing and unfreezing layers: Freezes all the parameters
corresponding to all the layers, except the last fully connected (FC) layer
of the model by setting requires grad=False. This means that the
gradients for these parameters will not be computed during
backpropagation, and thus they will not be updated during training. It also
unfreezes the parameters of the final FC layer, allowing them to be updated
during training. This is typically done to fine-tune the model for a new
classification task with transfer learning.

iii. num_features = base_model.fc.in_features: Gets the number of input
features to the fully connected layer. This value corresponds to the number
of output features from the preceding layer in the network.

iv. base_model.fc = nn.Linear(num_features, 3): Replaces the existing FC
layer with a new one that has 3 output features. This is typically done to
adapt the model to a new classification task with 3 classes, that is, to match
the number of class labels in the custom dataset (3 in this case, namely,
goat, elk and raccoon).

v. Moves the model to the GPU if available.

e. Training setup: The following steps outline how the training process is set
up for image classification using transfer learning:

o Define a loss function (categorical cross-entropy loss, which is commonly
used for multi-class classification tasks, measuring the difference between
the predicted class probabilities and the true class labels) using the
function nn.CrossEntropyLoss() and an SGD optimizer.

i. Ir=0.01: Sets the learning rate to 0.01.

ii. momentum=0.9: Sets the momentum for the SGD optimizer.
Momentum helps accelerate gradient vectors in the right directions,
thus leading to faster convergence.

o Implement a learning rate scheduler to adjust the learning rate over
epochs.

i. Ir_scheduler.StepLR: LR scheduler that adjusts the learning rate by a
specified factor at regular intervals.

ii. step_size=10: Sets the number of epochs between each learning rate
decay.

iii. gamma=0.5: Sets the factor by which the learning rate will be

decayed. For example, if the learning rate is 0.01, it will be reduced to
0.005 after 10 epochs.

Refer to the next code snippet:



torch.set_warn_always(False)
torch.manual _seed(121) # set the random seed for reproducibility
base_model = models.resnet18\
(weights=models.ResNet18_Weights. DEFAULT)
# Freeze all layers
for param in base_model.parameters():
param.requires_grad = False

# Unfreeze last layer
for param in base_model.fc.parameters():
param.requires_grad = True

num_features = base_model.fc.in_features
base_model.fc = nn.Linear(num_features, 3)
base_model = base_model.to(device)

criterion = nn.CrossEntropyLoss()

# Observe that all parameters are being optimized

optimizer = optim.SGD (base_model.fc.parameters(), lr=0.01, \
momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs

exp_lIr_scheduler = Ir_scheduler.StepLR (optimizer, step_size=10, \
gamma=0.5)

o Train the model for a specified number of epochs (50), adjusting the
model’s weights based on the loss calculated on the training dataset and
evaluate the model’s performance on the validation dataset. As can be
seen from the output of the following code snippet, the highest validation
accuracy reported is over 93%:

base_model = train_model(base_model, criterion, optimizer, \
exp_Ir scheduler, num_epochs=50)
#Epoch 10/50

#train Loss: 0.4501 Acc: 0.8327
#valid Loss: 0.2535 Acc: 0.9306
#Epoch 20/50

#train Loss: 0.4113 Acc: 0.8292
#valid Loss: 0.2905 Acc: 0.9167
#Epoch 30/50

#train Loss: 0.4864 Acc: 0.7972
#valid Loss: 0.2858 Acc: 0.9028
#Epoch 40/50

#train Loss: 0.4445 Acc: 0.8078
#valid Loss: 0.2868 Acc: 0.9028
#Epoch 50/50

#train Loss: 0.5053 Acc: 0.7829
#valid Loss: 0.2809 Acc: 0.9028
#Training complete in 5m 55s
#Best val Acc: 0.930556

. Model evaluation and visualization: Here are the steps for evaluation of the
model on the held-out validation dataset, along with supporting visualization:

o Once the training is over, the best-performing model weights are saved and
reloaded later when further evaluation or inference (the mode is changed to
evaluation) is intended.

o The model’s predictions on the validation dataset are visualized with labels
annotated using the function visualize model(). It shows images from the
validation dataset, annotated by the predicted labels obtained by running a



forward pass on the model with the image as input), as shown in the
following code snippet. As can be seen from the following figure, all the 6
images are classified correctly by the model.

torch.save(base_model.state_dict(), 'models/resnet18 trans learn.pth')

base_model.load_state_dict(torch.load('models/resnet18 trans learn.pth’, \
map_location='cpu'))

base_model.eval()

def visualize_model(model, num_images=6):

model.eval()
images_so_far = 0

fig = plt.figure(figsize=(6,9))
plt.subplots_adjust(0,0,1,0.925,0.05,0.08)

with torch.no_grad():

for i, (inputs, labels) in enumerate(dataloaders['valid']):
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)

for j in range(inputs.size()[0]):
images_so_far +=1
plt.subplot(num_images//2, 2, images_so_far)
plt.axis('off")
plt.title('{}'.format(class_names[preds[j]]), size=15)
imshow (inputs.cpu().data[j])

if images_so_far == num_images:
plt.suptitle('predicted with Resnet-18 using transfer'
'learning’, size=15)
plt.show()
return

visualize_model(base_model)

If you run the preceding code snippet, you should obtain a figure like the next
one:
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Figure 7.16: Running inference with transfer learning

9. Testing with unseen images:

Finally, let us classify a few unseen test images using the model and visualize the
results obtained, using the following code snippet:

from PIL import Image

import glob

import torch.nn.functional as F
from torch.autograd import Variable

loader = transforms.Compose([

transforms.CenterCrop(224),

transforms.ToTensor(),

transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

D
plt.figure(figsize=(20,25))
plt.subplots_adjust(0,0,1,0.925,0.05,0.08)
plt.suptitle('Test images predicted with Resnet18 using
'transfer learning’', size=20)

i=1
for img in glob.glob('images/test/*.jpg"):

image = Image.open(img)

image = loader(image).float()

image = Variable(image, requires_grad=False)

image = image.unsqueeze(0)

out = base_model(image.to(device))

y_prob = F.softmax(out, dim=1)

prob, pred = torch.max(y_prob, 1)

plt.subplot(5,3,i), plt.imshow(Image.open(img)), plt.axis('off")

plt.title('{}, prob={:.4g}'.format(class_names[pred], \
round(prob.data.cpu().numpy()[0],3)), size=20)

i+=1

plt.show()




If you run the preceding code snippet, you should obtain a figure as follows:
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Figure 7.17: Classification with transfer learning (ResNet-18/ImageNet)

Once we finish running the code, the function torch.cuda.empty_cache() should be
used to free up unused memory in the GPU:

torch.cuda.empty_cache()

Conclusion

This chapter provided a comprehensive overview of image classification techniques,
starting with traditional machine learning models for classifying Fashion-MNIST
images using scikit-learn, followed by deep learning approaches with tensorflow
and keras. It explored the power of pre-trained models in tensorflow / keras, for
efficient and accurate classification and demonstrated the versatility of transfer
learning with pytorch for custom-class classification. By integrating these
techniques, readers can apply a wide range of image classification methods to solve
diverse real-world problems, from basic datasets to complex, domain-specific tasks.

Key terms

Image classification, pretrained model, transfer learning, VGG-16, ResNet.

Questions

1. Can the popular pretrained models (for example, models from VGG, ReseNet



family) be used to classify Fashion-MNIST images? If yes, how? Use transfer
learning and/or fine-tuning (for example, freeze last few layers of a model and
train on Fashion-MNIST to update weights) to classify the images and compare
the relative performances of the models against number of training epochs. You
should obtain a figure like the one from
https://www.researchgate.net/figure/Comparison-of-the-accuracy-rate-in-
the-Fashion-MNIST-dataset_fig5_351955214, as shown:

Comparison of the accuracy rate in the Fashion-MNIST dataset
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Figure 7.18: Accuracy of deep learning models for Fashion-MNIST classification
Source:
https://www.researchgate.net/publication/351955214 The_microscopic_visual forms_in_architectural_art _design_
following deep learning

2. While transfer learning and fine-tuning with PyTorch, train the model by
updating all the weight parameters of the CNN (without freezing any layer).
Does the validation accuracy improve? Play with hyperparameter tuning (for

example, change epoch, learning rate, batch size and so on) to observe the
impact on validation accuracy.
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CHAPTER 8
Object Detection and Recognition

Introduction

In the ever-evolving field of computer vision, object detection and recognition
play a crucial role in enabling machines to interpret and understand visual data.
These tasks form the backbone of many real-world applications such as autonomous
driving, security surveillance, medical imaging, retail analytics, and human-
computer interaction.

Object detection goes beyond simply identifying the presence of objects in an
image—it also localizes them by drawing bounding boxes around each detected
instance. For example, in a street scene, an object detection model can identify cars,
pedestrians, and traffic signs while indicating their precise positions in the image.
This dual task of classification and localization makes object detection a more
complex and powerful technique than recognition alone. A few popular and very
widely used object detection models include Single Shot Multibox Detector
(SSD), Faster R-CNN, Mask R-CNN, You Only Look Once (YOLO), RetinaNet,
and so on.

On the other hand, object recognition refers to the task of identifying and
categorizing objects in an image or video. It involves determining what objects are
present without necessarily providing precise locations. A key example is face
recognition, which identifies a person from known identities, while face
verification determines whether two face images belong to the same individual. A
facial recognition system can identify specific individuals in an image, even without
marking their exact positions. In contrast, object detection entails recognizing and
determining the positions of multiple objects within an image or video by drawing
bounding boxes around them. Object localization focuses on precisely locating a
single object within an image, while detection extends this concept by handling
multiple objects and assigning labels to each.

In the following sections, we will explore the principles and methodologies behind
object detection and recognition, demonstrate how to implement them using Python,
and review popular models and libraries. Whether you are a beginner seeking
foundational knowledge or an experienced practitioner exploring advanced tools,
this chapter will guide you through both the theoretical and practical aspects of
these vital computer vision tasks.



Structure

In this chapter, we will cover the following topics:
* Object detection with pretrained deep learning models
* Custom object detection with transfer learning using YOLOv4 DarkNet
* Selective coloring with Mask R-CNN
* Face verification with DeepFace
* Barcode and QR code detection with Python

Objectives

In this chapter, we delve into key applications of object detection and recognition
using Python and deep learning. You will learn how to perform object detection
using pretrained models and how to build a custom object detector using YOLOv4
with the DarkNet framework. The chapter also explores instance segmentation
through selective coloring using Mask R-CNN. We introduce face verification using
the DeepFace library, highlighting practical scenarios where determining whether
two face images belong to the same person is crucial. Finally, you will learn how to
detect barcodes and QR codes using specialized Python libraries. With a hands-on,
application-oriented approach, this chapter will equip you with essential tools and
techniques for solving real-world problems in visual recognition and detection.

Object detection with pretrained deep learning
models

Object detection is a crucial area of computer vision that deals with identifying and
localizing objects in images or videos. With the rise of deep learning, the accuracy
and efficiency of object detection have significantly improved and pretrained models
for object detection have become widely available, enabling developers to achieve
impressive results often without building models from scratch.
As discussed earlier, object detection combines two fundamental tasks in computer
vision:

* Classification: Recognizing what object is in the image.

* Localization: Identifying where in the image the object is located.
This task is challenging because it requires the system to not only detect objects but
also draw bounding boxes around them. Here are a few state-of-the-art object
detection models described as follows:

¢ Faster R-CNN: The Faster R-CNN model improves upon its predecessors, R-
CNN (which used a multi-stage pipeline with external region proposals) and Fast
R-CNN (which sped up detection by applying CNNs over the entire image), by
introducing Region Proposal Networks (RPNs). Region proposals are
candidate bounding boxes likely to contain objects, refined and classified later,
and traditional methods like selective search for generating region proposals,
whereas RPNs generate these proposals nearly cost-free by sharing full-image
convolutional features, making the system faster and more accurate, than



traditional methods like selective search (https://github.com/rbgirshick/py-
faster-rcnn).

* YOLO: The You Only Look Once (YOLO) model is a real-time, end-to-end object
detection model that frames detection as a single regression problem,
predicting bounding boxes and class probabilities simultaneously in one network
pass (https://github.com/AlexeyAB/darknet). YOLO has multiple versions
including YOLOvV1, v2 (YOLO9000), v3, v4, v5, v6, v7, v8, and specialized variants
like YOLO-NAS and YOLOX, each improving accuracy, speed, or usability.
Compared to the R-CNN family, YOLO is significantly faster due to its single-
stage architecture, while R-CNN variants are generally more accurate but slower
because of their region proposal and refinement steps.

¢ SSD: The SSD model is an efficient model that eliminates the need for a separate
object proposal generation step by predicting category scores and box offsets for
a fixed set of default bounding boxes using small convolutional filters applied to
feature maps (https://github.com/balancap/SSD-Tensorflow).

Here is a table comparing the key features of Faster R-CNN, YOLO, and SSD:

Feature Faster R-CNN YOLO SSD

Architecture type Two-stage (Region Single-stage (End-to-end Single-stage (End-to-end
Proposal + Detection) regression) detection)

Speed Slower (due to region Faster (real-time detection) |Faster (real-time, but
proposals and two stages) slightly slower than

YOLO)

Region proposal Uses RPN Does not use region Uses default boxes and
proposals; direct bounding |matching with object
box prediction aspect ratios

Detection quality High precision, better for |Lower precision for small Balances speed and
small objects objects, but high speed accuracy, good for

medium objects

Application Ideal for high accuracy in |Real-time applications like | Suitable for real-time
object detection, where autonomous driving, applications with good
speed is not the most surveillance accuracy
important

Training complexity Complex (needs two Simple (end-to-end training) |Moderate (single
separate networks, RPN network, but needs
and detection) multiple default boxes)

Real-time performance |Not real-time (slower than |Real-time (can process 30+ |Real-time (can process
YOLO and SSD) FPS) 30+ FPS)

Use case High accuracy, particularly |Fast detection for real-time |Balanced between speed
in fine-grained object applications and accuracy, often used
detection in mobile devices and

embedded systems

Popular variants Faster R-CNN, Mask R- YOLOv3, YOLOv4, YOLOvS5 |SSD300, SSD512
CNN (instance
segmentation)

Table 8.1: Comparison of Faster R-CNN, YOLO, and SSD
There are various pretrained deep learning models available for object detection,
each with unique characteristics. This section demonstrates object detection using
three popular (pretrained) models: MobileNet-SSD (with caffe/opencv-python),
YOLOv3 (with gluoncv/mxnet), and YOLOv8 (with ultralytics framework). In the
exercises you will be asked to demonstrate object detection in images using a Faster
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R-CNN pretrained model from torchvision / pytorch.

With MobileNet-SSD using opencv-python

One of the most efficient architectures for object detection tasks is MobileNet-SSD,
which balances speed and accuracy, making it ideal for mobile and real-time
applications on devices with limited computational resources, such as smartphones
and IoT devices. Let us first explore the architecture of MobileNet-SSD, its
advantages, and then we shall demonstrate how to use a pretrained model for object
detection using opencv-python.

MobileNet-SSD architecture

The following bullet points break down its key components and how they work
together:

* MobileNet: It is a lightweight deep neural network designed for mobile and
embedded vision applications. Unlike heavy models such as VGG or ResNet,
MobileNet uses depth-wise separable convolutions, which break down a
regular convolution into two separate operations:

o Depthwise convolution: Applies a single filter to each input channel (spatial
convolution).

o Pointwise convolution: Applies a 1x1 convolution to combine the outputs of
depthwise convolution.

o This architecture reduces computational costs significantly, making it suitable
for resource-constrained devices.

* SSD: SSD is an object detection algorithm that predicts both object classes and
bounding boxes in a single forward pass of the network. SSD divides the image
into a grid, and for each grid cell, it predicts multiple bounding boxes and the
probability of each class. Unlike Region Proposal Network used in other models
like Faster R-CNN, SSD eliminates the need for separate region proposals,
making it faster and more efficient.

* MobileNet-SSD: MobileNet-SSD combines the efficiency of MobileNet as a
backbone feature extractor with the SSD detection head. This combination
results in a lightweight, fast, and reasonably accurate object detection model
that is particularly useful for embedded systems, real-time video processing, and
applications with limited resources. The following figure shows the architecture
of a MobileNet -SSD object detector:

MolibeNet-Single Shot Multibox Detector (S5D)

Figure 8.1: MobileNet SSD architecture



Source: https:// www.mdpi.com/2078-2489/11/7/365
The next Python script uses a pretrained MobileNet-SSD model to perform object
detection on an image. Here are the steps in details:

1. Import the necessary packages: At the very outset, import the following
packages listed as follows (along with the purpose of using each of them), using
the next code snippet:

a. openv-python (cv2): For image processing and model loading.
b. numpy: For numerical computations.

c. imutils: For image resizing.

d. Pillow (PIL): For handling image drawing and text overlay tasks.

import cv2

from PIL import Image, ImageDraw, ImageFont
import imutils

import colorsys

import numpy as np

import matplotlib.pylab as plt

import time

2. Model and configuration: Define the path to the pre-trained MobileNet-SSD
model and its prototxt file to be used. Also set a confidence threshold to filter
out weak detections. The following explains each component:

a. prototxt: This defines the architecture of the MobileNet-SSD model.

b. model: This is the pre-trained MobileNet-SSD model trained on the COCO
dataset.

