

Image Processing and
Computer Vision
Masterclass with

Python
Learn advanced image
processing techniques,

computer vision
fundamentals, and

applications
2nd Edition

Sandipan Dey

www.bpbonline.com

https://www.bpbonline.com/

Second Revised and Updated Edition 2025

First Edition 2021

Copyright © BPB Publications, India
eISBN: 978-93-65896-305
All Rights Reserved. No part of this publication may be reproduced, distributed
or transmitted in any form or by any means or stored in a database or retrieval
system, without the prior written permission of the publisher with the exception
to the program listings which may be entered, stored and executed in a
computer system, but they can not be reproduced by the means of publication,
photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true and correct to the best of author’s
and publisher’s knowledge. The author has made every effort to ensure the
accuracy of these publications, but the publisher cannot be held responsible for
any loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their
respective owners but BPB Publications cannot guarantee the accuracy of this
information.

www.bpbonline.com

https://www.bpbonline.com/

Dedicated to

In loving memory of my dad,
my inspiration, my strength,

and the one who
encouraged me

to write this book.
Without him, I am nothing.
Without him, none of this
would have been possible.

About the Author

Sandipan Dey is an author and data science enthusiast
with a wide range of interests, including machine learning,
deep learning, image processing, and computer vision. He
has worked across various domains in data science, such as
recommender systems, predictive modeling for the events
industry, sensor localization, sentiment analysis, and device
prognostics. He holds a master’s degree in computer
science from the University of Maryland, Baltimore County,
and has published research papers in several IEEE data
mining conferences and journals. With over 10 years of work
experience as a data scientist in the software and IT
industry, he has also authored multiple books on image
processing, published by international publishing houses. He
has completed over 500 MOOCs from leading institutions
worldwide, covering a wide range of subjects including data
science, machine learning, deep learning, generative AI,
image processing, natural language processing, artificial
intelligence, algorithms, statistics, mathematics, and related
fields. A passionate advocate for machine learning
education, he frequently shares his insights, research, and
projects on his blog.

Acknowledgement

I offer my deepest love, eternal gratitude, and cherished
remembrance to my beloved dad, who is no longer with me.
Not a day passes without feeling the ache of your absence,
yet your love surrounds me still, steady, guiding, and
everlasting. Your unwavering love, strength, and belief in
me continue to inspire every step I take. Everything I am,
everything I have achieved, carries a part of you. You were
my greatest inspiration, the heart behind this journey and
the reason these pages exist. Though you are no longer
here, your spirit lives in every word. This book is for you and
is a tribute to your spirit and to the bond we will always
share.
I express my deepest gratitude to my beloved mother,
whose endless love, strength, and blessings have been the
foundation of everything I do.
I am also grateful to BPB Publications for their guidance and
expertise in bringing this book to fruition. It was a long
journey of revising this book, with valuable participation and
collaboration of reviewers, technical experts, and editors.
I would also like to acknowledge the immense learning
opportunities provided by MOOCs on platforms such as
Coursera and edX. The wide range of courses I undertook in
image processing, computer vision, machine learning, deep
learning, generative AI, and related fields played a crucial
role in shaping the knowledge required to write this book.
Additionally, my years of experience working in the tech

industry have been invaluable, offering practical insights
and lessons that deeply informed and enriched this work.
Finally, I would like to thank all the readers who have taken
an interest in my book and for their support in making it a
reality. Your encouragement has been invaluable.

Preface

This book was conceived to address the growing demand for
a practical, problem-oriented resource that guides learners
through advanced topics in modern computer vision. It was
written to build upon foundational knowledge and to offer
readers a hands-on journey through a diverse set of
techniques—from classical image processing to cutting-edge
deep learning and generative AI models.
A deliberate choice was made to follow a problem-first
approach, where real-world challenges are introduced and
then explored through a variety of methods. In computer
vision, there is rarely a single correct way to solve a
problem. Instead, solutions are often shaped by factors such
as application context, data constraints, and performance
needs. Thus, this book aims not to prescribe the most
optimal or efficient method in every case, but rather to
expose readers to a broad spectrum of techniques. The goal
is to help them develop the insight and flexibility to choose
—or even design—the best solution for their own unique
scenario.
Each chapter is structured to include the necessary
background theory, followed by well-explained Python code
demonstrations using widely adopted libraries such as
OpenCV, scikit-image, SimpleITK, PyTorch, TensorFlow,
Keras, and more. Readers are encouraged to treat the
hands-on examples not as fixed templates, but as
launchpads for experimentation, adaptation, and deeper
learning.