3. Labels and colors: MobileNet-SSD can detect different object classes. The
labels list defines a list of the class names, whereas the colors list defines a list
of unique Hue-Saturation-Value (HSV) tuples, one for each class.

a. labels: A list of class names that MobileNet-SSD can detect.

b. colors: Generate a unique color for each class label using HSV tuples,
making it easier to distinguish different objects in the image.

4. Loading the model: Load the pre-trained serialized MobileNet-SSD (caffe)
model from the disk using cv2.dnn.readNetFromCaffe() function, from
opencv-python. This loads both the model architecture and the pre-trained
weights of the model.

5. Preprocessing the input image: Load the input image using opncv-python’s
imread() function, resize it to a fixed width (while maintaining the aspect
ratio, i.e., the height is automatically adjusted so the image does not look
stretched or squished). Create a 4D blob —a batch of images formatted as
(batch_size, channels, height, width) for feeding into the deep neural network
model, using the function cv2.dnn.blobFromImage() which performs mean
subtraction and resizes the image to 300x300 pixels (which is the input size
expected by MobileNet-SSD).

6. Running object detection: Once the blob is created, pass it through the
network (run a forward pass) and get the detections, using the net.setInput()
and net.forward() methods.

7. Processing the detections: Loop over the detections to filter out weak ones
based on the confidence score.
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a. Confidence: Filter out detections with a confidence score below 0.3.

b. Bounding box: Calculate the bounding box coordinates for each detected
object.

8. Drawing bounding boxes and labels: Once the valid detections are obtained,
draw bounding boxes and labels on the image using PIL for better text
rendering, it ensures smoother text rendering compared to opencv-python’s
native putText() method.

9. Displaying the output image: Finally, display the image with the detected
objects. Figure 8.2 shows the annotated output image.
Now, refer to the next code snippet:

prototxt = 'models/MobileNetSSD_deploy.prototxt.txt'

model = 'models/MobileNetSSD_deploy.caffemodel'

conf = 0.3

labels = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",

"sofa", "train", "tvmonitor"]

HSV_tuples = [(x/len(labels), 0.8, 0.8) for x in range(len(labels))]
colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples))

net = cv2.dnn.readNetFromCaffe(prototxt, model)

image = cv2.imread('images/dog_cycle.jpg")

image = imutils.resize(image, width=400)

(h, w) = image.shape[:2]

blob = cv2.dnn.blobFromImage(cv2.resize (image, (300, 300)), 0.007843, \
(300, 300), 127.5)

net.setInput(blob)
detections = net.forward()

for i in np.arange(0, detections.shape[2]):

# extract the confidence

confidence = detections[0, 0, i, 2]

if confidence > conf:
# extract the index of the class label from the “detections”,
# compute(x, y)-coordinates of the bounding box for the object
idx = int(detections[O0, 0, i, 1])
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")

# draw the prediction on the image

label = "{}: {:.2f}%".format(labels[idx], confidence * 100)

color = tuple([int(255*x) for x in colors[idx]])

y = startY - 15 if startY - 15 > 15 else startY + 15

pil_im = Image.fromarray(cv2.cvtColor(image,cv2.COLOR_BGR2RGB))
thickness = (image.shape[0] + image.shape[1]) // 300

font = ImageFont.truetype("arial.ttf", 15)

draw = ImageDraw.Draw(pil_im)

label _size = draw.textsize(label, font)

if startY - label size[1] >= O:
text_origin = np.array([startX, startY - label_size[1]])
else:
text_origin = np.array([startX, startY + 1])
for i in range(thickness):
draw.rectangle([startX + i, startY + i, endX - i, endY - i], \
outline=color)

draw.rectangle([tuple (text_origin), tuple(text_origin + \
label size)], fill=color)

draw.text(text_origin, label, fill=(0, 0, 0), font=font)

del draw




image = cv2.cvtColor(np.array(pil_im), cv2.COLOR_RGB2BGR)

plt.figure(figsize=(10,8))
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), plt.axis('off")
plt.show()

If you run the preceding code snippet, you should obtain a figure as follows:

Figure 8.2: Detecting objects with pretrained MobileNet SSD

With Yolov3 using gluoncv and mxnet

In this section, we will demonstrate object detection using the powerful YOLOv3
model with the GluonCV toolkit and MXNet framework, which offers a high-level,
efficient, and flexible API with pre-trained state-of-the-art models for rapid
prototyping and deployment. As described earlier, YOLOvV3 is one of the most
popular end-to-end object detection models due to its balance between speed and
accuracy. It processes images in real time, making predictions in a single pass
through the neural network, hence the name You Only Look Once. We will now
explore the YOLOv3 architecture, highlight its advantages, and demonstrate how to
apply it to object detection tasks, with python code.

YOLOvV3 architecture

YOLOv3 is the third iteration in the YOLO series of object detection models,
designed to detect multiple objects within an image by predicting bounding boxes
and class probabilities. It works by dividing the image into a grid and generating
bounding box coordinates and class labels for each individual grid cell.

Unlike previous versions, YOLOv3 improves upon the following:

* Multi-scale predictions: YOLOv3 predicts boxes at three different scales,
allowing it to detect both small and large objects.

* Bounding box prediction: It predicts four coordinates for each bounding box
(x, y, width, and height) and uses anchor boxes to improve localization
accuracy.

* Feature extractor (Darknet-53): YOLOv3 uses Darknet-53 (a 53-layer CNN
built with residual connections and uses only 3x3 and 1x1 convolutions) as its
backbone, which is deeper and more powerful compared to earlier versions
(YOLOvV?2 uses Darknet-19).

The following figure shows the architecture of YOLOvV3:
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Figure 8.3: YOLOvV3 architecture
Source:
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Advantages of YOLOv3

The advantages of YOLOvV3 are:

* Speed: YOLOvV3 is known for its speed, making it suitable for real-time object
detection.

* High accuracy: While faster models may trade off some accuracy, YOLOv3
achieves a good balance between speed and precision.

* Single-stage detection: Unlike two-stage detectors (like Faster R-CNN),
YOLOv3 makes predictions in a single forward pass, improving inference time.

GluonCV and MXNet are open-source libraries that facilitate deep learning in
computer vision and general-purpose GPU-accelerated computing, respectively. The
following points provide a clearer overview of their features and roles in the deep
learning ecosystem:

* MXNet: Apache MXNet is a flexible, efficient, and scalable deep learning
framework that supports fast model training and inference. It is designed to be
both developer-friendly and performant, supporting a variety of programming
languages including Python, C++, Scala, and R. MXNet is particularly known for
its efficiency in both memory and computational speed, making it suitable for a
wide range of deep learning tasks on devices ranging from mobile phones to
distributed GPU clusters.

* GluonCV: GluonCV is a comprehensive toolkit for computer vision tasks, built on
top of the MXNet deep learning framework. GluonCV provides pre-trained
models for tasks like object detection, segmentation, pose estimation, and more.
MXNet is a flexible and efficient deep learning framework that supports dynamic
computational graphs, making it ideal for research and production applications.

Object detection with YOLOv3 with gluoncv
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In the following demonstration, we will use a pre-trained YOLOv3 model available in
GluonCV for detecting objects in an image. The next Python code snippet will allow
us to load a pre-trained YOLOv3 model, process an input image with the model, and
display the detected objects.

1. Installing the required libraries: To start, you need to install the gluoncv
library and mxnet (if they are not already installed). They can be installed using
pip install.

2. Importing the necessary packages: The next step is to import the required
modules from gluoncv and matplotlib:

a. gluoncv’'s model_zoo: Provides access to pre-trained models, including
YOLOvV3.

b. gluoncv’s data.transforms.presets: Includes utility functions to preprocess
input images according to the model’s requirements.

c. matplotlib.pylab: Used for displaying the result images.

Note: Dependency alert: GluonCV requires PyTorch versions =1.4.0 and <2.0.0. If your PyTor
version falls outside this range, you may need to upgrade using pip or conda.

from gluoncv import model_zoo, data, utils
from matplotlib import pyplot as plt

3. Loading the pre-trained YOLOv3 model: Load a pre-trained YOLOv3 model
with Darknet-53 as the backbone (using model_zoo.get_model()), which has
been trained on the PASCAL VOC dataset. Here yolo3_darknet53_voc refers to
the YOLOv3 model with Darknet-53 trained on the VOC dataset, which contains
object categories.

|net = model_zoo.get_model('yolo3_darknet53 voc', pretrained=True)

4. Preprocessing the input image: Load the input image and apply YOLOv3-
specific preprocessing using gluoncv’s preset transformation:

a. load_test(): This function handles image loading and resizing, converting the
image into the required input format for YOLOvV3.

b. short=512: Resizes the shorter side of the image to 512 pixels while
maintaining the aspect ratio (i.e., the ratio of an image’s width to its
height).

c. The preprocessed image is stored in the variable x, which will be used as
input to the model. The original image (in its resized form) is stored in the
variable img for visualization. As can be seen from the next code snippet, the
preprocessed image x has a shape of (1, 3, 512, 512):

x, img = data.transforms.presets.yolo.load_test('images/dog_cycle.jpg’, \
short=512)
print('Shape of pre-processed image:', x.shape)

5. Running object detection: Pass the preprocessed image x to the model and
run a forward pass (using the function net()), to get the class IDs, scores
(confidence), and bounding_boxs of detected objects:

a. class_IDs: Contains the predicted class IDs for each detected object.



b. scores: Contains the confidence scores for the predictions.

c. bounding boxes: Contains the coordinates of the bounding boxes for each
detected object.

6. Visualizing the results: Finally, we visualize the detected objects by drawing
bounding boxes and class labels on the image:

a. utils.viz.plot_bbox(): This utility function from the library gluoncv is used
to draw the bounding boxes and labels on the image.

b. img: The original image on which the bounding boxes are drawn.
c. bounding_boxes[0]: The bounding boxes predicted by YOLOvV3.
d. scores[0]: The confidence scores for each bounding box.

e. class_IDs[0]: The class IDs of the detected objects.

f. net.classes: The list of object classes that YOLOv3 was trained on.
g. linewidth=6: Sets the width of the bounding box lines.

h. fontsize=20: Sets the font size for the class labels.

7. Displaying the output: Use matplotlib.pylab to display the image with
bounding boxes. This will show the image with detected objects, each enclosed
by a bounding box and labeled with its predicted class and confidence score.

class_IDs, scores, bounding boxes = net(x)

plt.figure(figsize=(10,10))

utils.viz.plot_bbox(img, bounding_boxes[0], scores[0], class_IDs[0], \
class_names=net.classes,ax=plt.gca(), \
linewidth=6, fontsize=20)

plt.axis('off")

plt.show()

If you run the preceding code snippet, you should obtain a figure as follows:

Figure 8.4: Detecting objects using YOLOv3 with gluoncv

With YOLOvVS8 using ultralytics

In this section, we shall dive into YOLOvV8, one of the cutting-edge models in the
YOLO family, implemented through the ultralytics package. YOLOv8 improves upon
its predecessors by delivering faster inference, better accuracy, and a more
streamlined interface. This makes it suitable for both real-time and high-
performance object detection tasks.



We will explore the architecture of YOLOvV8, walk through the installation process,
and explain how to train, evaluate, and use the model for object detection in images.
To demonstrate its practical use, we will break down a Python code example step-by-
step.

YOLOvVS8 architecture

YOLOVS is one of the latest iterations of the YOLO series, continuing the tradition of
being one of the fastest and most accurate object detection models. YOLOvV8 has
been designed with significant enhancements in:
* Accuracy: YOLOv8 features better object localization and classification than
previous versions.

* Speed: With optimizations, YOLOvVS is faster, especially when using GPUs.

* Flexibility: It supports various input image sizes and can be deployed in both
CPU and GPU environments efficiently.

Ultralytics YOLOvV8 model types

The ultralytics package provides several YOLOv8 model sizes, ranging from
YOLOv8n (nano) for speed to YOLOv8x (extra-large) for accuracy. These model
sizes allow users to choose between fast inference or greater precision based on
their use case, as shown in the next figure:

Model Size Parameters (M) FIEg)P S S(I:::;l At(:s&r;)c y Use case
Real-time, edge
Fastest - ;
YOLOv8n Nano ~ 3.2M ~ 8.7B (~2ms) Lower devices, mobile
application
Drones,
embedded
YOLOv8s Small ~11.2M ~ 28.6B Fast (~3ms) |Moderate systems, speed-
critical tasks
General object
. Balanced detection with
YOLOv8m Medium ~ 25.9M ~ 78.9B (~5ms) Good balanced speed
and accuracy
Slower Industrial
YOLOvSI1 Large ~43.7M ~ 165.2B (~5ms) High automation,
security cameras
High-precision
YOLOVS Extra- ~68.2M ~ 257.8B Slowest Hiqhest applications,
vox Large ’ ’ (~12ms) g research,
medical imaging

Table 8.2: Speed vs. accuracy tradeoff for ultralytics YOLOv8 models

Advantages of YOLOvS8

The advantages of YOLOvVS are listed as follows:

* End-to-end model handling: It includes training, validation, and prediction all
in one API.

* Lightweight: The model YOLOv8n (nano) offers high-speed object detection
with low memory requirements.



* Ease of use: The model can be quickly deployed on various platforms, including
mobile and edge devices.

Object detection using YOLOv8 with python

Now, let us demonstrate how to use YOLOvV8 for object detection using the
ultralytics package. The next Python code snippet will be used to demonstrate
object detection with YOLOVS. Let us understand how it works:

1. Check for GPU availability: The function torch.cuda.is_available() returns
True if the system has a CUDA-enabled GPU, otherwise False.

2. Loading the YOLOv8 model: Import the YOLO module from the ultralytics
library and load the YOLOv8n (nano) model. The yolov8n.pt file is the pre-
trained model that is designed for lightweight and fast object detection. When
you call YOLO("yolov8n.pt"), the ultralytics library checks if yolov8n.pt exists
in the cache. If not, it automatically downloads the pretrained weights from the
official Ultralytics model hub. Then it loads the pre-trained YOLOv8n model,
which is optimized for speed and efficient inference.

3. Training the YOLOv8 model: The model is trained on the COCO8 dataset (a
tiny sample version of the COCO dataset provided by Ultralytics) for 100
epochs using the method model.train(), with images resized to 640x640 pixels.
The data argument to this function points to the dataset YAML file which
contains the dataset configuration. The device argument ensures the model runs
on a GPU if available, otherwise, it defaults to the CPU (you must train on GPU
to avoid very slow training: Use Google Colab if you don’t have a locally
configured CUDA-enabled GPU or an NVIDIA graphics card, as it provides free
access to powerful GPUs / TPUs for running deep learning models). Here is the
list of input arguments to the function:

a. data="coco8.yaml": This specifies the path to the dataset configuration file.
The coco8 dataset is a small subset of the COCO dataset, often used for quick
testing.

b. epochs=100: Sets the number of epochs for training the model. An epoch is
one complete pass through the entire dataset.

c. imgsz=640: Resizes images to 640x640 pixels during training to standardize
input size for better accuracy.

d. device=0: Runs training on GPU if available (0 refers to the first GPU). If no
GPU is available, it runs on the CPU.

The training process involves:

a. Loading the dataset as specified in the YAML file.

b. Training the model for the specified number of epochs.

c. Logging the training results, including metrics such as loss and accuracy.
Refer to the next code snippet:

import torch
print(torch.cuda.is_available())

from ultralytics import YOLO




model = YOLO("yolov8n.pt")

# Train the model
train_results = model.train(
data="coco8.yaml", # path to dataset YAML
epochs=100, # number of training epochs
imgsz=640, # training image size
device=0 if torch.cuda.is_available() else "cpu", # device to run on,
# i.e. device=0 or device=0,1,2,3 or device=cpu

)

Refer to the following figure to see how the training process progresses:

train: Scanning C:\My Books\BPB\Part2\Chapter 85\dstasets\cocoS\labels\train.cache... 4 images, @ backgrounds, 8 corrup
¢ Books\BPO\Part2\Chapter_05\dotasets\cocos)\labels\val.cache.., 4 images, 9 backgrounds, @ corrupt: 1
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Figure 8.5: Training YOLOvV8 with ultralytics

4. Evaluating the model: Once the model is trained, it is to be evaluated on the
validation dataset to measure its performance. The model.val() method runs
evaluation on the validation dataset and returns a dictionary of performance
evaluation metrics such as precision, recall, F1-score, mAP50 (mean average
precision at an IoU threshold of 0.50: it assesses the model’s accuracy in
detecting objects with at least 50% overlap with the ground truth), speed
metrics (including inference time, non-maximum suppression time) etc.
These metrics help to gauge how well the model has learned to detect objects.

5. Performing object detection on an image: Here, we use the trained YOLOv8
model to perform object detection on an input (test) image. The model processes
the image and outputs predictions, including bounding boxes, confidence scores,
and class labels for detected objects.

a. model("images/dog_cycle.jpg"): Performs object detection on the specified
image and returns the detection results.

b. results[0].show(): Displays the image with bounding boxes and class labels
drawn around the detected objects. YOLOv8 automatically handles
visualization using its built-in methods.



The detection process includes:
a. Preprocessing the input image (resizing, normalization, and so on.).
b. Running the image through the YOLOv8 model to predict bounding boxes and
class labels.
c. Drawing bounding boxes and displaying the results on the original image.

Let us now use the model (trained previously) for inference: use it to detect objects
in a test image, run a forward pass on the model with the test image as input, as
shown in next code snippet:

# Evaluate model performance on the validation set
metrics = model.val()

# Perform object detection on an image
results = model("images/dog_cycle.jpg")
results[0].show()

The following figure shows the annotated image obtained with detected objects. If
you run the preceding code snippet, you should obtain a figure as follows:
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Figure 8.6: Detecting objects using YOLOv8 with ultralytics

Custom object detection with transfer learning using
YOLOv4 Darknet

Pretrained object detection models may not always suffice because they are trained
on general datasets and may not recognize custom objects, making transfer learning
a good choice to adapt the model to new, specific classes. In this section, we shall
walk through the process of creating a custom object (raccoon) detector using
transfer learning with YOLOv4 in Google Colab (create a notebook at
https://colab.research.google.com/ and follow the steps listed as follows).
YOLOvV4 is again a highly efficient end-to-end object detection model, offering an
excellent trade-off between speed and accuracy. Follow the steps listed, to setup the
environment, train the model and test it on unseen images, using a dataset for
raccoon detection:
1. Setting up the environment: Start by cloning the YOLOv4 repository and
setting up dependencies in Google Colab (Google Colab is to be used to train the
model on GPU). YOLOvV4 is implemented in the Darknet framework, which we


https://colab.research.google.com/

will need to build from source.

2. Cloning the Darknet repository: Run the following command to clone the
official YOLOv4 Darknet GitHub repository:

!git clone https://github.com/AlexeyAB/darknet/
%cd darknet/

Using the preceding commands, first clone the Darknet repository into the
current working directory and then navigate to the Darknet directory.

3. Installing dependencies: Change the Makefile to enable GPU and opencv
and run make to create the darknet executable:

lapt install libopencv-dev python-opencv ffmpeg

4. OpenCV will help in image augmentation and other preprocessing tasks. Now,
let us modify the Darknet Makefile to enable GPU, CUDNN, and OpenCV:

Ised -i's/ =0/OPENCV=1/g' Makefile
Ised -i 's/GPU=0/GPU=1/g"' Makefile
Ised -i 's/ CUDNN=0/CUDNN=1/g"' Makefile

5. Build Darknet: After making these changes, build the Darknet framework
(using the command make as shown). This process will compile Darknet with
OpenCV, GPU, and CUDNN support, significantly speeding up training and
inference.

Imake

6. Downloading/preparing the dataset: In this step, we shall set up our dataset
for custom object detection. Start with a dataset of raccoon images, which are
annotated with bounding boxes for training YOLOv4 model. The (compressed)
dataset can be downloaded from this book’s GitHub repository
(https://github.com/sandipan/Book-
BPB600/blob/main/Chapter08/images/raccoons.zip , download it and unzip).
There are images containing one or more instances of the custom object
(raccoomn).

Each image has a corresponding text file with the same name, specifying the
bounding boxes for the objects exactly in the format as the YOLOv4 Darknet
model accepts, which looks like [class, x, y, width, height].
In this annotation,

a. The first two coordinates (x, y) represent the center of the bounding box.

b. The next two represent the width and height of the bounding box,
respectively.

Here we are providing you the annotated images (along with the ground-truth
labels and bounding boxes for the objects to be detected) for training images. In
the exercise section, you will explore how to annotate and extract bounding box
coordinates from your own images manually/automatically/semi-automatically
using tools available on the internet.

Since we shall use Google Colab for the training of the YOLOv4 Darknet
model, we need to upload the annotated images to the Google Drive as shown in
the following figure:
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Figure 8.7: Uploading images to Google Drive

As can be seen from the preceding figure, the google drive contains a folder
named raccoon, inside which all the images and the corresponding ground-truth
annotation texts (with bound box coordinates) are uploaded. One such image, the
ground-truth class (id O, there is only one custom class raccoon that we want to
detect) and the corresponding annotation bound box (normalized) coordinates is
shown on the right in Figure 8.8.

7. Defining classes: Since we are detecting raccoons, we need to create a file
listing the object classes (in our case, just one class). Let us create a file for class
labels, as shown:

all _classes = """Raccoon

file = """text file = open("build/darknet/x64/data/obj.names", "w");
text_file.write(all_classes);text_file.close()"""

exec(file)
%cat build/darknet/x64/data/obj.names
# Raccoon

This creates the obj.names file that lists all object classes, in this case,

Raccoon.

8. Defining data file: We need to create a file build/darknet/x64/data/obj.data
(using the following command), which specifies the information regarding the
data (for example, the number of classes, paths for the training and validation
data), and the location where the model checkpoints will be saved), as shown:

obj_data = """

classes= 1

train = build/darknet/x64/data/train.txt
valid = build/darknet/x64/data/valid.txt
names = build/darknet/x64/data/obj.names
backup = build/darknet/x64 /backup/

file = uu"text_fﬂe = Open(..build/darknet/x64/data/obj.datau, W)
text_file.write(obj_data);text _file.close()"""




exec(file)

%cat build/darknet/x64/data/obj.data

classes=1

train = build/darknet/x64/data/train.txt
valid = build/darknet/x64/data/valid.txt
names = build/darknet/x64/data/obj.names
backup = build/darknet/x64/backup/

Here the training and validation text files (train.txt and valid.txt, respectively)
list the names of the training and validation set images, whereas backup
represents the location for saving the model checkpoints while training. It also
specifies that we have a single object class (classes=1) to be detected.

Loading pre-trained weights for transfer learning

YOLOv4 supports transfer learning, which allows us to fine-tune the model,
which was pre-trained on a large dataset (like COCO: Common Objects in
Context). This significantly reduces the training time required (to train from
scratch) for custom datasets. Now, let us follow the next steps:

1. Download the pre-trained weights: We need to download the pre-trained
model yolov4.conv.137 and copy it to the right folder (build/darknet/x64),
using the following command in the terminal. These weights will be used to
initialize the network for training.

lwget -P build/darknet/x64/

2. Mounting Google Drive for data: Since our dataset is stored in Google Drive,
we need to mount it directly into colab to access your training images and labels.

from google.colab import drive

drive.mount('/content/drive')

Now that the files in the Google Drive becomes accessible from colab, copy the
images/text annotations to the right path (build/darknet/x64/data/obj/), as

expected by the model:

%cp -r "/content/drive/MyDrive/racoon/." build/darknet/x64/data/obj/

This command copies the images/corresponding annotations from Google Drive
to the Colab folder, as shown in the following figure:
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Figure 8.8: Copying images/annotations from google drive to Google Colab

Verify whether there are exactly same number of images and annotations (.txt)
files (196 in total), using the following commands:

%Is -1 build/darknet/x64/data/obj/*.jpg | wc -1

#196

%Is -1 build/darknet/x64/data/obj/*.txt | wc -1
#196

3. Preparing image lists: To train YOLOv4, we need two text files (train.txt and
valid.txt) that list the paths to training and validation images. Let us randomly
split our dataset, each image has an 80% chance of being assigned to the
training dataset and a 20% chance of being assigned to the validation dataset,

determined by a random number generator seeded for reproducibility, as shown
in the next code snippet:

import os, fnmatch
import numpy as np

train_file = open("build/darknet/x64/data/train.txt", "w")
valid_file = open("build/darknet/x64/data/valid.txt", "w")
listOfFiles = os.listdir('build/darknet/x64/data/obj/")
pattern = "*.jpg"
np.random.seed(24) # for reproducibility
for f name in listOfFiles:
if fnmatch.fnmatch(f name, pattern):
if np.random.rand(1) < 0.8:
train_file.write("build/darknet/x64/data/obj/"+f name+"\n")
#print ("data/obj/"+f_name)
else:
valid_file.write("build/darknet/x64/data/obj/"+f name+"\n")

train_file.close()
valid_file.close()

This script randomly splits the image files into train.txt and valid.txt.

4. Verifying data: To verify the number of images in each dataset, you can count
the lines in the train.txt and valid.txt files, as shown:

|# Count number of files




lwc -1 build/darknet/x64/data/train.txt

Iwc -1 build/darknet/x64/data/valid.txt

Configuring YOLOv4 for custom training

YOLOvV4 needs to be configured to match the number of object classes in your
dataset. We will start by copying the default configuration file and then editing it for
our custom training task. Follow the given series of preparation steps, as outlined:
1. Editing the YOLOv4 configuration file: Copy the default yolov4.cfg file to
yolov4_train.cfg and make necessary changes for your custom training:

Ised -
Ised -
Ised -
Ised -
Ised -
Ised -

i
i
i
i
i
i

%cp cfg/yolov4.cfg cfg/yolov4_train.cfg

i's/batch=1/batch=8/g' cfg/yolov4_train.cfg
's/subdivisions=1/subdivisions=2/g' cfg/yolov4_train.cfg
's/classes=80/classes=1/g"' cfg/yolov4_train.cfg
's/filters=255/filters=18/g' cfg/yolov4_train.cfg

's/max_batches = 500200/max_batches = 2000/g" cfg/yolov4_train.cfg
's/steps=400000,450000/steps=1800,2200/g" cfg/yolov4_train.cfg

2. As can be seen from the preceding code, here is how the hyperparameter values
are changed:

a. batch: Set to 8 (small value) for faster convergence (and also because the
number of training images is small). As an exercise, check with 3 different
values, namely, 16, 8 and 4 and observe the impact on training.

b. subdivisions: Set to 2, to reduce GPU memory load.

c. classes: Set to 1 for raccoon detection (need to change the number of classes
to 1, becuase we are interested to detect a single object here, as opposed to
80 in the original config file).

d. filters: Set to 18, calculated as (classes + 5) x 3 = (1 + 5) x 3.

e.

max_batches: Set to 2000 (recommended to be at least

2000*number_of classes), the model checkpoints stored at batches 500,
1000 and 2000 respectively.
f. steps: Set to 1800 and 2200 for learning rate decay.
Total number of images we have is 196, out of which 151 of them are used for
training and the remaining are used for validation. A relevant portion of the

config file (with few of the hyperparameters) to be used for training the YOLOv4
model are:



[net]

# Training
batch=8
subdivisions=2
width=416
height=416
channels=3
momentum=8, 548
decay=0,0005
angle=8
saturation = 1.5
exposure = 1.5
hue=.1

learning_rate=8.8813
burn_in=188@
max_batches = 2000
policy=steps
steps=1380, 2208
scales=.1,.1

[convolutional]
batch_normalizes=1
size=3

stride=1

pade1
filrari=1024
activation=leaky

[convolutional]
size=1
stride=l
pad=1
filtersql:
activatlon=linear

[volo]
mask = 6,7,8
anchors = 12, 16, 19, 36, 48, 28, 36, 75, 76, 55, 72, 146, 142, 11e, 192, 243, 459, 40l

classes

Figure 8.9: YOLOV4 config file

Now we can start training the model on our annotated images, initializing it with
the pretrained weights, using the following line of code.

3. Training the model: Now we are ready to train the custom YOLOv4 model.
Execute the following command to begin training:

I./darknet detector train build/darknet/x64/data/obj.data
cfg/yolov4_train.cfg build/darknet/x64/yolov4.conv.137 -dont_show

This command trains the model using the dataset, configuration file, and pre-
trained weights. A few iterations of training are shown in the following figure:
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Figure 8.10: Training iterations with YOLOv4

It may take around 30 mins - 1 hour to finish 2000 batches and in the end, the
final model weights are stored in a file (yolov4_train_final.weights) on the
backup folder provided.
4. Model selection/testing the model/prediction: Now, let us use the model
(just trained) for prediction:
a. Since the batch size 8 and subdivision size 2 resulted in higher accuracy (in
terms of Intersection Over Union or IOU measure), the corresponding
model is selected as the best fit model.

b. The final model checkpoint is saved (yolov4_train_final.weights) can be
used for prediction (with an unseen image racoons.jpg, you need to upload it
to colab first) with the following command.

c. The annotated output is saved as predictions.jpg in the same directory. If

you want to save the results in a specific file, you can redirect the output to a
file.

I./darknet detector test build/darknet/x64/data/obj.data cfg/yolov4_train.cfg
build/darknet/x64/backup/yolov4_train_final.weights
-dont_show /content/raccoons.jpg

# Predictions

# Raccoon: 79%

# Raccoon: 75%

# Raccoon: 99%

If you run the preceding code snippet, you should have the racoons objects detected
as shown in the next figure:

Custom Object (Raccoon) detection wtih Yolo-vd

Raccoons detected

Figure 8.11: Custom object detection with YOLOv4

As can be seen from the preceding figure, all the 3 raccoons in the test image are
detected by the model, with confidence 79%, 75% and 99%, even though couple of
them were partially occluded.

Selective coloring with Mask R-CNN

Mask R-CNN is a powerful deep learning model for instance segmentation, which
not only detects objects in an image but also generates high-quality pixel-level
segmentation masks for each individual object instance. It builds on the object
detection capabilities of Faster R-CNN and extends them to include precise
segmentation. Let us first get acquainted with the key terminology and components:
* Object detection: Identifies and locates objects within an image by predicting
bounding boxes and class labels.



* Instance segmentation: A more fine-grained task that creates pixel-wise masks
for each detected object, distinguishing even overlapping instances of the same
class.

* Backbone network: Typically, a deep CNN (e.g., ResNet-50 or ResNet-101
with FPN) used to extract rich hierarchical features from the input image.

* Region Proposal Network (RPN): Generates candidate object regions (region
proposals) from the backbone features.

* RolIAlign: A key improvement over the earlier RoIPool, RolAlign precisely
preserves spatial locations using bilinear interpolation, which is crucial for pixel-
level tasks like mask prediction.

* Bounding box and mask prediction: The model simultaneously predicts object
classes, refines bounding boxes, and produces a binary mask (segmentation) for
each object.

This model is an extension of Faster R-CNN model, adding a branch for predicting
object masks in parallel with bounding box recognition. In this section, we shall use
the Mask R-CNN model to detect objects in an image and generate instance
segmentation masks. Then these masks will be used to selectively color the detected
objects while leaving the background in grayscale.

Here we shall use the library mrcnn, which is an implementation of the Mask R-
CNN model in keras and tensorflow, used for object detection and instance
segmentation with support for training, inference, and visualization. You can install
the mrcnn library by cloning the official Mask R-CNN GitHub repository and
installing its dependencies, here’s how:

git clone https://github.com/matterport/Mask RCNN.git
cd Mask RCNN

pip install -r requirements.txt

python setup.py install

The following Python code snippet performs selective coloring of the objects
detected in an image using Mask R-CNN. Here is a step-by-step explanation of how
the selective coloring is achieved:

1. Load Mask R-CNN model and weights: As usual, begin by importing the
necessary libraries such as mrcnn, numpy, and matplotlib. Then, download the
pre-trained Mask R-CNN weights trained on the COCO dataset (which contains
80 object classes) and save them in the location specified by
COCO_MODEL_PATH. These weights will be used to initialize the model for
inference or fine-tuning.

from mrcnn import utils, visualize
import mrcnn.model as modellib
from mrcnn.config import Config
import os

import numpy as np

COCO_MODEL_PATH = "models/mask _rcnn_coco.h5"
if not os.path.exists(COCO_MODEL_PATH):
utils.download_trained_weights(COCO_MODEL_PATH)




2. If you want to train the Mask R-CNN model, we need to provide a configuration
object for training on MS COCO.

a. The configuration class must derive from the base Config class and override
values specific to the COCO dataset.

b. Give the configuration class a recognizable name (for example, CocoConfig,
as in the next code snippet).
c. Depending on the memory available for GPU and the number of images it can
fit, adjust IMAGES_PER _GPU.
d. Specify the number of GPUs available as GPU_COUNT.
e. Specify the number of classes (including background) as NUM_CLASSES
(COCO has 80 classes + 1 Background class)
3. Since, we shall use the model for inference, we do not need to train and hence
let us define the class InferenceConfig:
a. Set batch size to 1 since we will be running inference on one image at a time
(in general, Batch_SIZE = GPU_COUNT * IMAGES_PER _GPU), as shown in
the next code snippet:

class CocoConfig(Config):
NAME = "coco"
IMAGES _PER GPU =1
NUM_CLASSES = 81

class InferenceConfig(CocoConfig):
GPU_COUNT =1
IMAGES_PER GPU =1
BATCH_SIZE = 1

b. Let us display the config file, using the next code snippet:

config = InferenceConfig()
config.display()
# Configurations:

# BACKBONE resnetl0l1

# BACKBONE _STRIDES [4, 8, 16, 32, 64]
# BATCH _SIZE 1

# BBOX_STD _DEV [0.1 0.10.20.2]

# COMPUTE_BACKBONE SHAPE None

# DETECTION _MAX_INSTANCES 100
# DETECTION_MIN_CONFIDENCE 0.7
# DETECTION_NMS_THRESHOLD 0.3
# FPN_CLASSIF_FC_LAYERS SIZE 1024

# GPU_COUNT 1

# GRADIENT_CLIP_NORM 5.0

# IMAGES_PER_GPU 1

# IMAGE_MAX_DIM 1024

# IMAGE_META_SIZE 93

# IMAGE_MIN_DIM 800

# IMAGE_MIN_SCALE 0

# IMAGE_RESIZE_MODE square

# IMAGE_SHAPE [1024 1024 3]
# LEARNING_MOMENTUM 0.9

# LEARNING_RATE 0.001

# LOSS_WEIGHTS {'rpn_class loss': 1.0,
# 'ron_bbox_loss': 1.0,

# 'mrcnn_class loss': 1.0,
# 'mrcnn_bbox loss': 1.0,
# ‘'mrcnn_mask_loss': 1.0}
# MASK_POOL_SIZE 14

# MASK_SHAPE [28, 28]

# MAX_GT_INSTANCES 100



# MEAN_PIXEL [123.7 116.8 103.9]
# MINI_MASK SHAPE (56, 56)

# NAME coco

# NUM_CLASSES 81

# POOL_SIZE 7

# POST_NMS _ROIS INFERENCE 1000

# POST_NMS_ROIS_TRAINING 2000

# ROI_POSITIVE_RATIO 0.33

# RPN_ANCHOR_RATIOS [0.5, 1, 2]

# RPN_ANCHOR_SCALES (32, 64, 128, 256, 512)
# RPN_ANCHOR_STRIDE 1

# RPN_BBOX STD _DEV [0.1 0.1 0.20.2]
# RPN_NMS_THRESHOLD 0.7

# RPN_TRAIN_ANCHORS PER_IMAGE 256

# STEPS_PER_EPOCH 1000

# TOP_DOWN_PYRAMID SIZE 256

# TRAIN_BN False

# TRAIN_ROIS_PER_IMAGE 200

# USE_MINI_MASK True

# USE_RPN_ROIS True

# VALIDATION_STEPS 50

# WEIGHT _DECAY 0.0001

4. Create the Mask R-CNN model object in inference mode (using
mode="inference"), using the config. Load weights trained on MS COCO (with
the method load_weights()).

model = modellib.MaskRCNN(mode="inference", model _dir=".", \
config=config)
model.load_weights(COCO_MODEL_PATH, by_name=True)

5. The next code snippet lists the COCO class names; there are 81 classes in the
list. Index of the class in the list is its ID. For example, you can get the ID of the
teddy bear class using class_names.index(‘teddy bear"').

class_names = ['BG', 'person’, 'bicycle', 'car', 'motorcycle’, 'airplane’,
'bus', 'train', 'truck’, 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench’, 'bird’,
‘cat', 'dog’, 'horse’, 'sheep’, 'cow’, 'elephant’, 'bear’,
'zebra', 'giraffe', 'backpack’, 'umbrella’, 'handbag’, 'tie',
'suitcase’, 'frisbee’, 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard’,
'surfboard’, 'tennis racket', 'bottle', 'wine glass', 'cup’,
'fork’, 'knife’, 'spoon’, 'bowl', 'banana’, 'apple’,
'sandwich', 'orange’, 'broccoli', 'carrot','hot dog’,'pizza’,
'donut’, 'cake’, 'chair’, 'couch’, 'potted plant', 'bed’,
'dining table’, 'toilet', 'tv', 'laptop', 'mouse’, 'remote’,
'keyboard', 'cell phone', 'microwave’, 'oven', 'toaster’,
'sink’, 'refrigerator’, 'book’, 'clock’, 'vase', 'scissors’,
'teddy bear', 'hair drier', 'toothbrush']

len(class_names)

# 81

6. Selective coloring (color splash effect): The key to selective coloring lies in
the color_splash() function. This function accepts an image and a segmentation
mask (produced by the Mask R-CNN model) as input and selectively applies
color only to the detected objects, leaving the rest of the image in grayscale. Let
us understand how the function works step-by-step:

a. Grayscale conversion: The image is first converted to grayscale, using the
function skimage.color.rgb2gray(). However, it is not converted into a
single channel, but into a -channel grayscale image, using the function
skimage.color.gray2rgb(), ensuring it maintains the same shape as the
original RGB image.



b. Mask creation: Use the mask returned by Mask R-CNN to determine where
the detected objects are located. Sum the mask along the instance dimension
(axis=-1), collapsing all detected object masks into a single layer. This mask
is binary, where pixels corresponding to any detected object have a value of
True and the background has a value of False.

c. Object detection with Mask R-CNN: When an image is passed to the
model, it performs detection and returns the following information in the
results dictionary:

i. ROIs: The bounding boxes of detected objects.

ii. masks: A Boolean mask indicating the location of each detected object.
iii. class_ids: The class IDs corresponding to the detected objects.

iv. scores: Confidence scores for the detected objects.

d. Selective coloring: The function then selectively keeps the original color
values in the regions where the mask is True (that is, where objects are
detected), and applies the grayscale version where the mask is False (that is,
background):

def color_splash(image, mask):
gray = skimage.color.gray2rgb(skimage.color.rgb2gray(image)) * 255
mask = (np.sum(mask, -1, keepdims=True) >= 1)
return np.where(mask, image, gray).astype(np.uint8) \
if mask.shape[0] > O else gray

7. Visualization of the color splash: The function show_image() displays the
output image obtained (with color splash effect). It plots the following three
images side by side:

a. original image: The input image in full color.
b. mask: A binary mask highlighting the detected objects.

c. splash: The result of the selective coloring, where the detected objects
remain in color while the rest is grayscale.

The function allows selective object-coloring based on specific object classes.
For example, if you want to highlight only bus, it checks which detected objects
match the label 'bus' and zeroes out the mask for other objects, as shown in the
Figure 8.12.

def show_image(image, mask_rcnn_res, class_names, label="all'):

if label != 'all":
class_names = np.array(class_names)
idx = np.where(class_names[mask_rcnn_res['class ids']] !=\
label)
mask rcnn_res['masks'][...,idx] = 0

mask = np.zeros(image.shape[:2])

for i in range(mask_rcnn_res['masks'].shape[2]):
mask += mask _rcnn_res['masks'][...,i]

splash = color_splash(image, mask_rcnn_res['masks'])

plt.figure(figsize=(20,10))
plt.gray()

plt.subplots_adjust(0,0,1,0.95,0.05,0.05)
plt.subplot(131), plt.imshow(image), plt.axis('off")




plt.title(‘original image', size=20)
plt.subplot(132), plt.imshow(mask), plt.axis('off")
plt.title('mask r-cnn objects{}detected'.format( \

"' if label == 'all' else ' (' + label + ') '), size=20)
plt.subplot(133), plt.imshow(splash), plt.axis('off")
plt.title('selective coloring of the objects detected', size=20)
plt.show()

This ensures that only the specified object class (for example, bus) will remain in
color, while all other objects and the background will appear in grayscale.

8. Execution on an example image: Finally, the code loads a sample image and
runs the Mask R-CNN model to detect objects (using model.detect()).

The detected objects are visualized with the selective color splash effect,
specifically focusing on the 'bus' class as defined in the show_image() call, as
shown in the following code snippet. The next figure (Figure 8.12) shows the
output image with color splash, along with the input image and mask obtained
with the Mask R-CNN model.

image = skimage.io.imread(‘images/bus.jpg"’)
results = model.detect([image], verbose=1)
show_image(image, results[0], class_names, 'bus')
# Processing 1 image

# image shape: (340, 510, 3) min: 0.00000

# max: 255.00000 uint8

# molded_images Shape: (1, 1024, 1024, 3) min: -123.70000
# max: 150.10000 float64

# image_metas shape: (1, 93) min: 0.00000

# max: 1024.00000 float64

# anchors shape: (1, 261888, 4) min: -0.35390

# max: 1.29134 float32

If you run the preceding code snippet, you should obtain a figure like the next one:

Figure 8.12: Selecting coloring with Mask R-CNN

Face verification with DeepFace

Face verification involves determining whether two images belong to the same
person or not, by comparing their facial features. Face verification and face
recognition are closely related but distinct tasks in facial analysis.

The different between face verification and face recognition are as follows:

* Face verification determines whether two images belong to the same person,
producing a binary output (match or no match). It compares two inputs using
similarity metrics like cosine or Euclidean distance and is simpler, often used in
applications like smartphone unlocking or online authentication.

* In contrast, face recognition identifies a person in an image from a known set
of identities, requiring a database of embeddings and solving a classification
problem. It outputs the identity (or “unknown”) and is used in tasks like security
surveillance, tagging in photo libraries, and identifying individuals in public
spaces.

* While verification involves pairwise comparison, recognition involves one-to-



many matching, making it more complex.
* Both tasks typically rely on deep learning-based feature extractors trained on
large-scale face datasets such as VGGFace2 or MS-Celeb-1M.
In this section, we will learn how face verification works using the DeepFace
framework, explore its underlying mathematical foundation, and demonstrate an
implementation using a pretrained VGGFace2 model, including detailed steps and
Python code.

Face embeddings

DeepFace uses a deep convolutional neural network to extract face embeddings,
which are high-dimensional vectors representing facial features. These embeddings
encode discriminative features, such as the shape of facial landmarks, texture, and
other unique traits.

Mathematically, the embedding f(x) of an input image x is produced as: f(x) =
CNN(x; 6), where 6 are the learned weights of the network.

Similarity metrics
Two embeddings, f(x,) and f(x,), are compared using distance metrics:
_ ) f(x2)
1F Ce D F Ce2)
* Euclidean distance: d,,, jjgeqn =l f(x1) — f(x2) |l
Low distances indicate higher similarity.
Let us now implement face verification with Python. The implementation consists of
loading a pretrained VGGFace2 model, detecting faces in images, extracting
embeddings, and verifying matches using similarity metrics.
Let us go through the following Python code step-by-step to explain how it works in
detail:
1. Importing required libraries: Start by importing the required libraries,
modules and functions using the next code snippet:
a. The library opencv_python (cv2) is used for reading images and detecting
faces using Haar cascades.

e Cosine distance: d i, = 1

b. Keras/TensorFlow are used for working with deep learning models
(VGGFace?2 in this case).

import as np

import matplotlib.pyplot as plt
import cv2

import time

from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Convolution2D, LocallyConnected2D,\
MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.preprocessing.image import load_img, save_img, \
img_to_array
from tensorflow.keras.preprocessing import image
import os

2. Confirm GPU availability: The following code snippet ensures the GPU is
available for model inference, so that the inference is not too slow:

import tensorflow as tf
tf.config.list_physical_devices('GPU")




| # [PhysicalDevice(name="'/physical_device:GPU:0', device_type='GPU')]

3. Define the model architecture using tf.keras sequential API:

model = Sequential()
model.add(Convolution2D(32, (11, 11), activation='relu’, \
name='C1', input_shape=(152, 152, 3)))
model.add (MaxPooling2D(pool_size=3, strides=2, padding='same’, \
name='M2"))
model.add(Convolution2D (16, (9, 9), activation='relu', name='C3"))
model.add(LocallyConnected2D (16, (9, 9), activation='relu', name='1L4"))
model.add (LocallyConnected2D(16, (7, 7), strides=2, activation="relu’,\
name='L5"))
model.add(LocallyConnected2D(16, (5, 5), activation='relu', name="'L6"))
model.add (Flatten(name="'F0"))
model.add(Dense (4096, activation='relu', name='F7"))
model.add (Dropout(rate=0.5, name='D0"))
model.add(Dense(8631, activation='softmax', name='F8"))

4. Inputs and outputs:

a. Input layer: model.layers[0].input defines the input for the neural
network.

b. Output layer: model.layers[-3].output takes the output of the third-last
layer, which represents the face embeddings (a compact numerical
representation of the face).

5. Model summary: Displays the architecture of the loaded model.

deepface_model = Model(inputs=model.layers[0].input, \
outputs=model.layers[-3].output)

deepface_model.summary()

# Model: "model"

#

# Layer (type) Output Shape Param #
# C1_input (InputLayer) [(None, 152, 152, 3)] O

# C1 (Conv2D) (None, 142, 142, 32) 11648
# M2 (MaxPooling2D) (None, 71, 71, 32) 0]

# C3 (Conv2D) (None, 63, 63, 16) 41488

# L4 (LocallyConnected2D) (None, 55, 55, 16) 62774800
# L5 (LocallyConnected2D)  (None, 25, 25, 16) 7850000
# L6 (LocallyConnected2D)  (None, 21, 21, 16) 2829456

# FO (Flatten) (None, 7056) 0
# F7 (Dense) (None, 4096) 28905472
S ——

# Total params: 102,412,864

# Trainable params: 102,412,864
# Non-trainable params: 0

#

6. Load the pretrained weights for VGGFace2_DeepFace model, with the
following line of code:

| model.load_weights("models/VGGFace2_DeepFace weights_val-0.9034.h5")

7. Haar cascade classifier for face detection: Before we can verify a face
against another one, we need to first detect the faces. OpenCV’s pre-trained
Haar cascade XML file is used here to detect faces in images. Check if it is
located in its library directory, using the following code snippet. If the Haar
cascade file is missing, the code raises an error.

opencv_home = cv2._file
folders = opencv_home.split(os.path.sep)[0:-1]
path = folders[0]
for folder in folders[1:]:
path = path + "/" + folder




detector_path = path+"/data/haarcascade frontalface default.xml"

if os.path.isfile(detector_path) != True:
raise ValueError("Confirm that opencv is installed on your
environment! Expected path ", detector_path," violated.")
else:
detector = cv2.CascadeClassifier(detector_path)
print("haarcascade is okay")

8. The next code snippet defines a function detect_face() which will perform the
detection of faces prior to verification, here is how the function works step-by-
step:

a. Read image: Uses cv2.imread() to load the input image.
b. Face detection: Uses the Haar Cascade classifier
(detector.detectMultiScale()) to detect faces in the image:
i. 1.2 is the scale factor (shrinks image by 20% in each scale step).

ii. 53 is the minimum number of neighboring rectangles that must be detected
for a region to be considered a face.

c. Crop detected face: Extracts the bounding box coordinates (x, y, w, h) of the
first detected face. A margin is calculated (currently set to 0) and used to
adjust the crop, ensuring it remains within image bounds.

d. Resize face: Rescales the cropped face to the target size of 152x152 pixels.

e. Convert to array: Converts the resized face into a numerical array using
image.img_to_array() from tensorflow.keras.preprocessing module.

f. Normalize pixels: Divides pixel values by 255 to scale them between 0 and 1.

g. Return preprocessed face: The resulting array is ready to be passed as input
to the face verification neural network.

def detect_face(img_path, target_size=(152, 152)):

img = cv2.imread(img_path)
faces = detector.detectMultiScale(img, 1.2, 5)

if len(faces) > 0:
x,y,w,h = faces[0]
margin = 0
x_margin = w * margin / 100
y_margin = h * margin / 100

if y-y_margin > 0 and y+h+y_margin < img.shape[1] and \
x-x_margin > 0 and x+w+x_margin < img.shape[0]:
detected_face = img[int(y-y_margin):int(y+h+y_margin), \
int(x-x_margin):int(x+w+x_margin)]
else:
detected_face = img[int(y):int(y+h), int(x):int(x+w)]

detected_face = cv2.resize(detected_face, target_size)

img_pixels = image.img_to_array(detected_face)
img_pixels = np.expand_dims(img_pixels, axis = 0)

img_pixels /= 255

return img_pixels
else:




raise ValueError("Face could not be detected in ", img_path,\
". Please confirm that the picture is a face photo.")

8. Compute the similarity/distance metrics:
a. Cosine distance is computed using the function find_cosine_distance(), as
1 - cosine similarity. It compares the angle between two vectors in the
embedding space, where values closer to 0 indicate higher similarity.
b. Euclidean distance computed using the function
find_euclidean_distance() measures the straight-line distance between two

points in embedding space, again, lower the distance means higher the
similarity.

def find_cosine_distance(source_representation, test_representation):
a = np.matmul(np.transpose(source_representation), \
test_representation)
b = np.sum(np.multiply(source_representation, \
source_representation))
¢ = np.sum(np.multiply(test_representation, test_representation))
return 1 - (a / (np.sqrt(b) * np.sqrt(c)))

def find_euclidean_distance(source_representation,test representation):
euclidean_distance = source_representation - test_representation
euclidean_distance = np.sum(np.multiply(euclidean_distance, \
euclidean_distance))
euclidean_distance = np.sqrt(euclidean_distance)
return euclidean_distance

def 12_normalize (x):
return x / np.sqrt(np.sum(np.multiply(x, x)))

9. Verify faces with the function verify face() defined as follows, which accepts
the following input arguments:

a. dataset: A list of image pairs along with their ground-truth labels (True for
matches, False for non-matches).

b. threshold: A cosine distance value; if the distance between two images is
below this threshold, they are considered a match.

10. Listed are the detailed steps explaining how the function verify face() works:

a. Extract embeddings: Detects faces from input image pairs and computes
embeddings for both images.

b. Compute distances: Calculates the Euclidean distance (alternatively you

can compute the cosine distance too, but the threshold for matching will
likely be different) between the embeddings.

c. Match prediction: If the cosine distance is below the threshold, the
images are classified as a match. Otherwise, they are classified as not
matching.

d. Print results: Outputs similarity scores and predictions.

Now, refer to the following code snippet:

def verify_face(dataset, threshold=0.5):
for case in dataset:
imgl_path = case[0]

img2_path = case[1]
target = case[2]




print(f"{img1_path} and {img2_path}")
imgl = detect_face(imgl_path)
img2 = detect_face(img2_path)

fig = plt.figure()
fig.add_subplot(1,2,1)

plt.imshow(img1[O][:, :, ::-1]), plt.axis("off")
fig.add_subplot(1,2,2)
plt.imshow(img2[0][:, :, ::-1]), plt.axis("off")

plt.show(block=True)

imgl_embedding = deepface_model.predict(imgl)[0] # 4096 dim
img2_embedding = deepface_model.predict(img2)[0] # 4096 dim

euclidean 12_distance = find_euclidean_distance( \
12_normalize(imgl_embedding), \
12_normalize(img2_embedding))

print("Euclidean L2 distance: ", euclidean_12_distance)
print("Actual: ", target, end = ")

verified = euclidean 12_distance <= threshold
# verified = cosine_distance < threshold # 0.16

print(" - Predicted: ", verified)
print(" ")

11. Run the verification
a. dataset: Contains pairs of image file paths and their ground truth labels.
b. Call the function verify face() with the dataset as input, evaluate each pair

(there are five such face-image pairs to be verified, as shown) and print
similarity scores along with the predictions:

dataset = [

# face image-pairs of same persons, expecting matches (True)
['images/fcr/mom/moml.png’, 'images/fcr/mom/mom?2.png', True],
['images/fcr/dad/dadl.png’, 'images/fcr/dad/dad2.png’, Truel,

# face-pairs of different persons, expecting mismatches (False)
['images/fcr/mom/mom1.png', 'images/fcr/dad/dad1.png’, False],
['images/fcr/mom/mom1.png’, 'images/fcr/me/me.png', False],
['images/fcr/dad/dadl.png', 'images/fcr/me/me.png', False]

1

verify_face(dataset, 0.66)
# images/fcr/mom/mom1l.png and images/fcr/mom/mom2.png

If you run the preceding code snippet, you should obtain the next results. Note that
the first two face image pairs will result in matches (belong to same person’s
faces), where the last three pairs result in mismatches (belong to different
person’s faces).

Refer to the following figure, resulting in a match in verification, the verifier
correctly decides that the face image pairs belong to the same person. The output is
then provided.




Figure 8.13: Match in face verification

Output:
# 1/l [==============================] - 795 79s/step
# 1/l [==============================] - 0s 149ms/step

# Euclidean L2 distance: 0.6139698
# Actual: True - Predicted: True

#
# images/fcr/dad/dadl.png and images/fcr/dad/dad2.png

Refer to the following figure, resulting in a match again (true positive):

M o o

Figure 8.14: Match in face verification

Output:
# 1/l [==============================] - (0§ 174ms/step
# 1/l [==============================] - (0§ 176ms/step

# Euclidean L2 distance: 0.6548197
# Actual: True - Predicted: True

#
# images/fcr/mom/mom1l.png and images/fcr/dad/dadl.png

Refer to the following figure, resulting in a mismatch (true negative):

Figure 8.15: Mismatch in face verification

Output:
#1/1 [e=============================] - 0s 176ms/step
# 1/l [==============================] - (0§ 158ms/step

# Euclidean L2 distance: 0.7342232
# Actual: False - Predicted: False

#
# images/fcr/mom/mom1l.png and images/fcr/me/me.png

Refer to the following figure, resulting in a mismatch again:

Figure 8.16: Mismatch in face verification



# 1/l [==============================] - 05 166ms/step
# 1/l [==============================] - 05 459ms/step
# Euclidean L2 distance: 0.8190897

# Actual: False - Predicted: False

H oo

# images/fcr/dad/dadl.png and images/fcr/me/me.png

Refer to the following figure, resulting in a mismatch again:

Figure 8.17: Mismatch in face verification

Output
# 1/l [==============================] - 0§ 168ms/step
# 1/l [==============================] - 05 164ms/step

# Euclidean L2 distance: 0.8458919
# Actual: False - Predicted: False
H

As can be seen from the preceding outputs, the face-pairs belonging to the same
person were verified as True and different persons were verified as False.

In summary, the preceding code builds a face verification pipeline using a pretrained
VGGFace?2 model. The key steps include:

1. Face detection (OpenCV Haar cascade).

2. Face preprocessing (resizing, normalizing).

3. Embedding extraction.

4. Similarity computation using cosine and Euclidean distances.

It demonstrates how to verify faces based on learned embeddings and interpret
similarity metrics.

Barcode and QR code detection with Python

Barcodes and quick response (QR) codes have become indispensable tools for
fast, efficient, and reliable data storage and retrieval in various industries, from
retail and logistics to healthcare, manufacturing and advertising. These codes enable
quick and error-free input of information simply by scanning a visual pattern using a
camera or scanner. With the growing popularity of computer vision in automation
and data processing, detecting and decoding these codes using Python has become
highly accessible with the use of libraries like pyzbar and qrcode.

In this section, we shall understand the basics of barcodes and QR codes, explain the
Python libraries that can be used to detect and decode them, and walk through
practical examples for detecting and processing these codes in images and real-time
video streams.

Understanding barcode and QR code



Bar codes and QR codes are both types of data encoding methods used to store
information in a visual format that can be scanned and read by machines. Here are
few details about them.

Bar codes:

« Definition: A barcode is a system for visually encoding data in a machine-
readable format. Traditional barcodes are linear or one-dimensional (1D),
meaning they store information along a single axis using varying line widths and
spacings. This limits the amount of data they can represent. Common types of
barcodes include:

0 Universal Product Code (UPC): widely used in retail for product
identification.

o0 European Article Number (EAN): A variation of UPC used internationally.

0 Code 128: A high-density barcode used for shipping and tracking.

* Use cases: Commonly used in retail for tracking inventory, pricing at point-of-
sale, and more. Typically, barcodes encode product numbers, serial numbers, or
other identifying information.

* Capacity: Limited data capacity, typically encoding numbers or a few characters.

OR codes:

¢ Definition: A QR code is a two-dimensional (2D) barcode that can store data
both vertically and horizontally, it can hold significantly more data than
traditional barcodes. It can hold significantly more data than traditional barcodes
and supports a wider variety of content types, such as URLs, contact details
(vCards), text, and even binary data like images or documents.

* Use cases: Used for a wide range of applications, including marketing, product
labeling, ticketing, and personal identification. QR codes can encode URLs,
contact information, texts, and much more.

* Capacity: Much higher data capacity compared to barcodes. A QR code can
store up to a few kilobytes of data.

The key differences are:

* Dimensionality: Barcodes are 1D while QR codes are 2D.

* Data capacity: QR codes can store more data than barcodes.

* Data types: QR codes can encode various types of data, whereas barcodes are
more limited.

* Error correction: QR codes have error correction capabilities, allowing them to
be scanned even if they are partially damaged or obscured.

The following table summarizes the similarities and differences between barcodes
and QR codes:

Aspect Barcode (1D) QR Code (2D)
Structure Linear (horizontal only) Matrix (horizontal + vertical)
Data capacity Low (typically numeric or limited High (can store thousands of characters)
characters)
Encoded data types Mainly numeric or limited alphanumeric Text, numbers, URLs, vCards, binary data
Read direction One direction (horizontal) Two directions (horizontal and vertical)
Error correction None or very minimal Built-in error correction (can recover




Aspect Barcode (1D) QR Code (2D)
partially damaged code)

Scanning speed Fast Fast
Use cases Retail, inventory, logistics Mobile payments, marketing, ticketing,
personal ID
Ease of scanning Requires correct orientation Can be scanned from any angle
Visual size Smaller in appearance but longer for more | More compact for large data
data
Popularity in mobile Less commonly used Widely adopted in smartphones
Requires internet? No No (but often links to online resources)
Machine readable? Yes Yes

Table 8.3: Similarities and differences between the barcodes and QR codes

Encoding, detection, decoding using Python libraries

Python offers several libraries that simplify the task of barcode and QR code
detection. These libraries handle the complex image processing and decoding
needed to detect and interpret codes. The most commonly used Python libraries for
this purpose are:
* opencv-python: A comprehensive library for image processing and computer
vision.
* pyzbar: A wrapper for the ZBar library that can detect and decode both
barcodes and QR codes.
* python-barcode: A library can be used to create / generate US barcodes.
* qrcode: A library is popular for generating QR codes.
First install the preceding libraries with pip. If they are not already installed.
Next import all the libraries required, using the next code snippet:

https://www.microsoft.com/en-us/download/details.aspx?id=40784
from PIL import ImageFont, ImageDraw, Image
from pyzbar import pyzbar
import cv2
import numpy as np
import barcode
import grcode
from barcode.writer import ImageWriter
import matplotlib.pylab as plt

Adding barcode/QR code to an image

This code snippet demonstrates how to generate a barcode and a QR code, and then
add them to an existing image, which is the cover page of the book Image Processing
Masterclass with Python. Here is a detailed breakdown of the code:
1. Generate a barcode:
a. barcode.get(‘eanl3’, str('123456789012'), writer=ImageWriter())
creates an EAN-13 barcode for the number '123456789012' using the


clbr://internal.invalid/book/OPS/ch08.xhtml

ImageWriter to output an image file.

b. barl.save('images/barl') saves the generated barcode image to the
specified path.

import barcode
barl = barcode.get('eanl3’, str(9789389898644), writer=ImageWriter())
barl.save('images/barl.png’)

2. Generate a QR code: A qrcode.QRCode object is created with specific
parameters such as version, error correction level, box size, and border.
qr.add_data(u'...") adds data to the QR code. The data is a Unicode string,
indicating the code can handle non-ASCII characters. Here is the list of
parameters the function accepts:

a. version:

i. Ranges from 1 to 40, controlling QR code size (for example, version 1 is a
21x21 matrix, version 2 is 25x25, version 3 is 29x29, and so on).

ii. When set to None, the size is automatically adjusted based on the amount
of data using the fit=True parameter.
b. fill_color and back_color:
i. These parameters change the color of the QR code and its background.
ii. Accept RGB color tuples when using the default image factory.

c. error_correction levels: This defines how much error correction is applied
to the QR code, allowing it to still be scanned even if parts are damaged. The
available levels are:

i. ERROR_CORRECT_L: Corrects up to 7% errors.

ii. ERROR_CORRECT M (default): Corrects up to 15% errors.
iii. ERROR_CORRECT _Q: Corrects up to 25% errors.

iv. ERROR_CORRECT_H: Corrects up to 30% errors.

d. box_size: Specifies the size of each individual box (square) in the QR code, in
terms of pixels.

e. border: Defines the thickness of the border around the QR code, measured in
boxes. The default is 4, which is the minimum allowed according to the QR
code specification.

f. qr.make(fit=True): This method configures the size of the QR code to
automatically fit the data being encoded.

g. qrl = qr.make_image(fill_color="black", back_color="white") generates
an image from the QR code with specified colors.

h. grl.save('images/qrl.png') saves the generated QR code image to the
specified path.

qr = qrcode.QRCode(
version=1,
error_correction=qrcode.constants. ERROR_CORRECT L,
box_size=10,
border=4,

)
qr.add_data(u'''sz Image Processing MasterClass (BPB)

o ")




gr.make (fit=True)
qrl = gr.make_image(fill_color="black", back_color="white")
grl.save(‘'images/qrl.png")

3. Load and copy the original image:

a. im_orig = Image.open(‘images/book_cover.png') loads the original image
(a book cover).

b. im = im_orig.copy() creates a copy of the original image to work on,
preserving the original.

4. Load barcode and QR code images: barl =
Image.open(‘images/barl.png') and qrl = Image.open(‘images/bar2.png')
load the previously saved barcode and QR code images.

5. Paste barcode and QR code onto the book cover:

a. im.paste(barl.resize((262,140)).rotate(10), (550,10,812,150)) resizes
the barcode, rotates it by 10 degrees, and pastes it onto the copied book cover
image at the specified coordinates.

b. im.paste(qgrl.resize((100,100)).rotate(-10), (400,860,500,960)) does
the same for the QR code, but rotates it by -10 degrees and places it at a
different location on the cover.

6. Save the modified image:

im.save('images/book_cover_barcode.png') saves the modified book cover, now
with a barcode and QR code added, to the specified path.

im_orig = Image.open('images/book_cover.png')

im = im_orig.copy()

barl = Image.open(‘images/barl.png')

qrl = Image.open('images/qrl.png")
im.paste(barl.resize((262,140)).rotate(10), (550,10,812,150))
im.paste(qrl.resize((100,100)).rotate(-10), (400,860,500,960))
im.save(‘images/book cover barcode.png')

The preceding code effectively demonstrated how to use Python for image
processing tasks such as generating barcodes and QR codes, manipulating images
(resizing, rotating), and combining multiple images.

Detect barcode or QR code

The following code snippet demonstrates how to detect and annotate barcodes and
QR codes in an image using Python libraries such as opencv-python (cv2), pyzbar,
and PIL. Here is a step-by-step explanation on how the code works:

1. Load the input image: im_bar =
cv2.imread('images/book_cover_barcode.png') loads the image file into
memory.

2. Convert image color space: c¢v2_im rgb = cv2.cvtColor(im_bar,

cv2.COLOR_BGR2RGB) converts the image from BGR (Blue, Green, Red — the
default color space in OpenCV) to RGB color space.

3. Convert OpenCV image to PIL image: pil_im =
Image.fromarray(cv2_im_rgb) converts the RGB image (a NumPy array) into a
PIL image object, which allows for more sophisticated image manipulations and
drawing operations.

4. Detect barcodes: barcodes = pyzbar.decode(im_bar) uses the pyzbar



library to detect and decode any barcodes in the original image (keep in mind
that it uses the original BGR image).
5. Process each detected barcode: The code iterates over each detected
barcode, performing following operations for each:
a. Extracts the barcode’s bounding box (barcode.rect) and decodes its data
(barcode.data.decode("utf-8")) and type (barcode.type).
b. Constructs a text string with the barcode data and type.

c. Draws the bounding box, polygon (if the barcode is not perfectly rectangular),
and the text annotation onto the PIL image using ImageDraw.Draw(pil_im)
and ImageFont.truetype for custom font styling.

6. Convert PIL image back to OpenCV image: im out =
cv2.cvtColor(np.array(pil_im), cv2.COLOR_RGB2BGR) converts the modified
PIL image (which is in RGB) back to a NumPy array and then to BGR color space
for OpenCV compatibility.

7. Save the annotated image:
cv2.imwrite(‘images/book_cover_barcode_detected.png’, im_out) saves the
annotated image to a file. Throughout this process, the code also prints the
number of detected barcodes and information about each barcode (type and
data) to the terminal. This script is useful for applications that require barcode
scanning and processing directly from images, such as inventory management,
retail checkout systems, and document tracking.

im_bar = cv2.imread('images/book_cover barcode.png')
cv2_im_rgb = cv2.cvtColor(im_bar, cv2.COLOR_BGR2RGB)
pil_im = Image.fromarray(cv2_im_rgb)

barcodes = pyzbar.decode(im_bar)

print('Number of barcodes found: {}\n'.format(len(barcodes)))

i=1
for barcode in barcodes:
(%, y, w, h) = barcode.rect

barcodeData = barcode.data.decode("utf-8")
barcodeType = barcode.type

text = u"{} ({})".format(barcodeData, barcodeType)
draw = ImageDraw.Draw(pil_im)

font = ImageFont.truetype("images/kalpurush.ttf", size=50,
layout_engine=ImageFont.Layout.RAQM)

draw.line(barcode.polygon,width=15)

draw.polygon(barcode.polygon, outline='#0000ff")

draw.rectangle(((%, y), (X + w, y + h)), outline='#ff0000', width=10)

draw.text((x - 200, y + h + 1), text, font=font, fill=(0,255,0,255),
stroke width=2)

print("{}. Found barcode\n\ntype: {} \ndata:\n{}\n"\
.format(i, barcodeType, barcodeData))
i+=1

im_out = cv2.cvtColor(np.array(pil_im), cv2.COLOR_RGB2BGR)
cv2.imwrite('images/book_cover barcode detected.png’, im_out)

barcode




# 2. Found barcode
# type: EAN13

# data:

# 9789389898644
# True

plt.figure(figsize=(20,10))

plt.subplot(131), plt.imshow(im_orig), plt.title('original’, size=20)
plt.axis('off")

plt.subplot(132), plt.imshow(cv2.cvtColor(im_bar, cv2.COLOR_BGR2RGB))
plt.title('with barcode / qrcode added’', size=20), plt.axis('off")
plt.subplot(133), plt.imshow(cv2.cvtColor(im_out, cv2.COLOR_BGR2RGB))
plt.title('barcode / qrcode detected', size=20), plt.axis('off")
plt.tight_layout()

plt.show()

If you run the preceding code snippet, you should obtain a figure as follows:

iginal with barcade | greode added barcode [ qreode detected
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with with with

Python Python Python

Figure 8.18: Detecting and extracting Bar/QR code

Conclusion

This chapter covers various approaches to object detection, and recognition using
state-of-the-art deep learning models. It begins with running inference using
pretrained MobileNet-SSD model (with opencv-python), which is lightweight and
well-suited for mobile applications. It then explores object detection with YOLOvV3,
leveraging the gluoncv and mxnet libraries to demonstrate YOLO’s efficiency in
detecting multiple objects in real-time. Additionally, the latest YOLOv8 model is
introduced through the ultralytics API, highlighting its streamlined approach for
rapid object detection.

The chapter also delves into custom object detection, showing how transfer learning
with YOLOv4 allows the model to be fine-tuned for specialized detection tasks.
Mask R-CNN is then explored for instance segmentation, explaining how it can be
used to apply selective color effects to detected objects. Finally, the chapter provides
an overview of barcode and QR code detection, outlining how libraries like pyzbar
can be used to detect and decode these codes in images, emphasizing practical real-
world applications.

Key terms
Object detection, YOLOv3/v4/v8, MobileNet, Mask R-CNN



Questions

1. Face recognition with keras_vggface: Build a simple celebrity face recognition
system using the Keras VGGFace model. You need to load a pretrained VGGFace
model, process an input image of a celebrity, and use the function
decode_predictions() to identify the face.

Hint: Here are the key steps:
a. Install and import required libraries, e.g, keras_vggface, keras_applications
etc.
b. Load the VGGFace model using VGGFace(model='vgg16', include_top=True).

c. Preprocess an input face image, resize it to 224x224, convert it to a numpy
array, expand dimensions, and ©preprocess using the method
keras_vggface.utils.preprocess_input().

d. Predict the face identity by passing the image through the model and use
decode_predictions() to get the top predicted identities.

e. Display the image and the predicted name(s), e.g., print the top 5 predictions
with their confidence scores.

For example, with SRK face image as input, first crop the image and predict the
celebrity’s name to obtain the output as shown:

original

b* King_knan®: §5.543%

b* Sharsc rellsr®: 10.78X%
b* majeev_ihondelsal: 2.281%
b* Johnny_Lever': 1.906%

b* Keran wahd®; 1.4258%

Figure 8.19: Celebrity Face Recognition with keras VGGFace

2. Explore the following online annotation tools:
a. labellmg (https://github.com/HumanSignal/labellmg)
b. VIA (https://www.robots.ox.ac.uk/~vgg/software/via/)
c. labelme (http://labelme.csail.mit.edu/Release3.0/)
d. imagetagger (https://github.com/bit-bots/imagetagger)
Learn how to use them to manually annotate images and extract the bounding
boxes corresponding to the custom objects you want to detect with YOLOv4
Darknet model, and prepare the training dataset (make sure that the annotation
text format is same as the model accepts). Also, use roboflow

(https://app.roboflow.com/) to automatically/semi-automatically annotate
custom images (for example, try the raccoon), as shown in the following figure:


https://github.com/HumanSignal/labelImg
https://www.robots.ox.ac.uk/~vgg/software/via/
http://labelme.csail.mit.edu/Release3.0/
https://github.com/bit-bots/imagetagger
https://app.roboflow.com/
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Figure 8.20: Using roboflow to automatically annotate images

3. For the following raccoon image and the given annotation text corresponding to
the bounding box for the object (for YOLOv4 Darknet model), write code to

draw bounding box. For the given input image, you should obtain the annotated
output image shown side-by-side.

Annotation Text
0 0.3780TEO2IBTEAZI O ATISGTINTEO2INTT 0.400IB46153BL61506 0. T1ISIB4615384616

Figure 8.21: Visualizing image with bounding box from an input image and annotation text

4. Intersection over Union (IoU): IoU is a widely used metric for assessing the
performance of an object detection model. It measures how well the predicted
bounding box (by the model) matches the ground-truth (true) bounding box. IoU
is calculated as the ratio of the intersection area between the predicted and
ground-truth bounding boxes to the total area covered by both boxes. The
formula to compute IoU is as follows:

_ AreaofQOverlap
~ AreaofUnion

Where we have

* Area of overlap: The region where the predicted bounding box intersects
with the ground truth bounding box.
* Area of union: The total area covered by both the bounding boxes combined.

In object detection, the IoU helps in determining the correctness of a detected
object.

« High IoU (close to 1): The prediction is very close to the ground truth.



« Low IoU (close to 0): The prediction is far from the ground truth.

« Thresholding: Typically, An IoU threshold (such as 0.5) is commonly used to
determine whether a detection is classified as a true positive (TP) or a false
positive (FP). When the IoU of a predicted bounding box and a ground truth
box is above the threshold, it is considered a true positive. If it is below the
threshold, it is a false positive.

« IoU is used to compute evaluation metrics like precision, recall, and the mean
Average Precision (mAP), which are commonly used to measure the
performance of the models.

In this exercise, you will complete the implementation of the following function
compute_iou() which accepts two bounding boxes as arguments and returns the
10U of these two bound boxes computed:

def compute_iou(box1, box2):

iou = None

return iou

box1 =[50, 50, 150, 150]
box2 = [100, 100, 200, 200]

iou_value = compute_iou(box1, box2)

5. Car License Plate Detection with YOLOv5 and Tesseract OCR: Implement a
complete pipeline for car license plate detection and recognition using pretrained
(fine-tuned) YOLOv> model and Tesseract OCR (an open-source optical
character recognition engine that extracts text from images by detecting
character shapes using a neural network-based recognition pipeline). Here is a
step-by-step guide for your implementation:

« Download Dataset: Use the Car Plate Detection dataset from Kaggle:
https://www.kaggle.com/datasets/andrewmvd/car-plate-detection (with
annotations in the PASCAL VOC format)

« Set Up YOLOV5:
o Clone YOLOVb5: !git clone https://github.com/ultralytics/yolov5
o Install requirements: !pip install -r yolov5/requirements.txt
» Prepare the Dataset:
o Convert XML annotations to YOLO format (.txt files).
o Split into training and validation sets.
o Create a data.yaml file with 1 class: [‘licence’].


https://www.kaggle.com/datasets/andrewmvd/car-plate-detection

« Train YOLOV5 using Transfer Learning:
o Download a pretrained checkpoint (e.g., yolovim6.pt) from the following
link: https://github.com/ultralytics/yolov5/releases
o Fine-tune it on your dataset: !python train.py --img 1280 --batch 4 --epochs
20 --data bgr.yaml --weights yolovbm6.pt
« Detect License Plates: Run inference on test images using your fine-tuned
model: !python detect.py --source /path/to/image --weights best.pt
« Apply OCR using Tesseract
o Install OCR tools: !sudo apt install tesseract-ocr, !pip install pytesseract
o Crop detected plate regions and extract text: use the function
pytesseract.image_to_string()
« Display the final image showing detected plates and recognized text. you
should obtain a figure like the following:

License plate detection with Yolo-Vs + fesseract
Yolo-VS detected Tesseract extracted

licence 0.69 'L}
L /L K 3517

Figure 8.22: Car license-plate detection and extracting digits & letters with YOLO-V5 + tesseract

6. Object Detection Using Faster R-CNN with PyTorch: Demonstrate object
detection in an image using the pre-trained Faster R-CNN model from the
torchvision.models.detection module in pytorch. Your solution should load an
image, perform inference, and visualize the detected objects with bounding boxes
and class labels, using appropriate thresholding and color coding. For an input
image on the left, you should come up with the detected objects on the right,
using Faster R-CNN pretrained model, as shown in the next figure:

- taffic ight: 0.97
] [ i )

Figure 8.23: Object detection using pretrained faster R-CNN with pytorch

References


https://github.com/ultralytics/yolov5/releases

1. https://app.roboflow.com/sandipan/racoon-detection-with-yolov4/
2. https://developer.nvidia.com/cuda-downloads

3. https://sandipanweb.wordpress.com/2022/01/17/custom-object-detection-
with-transfer-learning-with-pre-trained-yolo-v4-model/

. https://ieeexplore.ieee.org/document/7485869

. https://arxiv.org/pdf/2004.10934

. https://arxiv.org/pdf/1512.02325

. https://www.youtube.com/watch?v=CgLp7cW5QJU
. https://www.youtube.com/watch?v=Wq_vAWQOY_w
. https://www.youtube.com/watch?v=xr wpaGxITk
10. https://www.youtube.com/watch?v=w5nHjle5nfI
11. https://www.youtube.com/watch?v=2xNXWy7ubKs

© 00 3 O U1 B


https://app.roboflow.com/sandipan/racoon-detection-with-yolov4/
https://developer.nvidia.com/cuda-downloads
https://sandipanweb.wordpress.com/2022/01/17/custom-object-detection-with-transfer-learning-with-pre-trained-yolo-v4-model/
https://ieeexplore.ieee.org/document/7485869
https://arxiv.org/pdf/2004.10934
https://arxiv.org/pdf/1512.02325
https://www.youtube.com/watch?v=CgLp7cW5QJU
https://www.youtube.com/watch?v=Wq_vAWQ0Y_w
https://www.youtube.com/watch?v=xr_wpaGxlTk
https://www.youtube.com/watch?v=w5nHj1e5nfI
https://www.youtube.com/watch?v=2xNXWy7ubKs

CHAPTER 9

Application of Image
Processing and Computer
Vision in Medical Imaging

Introduction

Medical imaging refers to the techniques and processes used to
create visual representations of the interior of a body for clinical
analysis and medical intervention. The rapid advancement of
imaging technologies has significantly transformed the field of
medical diagnostics, enabling earlier detection, more accurate
analysis, enhanced environmental monitoring, and improved
patient outcomes. This chapter explores the diverse applications
of image processing and computer vision techniques in medical
imaging, demonstrating how these tools can assist in
interpreting complex medical data and automating key clinical
tasks.

This chapter covers key tasks in medical image processing,
including loading and visualizing specialized formats such as
DICOM and NIfTT using libraries like pydicom, nibabel, and
itk, along with 3D visualization of MRI data through tools like
matplotlib, vedo, and visvis to better understand anatomical
structures. It also explores image enhancement techniques



using filters, morphological operations, and CT reconstruction
with the inverse Radon transform. Advanced segmentation
methods are introduced, such as graph cuts for brain MRI, and
deep learning models like XceptionNet, highlighting the
essential role of image processing in improving clinical decision-
making and diagnostic accuracy.

Structure

In this chapter, we will cover the following topics in medical
image processing:
* Medical image processing:
o Loading and displaying medical images of different
formats and modalities with pydicom, nifti, itk libraries
o 3D visualization of a head MRI image with matplotlib, vtk,
vedo and visvis

o Applying filters with medpy and itk
o Morphological filtering with the library itk

o Computation tomography reconstruction with inverse
Radon transform using scikit-image

o Segmentation of brain MRI images with graph cut
algorithms with medpy

0o Pneumonia classification from chest X-ray using
XceptionNet with tensorflow

Objectives

This chapter explores image processing techniques in medical
imaging, covering visualization, filtering, segmentation, and
machine learning applications to enhance medical diagnostics.
It discusses usage of the key libraries like pydicom, medpy and
deep learning models such as XceptionNet for improved
analysis and patient outcomes. By bridging fundamental
concepts and practical implementations, this chapter provides a



robust foundation for addressing challenges in medical imaging
through innovative image processing techniques. By the end of
this chapter, you will master key image processing techniques
and deep learning applications for analyzing and enhancing
medical images to improve diagnostic accuracy and outcomes.

Medical image processing

The application of image processing in the medical domain has
revolutionized the way healthcare professionals diagnose, treat,
and manage diseases. With advancements in technology, image
processing techniques have become indispensable tools in
medical imaging, enabling the extraction of valuable
information from images that are often invisible to the human
eye. This section explores the various applications of image
processing in the medical field, highlighting its impact on
improving patient care and outcomes.

Medical image processing plays a vital role in modern
healthcare by enabling the visualization, analysis, and
interpretation of complex medical data. It involves the analysis
and manipulation of medical images for various purposes,
including diagnosis, treatment planning, and research. It
encompasses a range of techniques from basic image
enhancement to complex feature extraction and pattern
recognition. The primary goal is to improve the visibility of
important features within an image, facilitating a more accurate
and efficient diagnosis. Key applications of image processing in
the medical field include diagnostic imaging for enhanced
anomaly detection, image segmentation for analyzing
anatomical structures, 3D reconstruction for surgical planning,
computer-aided diagnosis (CAD) for improved diagnostic
accuracy, and telemedicine for remote patient care through
secure image transmission.

To start with, let us define a few of terms that will be used
frequently in this section:

« Pixel vs. Voxel:



o Picture element (pixel) refers to the smallest unit of a
2D image, representing a single point in a flat image, like
a slice from an MRI or CT scan.

o Volume element (voxel) is the 3D equivalent of a pixel,
representing a value in a 3D space, like a cube in a
volumetric scan, such as a full 3D MRI or CT scan,
containing depth information.

o Pixels are 2D, while voxels extend this concept into three
dimensions.

« Modalities: Different medical imaging modalities are used
to visualize various aspects of the human body. Each
modality is specialized for capturing specific types of tissue
or abnormalities. Common modalities include:

o X-ray: Utilizes ionizing radiation to capture 2D images of
dense structures like bones.

o Computed tomography (CT): Produces detailed cross-
sectional 3D images by combining multiple X-ray images,
commonly used for diagnosing internal injuries and
cancer. A CT slice is like looking at one thin layer of the
body, and stacking slices together gives a 3D view—great
for bone, lung, and organ imaging.

o Magnetic resonance imaging (MRI): Uses strong
magnetic fields and radio waves to generate detailed 3D
images of soft tissues such as the brain, muscles, and
ligaments. An MRI slice is also a 2D layer, but it shows
more soft tissue detail than CT and does not use
radiation.

o Ultrasound: Employs high-frequency sound waves to
produce real-time images, commonly used for fetal
imaging and examining soft tissues like the heart.

o Positron emission tomography (PET): Shows
metabolic and functional processes in the body using
radioactive tracers, often combined with CT for cancer



detection.

These modalities vary in resolution, contrast, and the type of
tissue they are best suited to visualize, depending on the clinical
requirement.

This section covers a range of techniques essential for
processing medical images across various formats and
modalities, such as Digital Imaging and Communications in
Medicine (DICOM), Neuroimaging Informatics Technology
Initiative (NIfTT), and Insight Segmentation and
Registration Toolkit (ITK). We shall start from a few classical
image processing techniques and then proceed to application of
recent advanced deep learning models (using tensorflow and
pytorch) for medical image analysis.

The key topics include loading and displaying medical images,
3D visualization of head MRI images, and applying advanced
filters. Morphological filtering and CT reconstruction with
inverse Radon transform further enhance image quality for
diagnostic purposes. Segmentation technique such as graph cut
is explored to extract meaningful structures from medical scans.
Additionally, deep learning models like XceptionNet for
pneumonia classification demonstrate the power of artificial
intelligence in radiographic image analysis.

This chapter will equip you with essential tools and techniques
to address a wide range of image processing tasks in the
medical domain, with hands-on implementations in Python.

Loading and displaying medical images
of different formats and modalities with

python libraries

Medical imaging is a cornerstone of modern diagnostics and
treatment planning, providing crucial insights into the human
body’s anatomy and pathology. Advances in imaging modalities
such as MRI, CT, USG, and PET have revolutionized clinical
practices across radiology, oncology, neurology, and other
fields. To work effectively with this wealth of data, it is essential



to have robust tools and libraries capable of handling diverse
image formats and modalities.

Medical images are typically stored in specialized formats that
encode not only pixel data but also vital metadata such as
patient information, image acquisition parameters, and spatial
orientations. Among these formats, DICOM, NIfTI, and ITK
are widely used in different imaging domains. The complexity of
these formats, along with the specific requirements of different
modalities (for example, MRI, CT, or PET), necessitates the use
of specialized libraries for reading, manipulating, and
visualizing such data.

In this section, let us explore how to efficiently load, process,
and display medical images from different formats and
modalities using Python libraries such as pydicom (for DICOM
images), nibabel (for NIfTT images), and SimpleITK (for ITK-
compatible image data). These libraries provide seamless
interfaces for handling medical image data, allowing
researchers and clinicians to extract, manipulate, and visualize
both image pixels and associated metadata:

* pydicom is a widely-used Python package for working with
DICOM files, which are the standard format for storing
medical imaging information. It enables easy extraction of
pixel data, metadata, and complex attributes such as affine
transformations or slice locations.

 nibabel focuses on formats like NIfTT and Analyze,

commonly used in neuroimaging for storing 3D and 4D
datasets, making it ideal for handling volumetric brain
scans, fMRI data, and other similar datasets.

* SimplelTK and the broader ITK ecosystem support various
medical image formats, including NIfTT and DICOM, while
providing additional tools for image registration,
segmentation, and analysis.

In this section, we shall cover the fundamental techniques for:

* Loading medical images in different formats and accessing

image metadata and pixel arrays.



 Visualizing 2D and 3D medical images for interpretation and
manual review.

* Handling image modalities such as MRI, CT, and PET
across the DICOM, NIfTI, and Metalmage formats.

By the end of this section, you will be equipped with practical
knowledge of how to work with medical imaging data across
various formats and modalities, leveraging Python’s extensive
libraries to streamline workflows in medical image analysis.

DICOM format

DICOM is the standard format for storing, transmitting, and
managing medical images and related metadata. It ensures
interoperability between medical imaging devices, workstations,
and healthcare systems. Each DICOM file contains both pixel
data (images from modalities like MRI, CT, and X-rays) and
metadata, such as patient details, image acquisition parameters,
and spatial orientation. DICOM files use a structured tag system
for metadata, supporting rich information for diagnostics and
integration into picture archiving and communication
systems (PACS).

DICOM's key features include:

* Interoperability across devices and systems.

* Rich metadata storing patient, study, and imaging details.

* Support for 2D, 3D, and 4D images from various modalities.

* Integration with PACS for image storage and retrieval.
However, DICOM files can be large and complex, requiring
specialized tools for handling, processing, and ensuring privacy.

Despite these challenges, DICOM remains a critical standard in
modern healthcare.

The next Python code demonstrates how to load and display
medical images stored in the DICOM format. The code
leverages the pydicom library to read DICOM files and
matplotlib to visualize them. Here is a detailed explanation of
how this code works, step by step:



1. Installing required libraries: The pydicom library is
used for reading and handling DICOM files in Python. Use
pip to install the library, which provides functionality to
extract metadata and pixel data from DICOM files. You can
also use it to manipulate and visualize the images.

2. Importing necessary modules:

a. glob: This module allows you to find all file paths that
match a specified pattern. It is used here to search for
DICOM files in the directory.

b. pydicom: This module is used to read DICOM files,
which contain both metadata (for example, patient
information, scan parameters) and image pixel data.

c. matplotlib.pyplot: Used for visualizing the medical
images. plt.imshow() will display each slice of the MRI
as an image.

3. Setting up the plotting environment:

a. plt.figure(figsize=(10,20)): This command creates a
new figure for plotting, with dimensions of 10 units wide
and 20 units tall. The large size accommodates displaying
multiple images in a grid layout.

b. plt.gray(): This sets the colormap to grayscale, which is
suitable for most medical images like MRI and CT scans
that are typically represented in grayscale.

c. plt.subplots_adjust(0,0,1,0.95,0.01,0.01): Adjusts the
spacing of the subplots to remove unnecessary padding
between images. This creates a more compact display for
a large number of images.

4. Loading DICOM files:

a. glob(): This function finds all DICOM files in the
specified directory that match the given pattern (‘MR*'),
as shown in the next code snippet. It returns a list of file
paths that match the pattern. In this case, it looks for
MRI scan slices, which typically start with the prefix MR.



b. pydicom.read_file(dfile): This reads each DICOM file
into a pydicom dataset object. The dataset contains both
the image data and metadata like patient information and
scan parameters.

c. mr scan = [...]: This list comprehension iterates
through all matching DICOM files, reading them into a
list called mr scan. Each element in mr scan is a
pydicom object representing an MRI slice.

5. Ordering slices by slice location: DICOM files from
medical imaging (especially in MRI or CT) usually contain a
series of image slices that represent cross-sections of a body
part. These slices need to be displayed in the correct order
based on their position along a particular axis (for example,
head to feet).

a. slice.SliceLocation: Each DICOM file contains
metadata that specifies the position of the slice (typically
the SliceLocation attribute). This information helps
ensure the slices are displayed in the correct order.

b. sorted(mr _scan, key=lambda slice:
slice.SliceLocation): This sorts the mr _scan list by the
SliceLocation attribute, ensuring the slices are ordered
from the top of the scan (for example, top of the head) to
the bottom (such as, base of the neck). Now, the list
mr_scan_ordered contains the slices in the correct
order, using the following code snippet:

from glob import glob
import pydicom

mr_scan = [pydicom.read_file(dfile) \
for dfile in sorted(glob(‘images/dicom/MR*.dcm"))]
mr scan_ordered = sorted(mr_scan, \
key=lambda slice: slice.SliceLocation)

6. Displaying the slices:
a. dicom_file.pixel array: This extracts the image data
from the DICOM file as a NumPy array. DICOM images



store the pixel values in this array format. The

pixel array attribute gives direct access to this image
data.

b. plt.subplot(4,8,i): This divides the figure into a grid of
4 rows and 8 columns. The variable i keeps track of the
current subplot, starting at 1 and incrementing with each
loop iteration. This allows for displaying up to 32 slices in
the grid.

c. plt.imshow(): This command displays the image (the
slice) in the current subplot. The mr variable holds the
pixel data extracted from the DICOM file.

d. plt.axis('off'): This removes the axes and labels from the
plot, making the images easier to view without cluttering
the display with unnecessary axis ticks and labels.

e. plt.suptitle(): Adds a title to the entire figure, giving
context to the displayed images. In this case, the title is
Full head MRI scan DICOM files with a font size of 15.

f. plt.show(): Finally, this command renders and displays

the plot. The entire set of MRI slices will be shown in a
grid format.

plt.figure(figsize=(12,4))
plt.gray()
plt.subplots_adjust(0,0,1,0.95,0.01,0.01)
i=1
for dicom_file in ct_scan_ordered:
plt.subplot(4,8,i), plt.imshow(dicom_file.pixel_array )
plt.axis('off")
i+=1
plt.suptitle('Full head MRI scan DICOM files', size=15)
plt.show()

If you run the preceding code snippet, you will get a figure
like the following one which visualizes the DICOM files
corresponding to a full head MRI scan:



Figure 9.1: Full head MRI scan DICOM files

NIfTI format

NIfTT is a widely used file format in neuroimaging for storing 3D
and 4D medical imaging data, particularly for modalities like
MRI and fMRI. It efficiently handles volumetric data and
includes a compact header with image metadata such as
dimensions and an affine transformation matrix for mapping
voxel data to real-world coordinates. NIfTI files can be
compressed and are compatible with many neuroimaging
analysis tools like FSL and SPM. While primarily used in brain
research, NIfTT’s focus on volumetric data makes it less
versatile for other medical imaging modalities.

The next Python code snippet uses the nibabel library to load
and visualize a medical image stored in the NIfTT format, which
is commonly used for storing MRI and other types of 3D medical
images. Here is a detailed explanation of how the code works
step by step:

1. Importing and loading the NIfTI image:

a. nibabel: This is a Python package used to handle
neuroimaging file formats like NIfTI (.nii, .nii.gz files),
as well as other formats like Analyze and DICOM. It is
commonly used for loading, manipulating, and saving 3D
or 4D medical imaging data.



b. nifti = nib.load('images/201_t2w_tse.nii.gz'): This
loads the NIfTI file from the given path. The file
201 t2w tse.nii.gz is a compressed NIfTI file (the .gz
extension indicates gzip compression). The function
nib.load() reads the image and returns a NiftilImage
object, which contains the image data and metadata such
as voxel dimensions, orientation, and  affine
transformations.

2. Inspecting the NIfTI image data and metadata:

a. print(nifti): This prints basic information about the
NIfTT object, including metadata such as the affine
transformation matrix and file structure.

b. nifti.shape: Returns the shape of the image, which tells
you how many voxels (3D pixels) there are in each
dimension. For instance, the given MRI brain scan has a
shape like (256, 256, 27), meaning there are 256 voxels
in the x and y axes (each slice is 256x256) and 27 slices
in the z-axis (depth).

c. nifti.header.get_data_shape(): This is another way to
obtain the shape of the image, using the NIfTI file’s
header. The header stores metadata about the image,
such as data type, dimensions, and scaling factors.

3. Converting the NIfTI image to a NumPy array:

a. nifti.get_fdata(): This function extracts the image data
from the NIfTI object and returns it as a NumPy array.
The get_fdata() method converts the data into a floating-
point array, which is convenient for further analysis and
visualization. NIfTI images are typically stored in 3D (or
4D) arrays.

b. print(image_array.dtype, image array.shape): This
prints the data type (for example, float64) and shape of

the extracted image array. For example, the shape is
(256, 256, 27) for the given 3D brain MRI, which means



there are 27 slices of 256x256 voxels.

import nibabel as nib
nifti = nib.load(‘images/201_t2w_tse.nii.gz")
print(nifti.shape)

print(nifti.header.get_data_shape())

image_array = nifti.get_fdata()
print(image_array.dtype, image array.shape)

4. Creating a grid of subplots for visualization:

a. plt.subplots(3, 9, figsize=(12, 4)): This command
creates a grid of subplots using matplotlib. In this case,
it creates a 3x9 grid (27 subplots in total). Each subplot
will be used to display one slice from the 3D MRI volume.

b. figsize=(12, 4): Specifies the figure size in inches
(width 12, height 4) to ensure the grid is large enough for
all the subplots.

c. plt.subplots_adjust(): Adjusts the spacing between the
subplots to reduce padding. This helps maximize the use
of space, removing excess margins between images.

5. Displaying the slices:

a. slice_counter = 0: This variable keeps track of which
slice (in the z-axis) of the 3D image to display. The slices
are indexed along the third axis (image_arrayl:,:,slicel]).

b. The nested loops iterate through the rows and columns
of the grid to fill each subplot with an MRI slice.

C. axis[i][j].imshow(image_arrayl:,:,slice_counter],
cmap="bone"): This displays the current slice as a 2D
image using imshow(). The slice is extracted from the
NumPy array image array by taking a cross-section
along the z-axis ([:,:slice_counter]). cmap='bone’
option applies a grayscale colormap with a bluish tint,
commonly used in medical imaging to enhance contrast
and detail.



d. axis[il[jl.axis('off'): Hides the axes and ticks for each
subplot to provide a clean display of the images.
Now, refer to the following code snippet:

fig, axis = plt.subplots(3, 9, figsize=(12, 4))
plt.subplots_adjust(0,0,1,0.9,0.01,0.01)
slice_counter = 0
for iin range(3):
for j in range(9):
if slice_counter < image_array.shape[-1]:
axis[i][j].imshow(image array[:,:,slice_counter, cmap='bone')
slice_counter+=1
axis[i][j].axis('off")
plt.suptitle('Full head MRI scan NIfTI files', size=15)
plt.show()

If you run the following code snippet, you will get a figure like
the following one which visualizes the NIfTI files corresponding
to a full head MRI scan:

Full head MRI scan NIfTI files

Figure 9.2: Fill head MRI scan NIfTI files

RAW or Metalmage format

The Metalmage format is used for storing medical images,
particularly in 3D and 4D imaging like CT and MRI scans. It
consists of two files:
A .mhd (Metaimage header) file that contains metadata
(image dimensions, data type, voxel spacing).
* A .raw file that holds the uncompressed pixel data in a
binary format.

The format is called RAW because the image data is stored
without compression, making it easy to process large datasets



quickly. It is commonly used in medical research due to its
simplicity, flexibility, and compatibility with libraries like
SimplelTK and itk, though the lack of compression results in
larger file sizes.

The following Python code reads and displays medical images
using the SimpleITK library, which is commonly used for
handling medical image formats such as DICOM, NIfTI, and
Metalmage. Here is how the code works:

1. Loading the image:

a. The function load _itk() is defined in the next code
snippet, it reads a medical image file (in this case, a .mhd
file) using SimpleITK's ReadImage() function.

b. SimpleITK handles a variety of medical image formats,
with the ability to read both image data (for example,
pixel values) and metadata (such as, origin and spacing).

c. The loaded image (itkimage) is then converted to a
NumPy array using sitk.GetArrayFromlmage(). This
converts the medical image into a format that can be
easily manipulated in Python.

d. The array is reordered to have axes in the order z, y, x

(axial, coronal, sagittal planes), which is more suitable
for visualization and manipulation.

Note: To successfully load a Metalmage using
SimplelTK.Readlmage(), both the .mhd and .raw files
must be located in the same directory. If the .raw file
is missing or not found at the expected path, the
image loading will fail. Make sure to keep them
together when using this function.

2. Retrieving metadata (origin and spacing):

a. Origin: The code extracts the origin of the scan using

itkimage.GetOrigin(). The origin defines the spatial
position of the image’s starting point (the coordinate of



the first voxel) in the real world. This is useful for
aligning the image with physical coordinates.

b. Spacing: The spacing is retrieved using
itkimage.GetSpacing(). Spacing represents the physical
distance between adjacent voxels along each axis (z, y, x).
This metadata is essential for converting between voxel
space (discrete coordinates in the image) and real-world
space (millimeters or other units).

import SimplelTK as sitk
import numpy as np
import matplotlib.pylab as plt

def load_itk(filename):
itkimage = sitk.ReadImage(filename)
ct_scan = sitk.GetArrayFromImage (itkimage)
origin = np.array(list(reversed(itkimage.GetOrigin())))
spacing = np.array(list(reversed (itkimage.GetSpacing())))
return ct_scan, origin, spacing

ct, , =load itk(‘images/chest ct.mhd")

print(ct.shape)

3. Visualizing the CT scan: After loading the CT scan (a
volumetric image) into the c¢t NumPy array, the code
proceeds to visualize it slice-by-slice using matplotlib.

a. The ct.shape[0] indicates the number of slices in the
scan (along the z-axis).

b. A for loop iterates over each slice of the CT scan, and for
each slice, plt.imshow(ct[i]) displays the 2D cross-
sectional image.

c. The figure is displayed in a 7x16 grid, meaning 7 rows
and 16 columns of subplots, with plt.axis('off') used to
hide axis labels.

This workflow is typical for handling 3D medical image data,

such as CT or MRI scans, where you need to process and
visualize slices or perform further analysis:

| plt.figure(figsize=(14,7)) |



plt.gray()
plt.subplots_adjust(0,0,1,0.95,0.01,0.01)
for i in range(ct.shape[0]):

plt.subplot(7,16,i+1), plt.imshow(ct[i]), plt.axis('off")
plt.suptitle('Chest CT-scan mhd (raw) files', size=15)
plt.show()

If you run the preceding code snippet, you should obtain a
figure like the next one:

Chest CT-scan mhd (raw) fites

Figure 9.3: Chest CT scan .mhd (.raw) files

3D visualization of a head MRI image

with matplotlib, vedo and visvis

In this section, you will learn how to visualize a head MRI image
in 3D using various python libraries.

With matplotlib

The next Python code visualizes a 3D head MRI image using
matplotlib’s 3D plotting capabilities. Here is how the code
works in detail (step-by-step):
1. Loading the MRI image:
a. The function load_itk(filename) is responsible for
loading the MRI image from a file.



b. It uses SimplelITK (imported as sitk), to read the image
using the function sitk.Readlmage(filename) and
converts it into a NumPy array (3D array for voxel
intensities) wusing sitk.GetArrayFromImage(). This
allows for easier manipulation and visualization.

c. The image is reshaped so that its axes align correctly: (z,
y, X). The axes represent depth (z-axis), height (y-axis),
and width (x-axis) of the image.

d. The function also extracts the spatial origin (physical
coordinate of the first voxel, using the function
itkimage.GetOrigin()) and voxel spacing (distance
between adjacent pixels/voxels in each direction in
physical units, using the function
itkimage.GetSpacing()) of the MRI data.

2. 3D plotting function: Creates a 3D surface plot of the
volumetric image using the Marching Cubes algorithm, here
is how it works in details:

a. The function takes in the 3D array ct (the CT scan
dataset) and a threshold value (1150 in this case). This
threshold defines the intensity level for rendering the 3D
surface.

b. It uses the function measure.marching cubes() from
the skimage library, which is used to extract a 3D
surface from a 3D array of scalar values (such as the CT
image data). The marching cubes algorithm generates a
surface (a mesh of triangles) by detecting contours at the
specified threshold value in the volumetric data. It
returns

i. verts: Vertices of the triangles in 3D space.
ii. faces: The indices of vertices forming triangular faces.

3. Rendering the 3D surface: Once the vertices and faces
are computed, the next step is to render the 3D surface:

a. Poly3DCollection from mpl toolkits.mplot3d.art3d is



used to create a collection of polygons from the vertices
and faces.

b. This creates a translucent (alpha = 0.1) surface by
assembling the triangular faces into polygons.

c. face _color = [0.5, 0.5, 1]: Defines a light blue color.
d. ax.add_collection3d(mesh): Adds the mesh to the 3D
axis.

e. The axes limits are then set to match the dimensions of
the image data (since the CT image could be non-cubic).

f. Finally, plt.show() is called to display the rendered 3D
visualization of the CT scan.

4. Understanding the visualization process:

a. Thresholding: The threshold value (1150 in this
example) is critical in defining which parts of the CT
image will be visualized. In CT data, voxel intensities are
measured in Hounsfield Units (HU), which correspond to
different tissue densities. Selecting an appropriate
threshold allows for the isolation of specific anatomical
structures, such as bone, soft tissue, or air-filled spaces.

b. Marching cubes algorithm: This algorithm extracts a
3D surface from a volumetric dataset by identifying
where the voxel intensities cross the threshold. The result
is a set of triangular surfaces that can be visualized as a
mesh.

c. 3D plot: The generated surface is plotted using
Poly3DCollection and displayed interactively using
matplotlib's 3D plotting features.

Refer to the next code snippet:

from mpl_toolkits.mplot3d.art3d import Poly3DCollection
import numpy as np

from skimage import measure

import pydicom

import matplotlib.pylab as plt

import SimpleITK as sitk




def load_itk(filename):
itkimage = sitk.ReadImage(filename)
ct_scan = sitk.GetArrayFromImage(itkimage)
origin = np.array(list(reversed (itkimage.GetOrigin())))
spacing = np.array(list(reversed (itkimage.GetSpacing())))
return ct_scan, origin, spacing

def plot_3d(image, threshold=-300):
verts, faces, , = measure.marching _cubes(image, threshold)
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111, projection="'3d")
mesh = Poly3DCollection(verts[faces], alpha=0.1)
face_color = [0.5, 0.5, 1]
mesh.set_facecolor(face_color)
ax.add_collection3d(mesh)
ax.set_xlim (0, image.shape[0])
ax.set_ylim (0, image.shape[1])
ax.set_zlim(0, image.shape[2])
ax.set_title(f'3D plot with Marching Cubes algorithm

'(level={threshold})', size=15)

plt.show()

ct, , =load itk(‘iamges/FullHead.mhd")
plot_3d(ct, 1150)

If you run the preceding code, you should obtain a 3D
visualization as shown in the following figure:
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Figure 9.4: 3D visualization of the full head mhd file with matplotlib

With the library visvis



The next Python code utilizes the visvis library, along with
measure.marching cubes lewiner() from the skimage
library, to visualize a 3D medical image, specifically a CT scan.
Here is a detailed breakdown of how the code accomplishes this
task:

1. First, import the visvis library (if not installed, first install it
using pip), which is a visualization library for Python. It
provides tools for 2D and 3D plotting and is particularly
useful for visualizing volumetric data such as medical
images.

2. Use the function load_itk() (defined earlier) to read the
medical image file in metaimage (.mhd) format. This
function returns the image data (ct), along with the origin
and spacing of the image.

3. Use the marching cubes lewiner() function from the
module skimage.measure to run the marching cubes
algorithm on the loaded CT image data, along with the
following input parameters:

a. ct: The 3D volumetric data (the CT scan) from which we
want to extract a surface mesh

b. 1150: This is the threshold value used to determine the
surface of the volume. It helps to extract the iso-surface
(represents all points within the volume that have the
same intensity value) at this particular intensity level. In
medical imaging, this value may correspond to a specific
tissue type or density (for example, bone), and returns
the following outputs:

i. verts: The vertices of the mesh that represent the iso-
surface.

ii. faces: The faces that connect the vertices to form the
3D surface.

iii. normals: The normals of the faces, which can be
used for lighting calculations.

iv. values: The original voxel values at the vertices.



4. Visualizing the 3D mesh:

a. The function vv.mesh() creates a 3D mesh visualization
using the extracted vertices, faces, normals, and values
as parameters, to render the iso-surface of the CT scan.

b. Finally, the function wvwv.use() function sets up the
current visualization environment, and Run() starts the
event loop, allowing the user to interact with the 3D
visualization (for example, by rotating, zooming etc.) and
activates the visualization window.

import visvis as vv

ct, , =load_itk('FullHead.mhd")

verts, faces, normals, values = measure.marching_cubes_lewiner(ct, \
1150)

vv.mesh(verts, faces, normals, values)

vv.use().Run()

If you run the preceding code, it should pop up a window with a
3D visualization as shown in the following figure:

Figure 9.5: 3D visualization of the full head mhd file with the library visvis

With the library vedo



The next Python snippet code utilizes the vedo library, which is
specifically designed for scientific visualization - particularly 3D
graphics - to render a medical image in 3D. Here is a step-by-
step explanation of how this code does the 3D visualization:

1. First, import the library vedo (install it with pip, if not
already installed), which is a powerful tool for 3D
visualization in Python. It offers a high-level interface for
rendering and interacting with 3D geometries.

2. Use the function measure.marching cubes() from the
library skimage to read the data and extract a 3D surface
mesh from the volumetric data (in this case, a CT image
stored in the variable ct), with the same parameter values as
in the last section, with the vertices of the mesh that define
the surface (verts) and the faces that connect these vertices
to form the polygonal mesh (faces) returned as output.

3. Creating the polygonal mesh: Create a Mesh object from
the extracted vertices and faces using the Mesh class in
vedo. The Mesh object will represent the 3D structure
defined by the vertices and faces extracted from the medical
image.

a. The .c(‘jet') method sets the color map for the mesh to
the 'jet' colormap, which is a widely used colormap for
visualizing scalar fields. This enhances the visual
distinction of different regions of the mesh based on
intensity.

b. The method.alpha(1.0) sets the transparency of the
Mesh to fully opaque (1.0 means no transparency).

c. Finally, the method.show() renders the mesh in a 3D
viewer. This opens an interactive window where users
can manipulate the view (e.g., by rotating, zooming,
panning etc.).

from vedo import *
verts, faces, , = measure.marching cubes(ct, 1150)
Mesh([verts, faces]).c('jet').alpha(1.0).show()

If you run the preceding code, it should pop up a window



with a 3D visualization as shown in the following figure:

Figure 9.6: 3D visualization of the full head mhd file with the library vedo

Applying filters with medpy and itk

As explained earlier, medical image processing is a key tool in
the diagnosis and analysis of diseases. By applying various
filters, we can extract features, enhance images, and blend
labels with scans to gain insights. This section discusses the
application of gradient, sigmoid, and overlay filters to medical
images using medpy, itk, and other libraries like scipy. It
demonstrates how to work with 3D medical images (for
example, with CT and MRI modalities) and applies these filters
for visualization and analysis.

Applying gradient filter with scipy and medpy

Gradient filters are used to detect edges and features in images
by computing the change in intensity values between
neighboring pixels. In this section, we will use the function
generic_gradient_magnitude() from the module
scipy.ndimage.filters, with popular operators Prewitt and
Sobel, to compute the gradient of an image, as shown in the
next code snippet. Here is the detailed code breakdown:

1. Loading the image: Use the load() function from medpy
to load the compressed medical image b0.nii.gz (in NIfTI-1
format), which typically denotes the baseline (non-diffusion-
weighted) image in diffusion MRI (dMRI) studies. The



function returns both the image data (representing a 3D
volume) and its header.

2. Gradient magnitude calculation: The function
generic_gradient magnitude() calculates the gradient
magnitude of the image. First apply the Prewitt operator,
which is a simple edge detection filter. The Prewitt operator
detects edges by convolving the image with two 3x3 kernels
that approximate the gradient of intensity in the x and y
directions:

Gx = [['11 Ol 1]) ['11 Ol 1]; ['11 01 1]]1 Gy = [[11 1) 1]1 [Ol
0, 0], [-1, -1, -1]1, and the edge magnitude is computed as
J|E| = G,* + G,°. The result is stored in data_output.

3. Visualization: The filtered image is displayed using
matplotlib.pylab. Compare the original image and the
result after applying the gradient filter.

4. Sobel filter application: An alternative to the Prewitt
filter is the Sobel filter, which is more sensitive to edges.

The Sobel operator detects edges by convolving the image
with two 3x3 kernels that approximate the gradient of

intensity in the x and y directions:
GX = [['11 Ol 1]1 ['21 Ol 2]1 ['11 OI 1]]1 Gy = [[11 21 1]1 [Ol
0, 0], [-1, -2, -1]], and the edge magnitude is again
computed as [lﬂl = 6’ + 6*. Apply this filter in a similar way to
Prewitt and display the output side by side for comparison.
5. Gradient filter visualization: The comparison between
Prewitt and Sobel filters helps us visualize the edges in the
medical images more clearly. Sobel is generally more
sensitive to noise but provides more distinct edge detection.
Prewitt is simpler but may miss fine details.

6. Example output:
a. Prewitt filter output: Displays more basic edges.

b. Sobel filter output: Captures finer details and is more
robust for medical image analysis.

Now, refer to the following code snippet:



import scipy

from scipy.ndimage.filters import generic_gradient magnitude, prewitt, sobel
from medpy.io import load, save

from medpy.core import Logger

data_input, header input = load(‘images/b0.nii.gz")

data_output = scipy.zeros(data_input.shape, dtype=scipy.float32)

generic_gradient magnitude(data_input, prewitt, output=data_output)

plt.figure (figsize=(20,7))

plt.bone()

plt.subplot(131), plt.imshow(data_input), plt.axis('off")
plt.title(‘original’, size=20)

plt.subplot(132), plt.imshow(data_output), plt.axis('off")
plt.title(‘'otuput gradient prewitt', size=20)

generic_gradient_magnitude(data_input, sobel, output=data_output)

plt.subplot(133), plt.imshow(data_output), plt.axis('off")
plt.title(‘'otuput gradient sobel', size=20)
plt.tight_layout()

plt.show()

If you run the preceding code snippet, you will obtain a figure
like the following one:

Figure 9.7: Computing the gradients from the NIfTI image with scipy/medpy

Applying sigmoid filter with ITK

A sigmoid filter is commonly used to enhance the contrast of an
image, particularly in medical imaging, where specific intensity
ranges are targeted for analysis. The library itk provides a
powerful sigmoid filter that is highly customizable through its
alpha and beta parameters, as shown in the next code snippet.
Here is the detailed code breakdown:

1. Reading the image: Use python-style template



instantiation using itk.ImageFileReader[ImageType] (to
select the correct C++ class), to read a brain proton density
image slice (an MRI image that displays a cross-sectional
view of the brain based on the concentration of hydrogen
protons, providing contrast primarily between tissues with
different proton densities) in PNG format.

2. Sigmoid filter setup: A SigmoidImageFilter is applied to
the input image. This filter adjusts pixel intensities by
mapping values between a specified range (in this case,
from O to 1), improving contrast.

3. Alpha and beta values: The filter’s response can be tuned
by changing the alpha (contrast) and beta (midpoint
intensity) values. Higher alpha (o) results in more contrast.
Compare the outputs obtained with different values of the
parameter alpha.

4. Sigmoid filter visualization: The sigmoid (filter
significantly enhances areas of interest in medical images by
improving contrast. This is particularly useful when trying to
highlight specific tissue types or abnormalities in CT or MRI
scans.

Now, refer to the next code snippet:

PixelType = itk.UC
Dimension = 2

ImageType = itk.Image[PixelType, Dimension]

reader = itk.ImageFileReader[ImageType].New()
reader.SetFileName('images/BrainProtonDensitySlice6.png")
input = reader.GetOutput()

sigmoidFilter = itk.SigmoidlmageFilter[ImageType, ImageType].New()
sigmoidFilter.SetInput(input)

sigmoidFilter.SetOutputMinimum (0)
sigmoidFilter.SetOutputMaximum(1)

beta = 128

plt.figure (figsize=(20,7))
plt.subplots_adjust(0,0,1,0.9,0.05,0.05)

plt.subplot(1,3,1), plt.imshow(itk.GetArrayFromImage(input))
plt.axis('off'), plt.title(‘input’, size=15)

i=2

for alpha in [1.2, 1.5]:




sigmoidFilter.SetAlpha(alpha)

sigmoidFilter.SetBeta(beta)

output = sigmoidFilter.GetOutput()

plt.subplot(1,3,i), plt.imshow(itk.GetArrayFromImage(output))

plt.axis('off")

plt.title(r'$\alpha$={}'.format(alpha), size=15)

i+=1
plt.suptitle('Applying Sigmoid Filter on an Image with itk', size=20)
plt.show()

If you run the preceding code snippet, you will obtain a figure
like the following one (sigmoid filter with different values of):

Applying Sigmoid Filter on an Image with itk

Figure 9.8: Applying a sigmoid filter on a brain proton density slice image with ITK

Applying overlay filter with ITK and opencv-python

Overlay filters are used to blend medical images with their
corresponding labels (for example, segmentation masks),
enhancing visualization and aiding to the interpretation of
anatomical structures. This is crucial when working with
annotated medical images, such as tumor segmentation or
organ delineation, as demonstrated with the next code snippet.
Here is the detailed code breakdown:
1. Loading image and label data: Load a 3D medical image
corresponding to a multi-parametric MRI scan of prostate
and the associated label files using the library nibabel.

Here the labels represent the segmentation masks (for
example, prostate boundaries).

import nibabel as nib
import itk

import cv2

import numpy as np

prostate_images = nib.load('images/prostate 00.nii.gz').get_fdata()



prostate_images = (255*prostate_images / prostate_images.max()).astype(np.uint

prostate_labels = nib.load(‘images/label prostate 00.nii.gz").get_fdata() \
.astype(np.uint8)

print(prostate_images.shape, prostate_labels.shape)

2. Label conversion: The segmentation mask (label image) is
converted into an itk.LabelMap. This step prepares the
labels for overlay on the original image.

3. Overlay filter application: The
LabelMapOverlaylmageFilter blends the label map with
the corresponding medical image. The function
SetOpacity(0.5) blends the label with 50% opacity for clear
visualization.

4. Overlay filter visualization: The output provides a clear
understanding of the anatomical structure (image) and its
annotated label (segmentation), making it easier to analyze.
This is especially important in tasks like tumor detection,
where overlaying segmentation results on scans improves
clarity.

Now, refer to the following code snippet:

LabelType = itk.ctype("unsigned long")
LabelObjectType = itk.StatisticsLabelObject[LabelType, Dimension]
LabelMapType = itk.LabelMap[LabelObjectType]

i=38

converter = itk.LabellmageToLabelMapFilter[ImageType, \
LabelMapType].New()

converter.SetInput(itk. GetlImageFromArray(prostate_labels]...,i]))

RGBImageType = itk.Image[itk. RGBPixel[PixelType], Dimension]
overlayFilter = itk.LabelMapOverlaylmageFilter[LabelMapType, \
ImageType, RGBImageType].New()
overlayFilter.SetInput(converter.GetOutput())
overlayFilter.SetFeatureImage(itk. GetImageFromArray( \
prostate_imagesl...,i,0]))
overlayFilter.SetOpacity(0.5)

plt.figure (figsize=(20,7))

plt.gray()

plt.subplot(131), plt.imshow(prostate_imagesI...,i,0]), plt.axis('off")
plt.title('input (prostate CT)', size=20)

plt.subplot(132), plt.imshow(prostate labels]...,i]), plt.axis('off")
plt.title('label’, size=20)

plt.subplot(133)

plt.imshow(cv2.rotate(itk.GetArrayFromImage (overlayFilter.GetOutput()) \




cv2.ROTATE_90 COUNTERCLOCKWISE))
plt.axis('off"), plt.title('overlayed label (with itk)', size=20)
plt.tight_layout()
plt.show()

If you run the preceding code snippet, you will obtain a figure
like the following one:

label

input (prostate C1) overlayed label (with itk}

Figure 9.9: Applying overlay filter to display label overlay on a NIfTI image with
itk/opencv

Morphological filtering with the library ITK

Morphological filtering is a powerful technique used in image
processing to extract and analyze structural information from
images. It is particularly effective in the realm of medical
imaging, where it can assist in highlighting features of interest,
such as organs and tissues, and suppressing noise.
Morphological operations are based on the shape of objects
within an image, using set theory to define operations like
dilation, erosion, opening, and closing. These operations are
often applied to binary or grayscale images and can be used for
various tasks, including segmentation, noise reduction, and
feature extraction.

Morphological operations rely on a structuring element (SE -
a small shape or template) that is used to probe and transform
the image. The two fundamental operations are:
 Dilation: This operation increases the size of the
foreground objects in a binary image. Formally, for a binary
image A and a structuring element B, dilation can be defined



as:

ADB=z€Z"|(B,nA # )

Here, B, is the translation of the structuring element B by
the point z.

* Erosion: This operation decreases the size of the
foreground objects in a binary image. It is defined as:

AOB=z€Z"| (B, CA)

In essence, erosion removes pixels on object boundaries.

Additionally, hole filling can be considered to be a
morphological operation where small gaps or holes within
objects are filled. This is important in medical imaging to ensure
continuous structures, particularly when dealing with binary
masks representing anatomical regions.

The following Python code illustrates how to implement
morphological operations using the library itk. The next code
snippet applies dilation and erosion to a grayscale medical
image and fills holes in a binary medical image. Let us
understand the code step-by-step in detail:

1. Begin by importing the required libraries, including itk (for
image processing) and matplotlib (for visualization), with
the following lines of code:

import itk
import matplotlib.pylab as plt

2. Dilation and erosion:

a. Setting up the image and structuring element: 