Given Python’s dynamic and ever-evolving ecosystem, it is
acknowledged that some functions or APIs used in this book
may be deprecated or modified in the future. However,
readers should not be discouraged by such changes. Once
the core concepts are understood, tweaking, debugging,
and adapting code to evolving libraries becomes not only
manageable but also an excellent learning opportunity. It is
in this iterative process of troubleshooting and discovery
that one’s true expertise begins to flourish.
This book assumes that readers are already comfortable
with Python programming and possess foundational
knowledge in image processing, machine learning, deep
learning, and mathematical disciplines such as linear
algebra, calculus, and probability. For readers who wish to
build or reinforce this foundation, it is strongly
recommended to explore the companion book Image
Processing Masterclass with Python, authored by the same
writer.
Ultimately, the aim of this book is to guide, inspire, and
empower. The solutions presented are stepping stones, not
finish lines. It is hoped that readers will not only gain
practical skills but also develop a sense of joy and
fascination in solving visual problems. The journey through
image processing and computer vision is rich, challenging,
and immensely rewarding—may you enjoy every step of it.
Welcome to the masterclass. Let the journey begin.
Chapter 1: Image Restoration and Inverse Problems
in Image Processing - This chapter introduces
fundamental concepts in image restoration and inverse
problems. It begins with the mathematical formulation of
degradation models and explores various denoising and
deblurring techniques, both classical and modern. Key
techniques include weighted median filtering, non-blind and
blind deconvolution (for example, Richardson-Lucy), total

variation minimization, wavelet-based denoising, non-local
means, bilateral filtering, MAP Bayesian estimation with MRF
priors, and kernel PCA-based denoising—all demonstrated in
Python.
Chapter 2: More Image Restoration and Image
Inpainting - Building on the previous chapter, this section
dives deeper into image restoration using neural
techniques. It covers autoencoder-based denoising, GAN-
based blind deblurring (DeblurGAN), and multiple
approaches to image inpainting. Topics include anisotropic
diffusion filtering, simple deep image painting using Keras,
and semantic inpainting using DCGANs, with rich code
examples to reinforce learning.
Chapter 3: Image Segmentation - Segmentation is a
core problem in vision. This chapter introduces foundational
segmentation techniques, including gray-level and bitplane
slicing, thresholding methods, and clustering-based
segmentation. It also covers advanced algorithms like
MeanShift, watershed, GrabCut, RandomWalk, and
SLIC/NCut segmentation using Python libraries like OpenCV,
scikit-learn, and scikit-image.
Chapter 4: More Image Segmentation - This chapter
extends segmentation to more advanced and applied topics.
It covers human skin detection using classical binary
classifiers, labeling connected components, and video
background separation using Gaussian Mixture Models.
Deep learning-based segmentation techniques such as
DeepLabV3+, ENet, and Detectron2 are explored, along with
practical tasks like background replacement in
images/videos and outlier detection with autoencoders.
Chapter 5: Image Feature Extraction and Its
Applications: Image Registration - Feature detection is a
critical building block for many applications. This chapter
reviews keypoint detection and description methods, and

focuses on feature-based image alignment and registration.
Topics include rigid and deformable registration with tools
like pystackreg, pyelastix, SimpleITK, and the deep learning-
based VoxelMorph model using TensorFlow/Keras.
Chapter 6: Applications of Image Feature Extraction -
This chapter showcases how feature extraction powers real-
world applications. Examples include image panorama
stitching with OpenCV, facial feature analysis using NMF,
LBPH, and Gabor filters, and pedestrian detection using HOG
and HAAR-Cascade features. Each use case is backed by
end-to-end Python code.
Chapter 7: Image Classification - Image classification
forms the foundation of many AI systems. This chapter
walks through the entire pipeline—from classical machine
learning approaches for classifying Fashion-MNIST to deep
learning models using TensorFlow/Keras. It also
demonstrates transfer learning with PyTorch and training
classifiers on custom datasets using pre-trained models.
Chapter 8: Object Detection and Recognition - Delve
into object localization with deep learning. Topics include
using pre-trained models, YOLOv4 with transfer learning,
instance-level tasks like selective coloring using Mask R-
CNN, face verification with DeepFace, and barcode/QR
detection. Hands-on examples provide a strong basis for
object detection projects.
Chapter 9: Application of Image Processing and
Computer Vision in Medical Imaging - Explore the rich
world of medical image analysis. This chapter covers
handling and visualizing DICOM and NIfTI formats using
libraries like pydicom, nibabel, and ITK. It includes
segmentation of brain MRIs, 3D rendering, CT
reconstruction, and pneumonia classification using deep
CNNs—highlighting the real impact of vision in healthcare.

Chapter 10: Application of Image Processing and
Computer Vision in Medical Imaging and Remote
Sensing - This dual-topic chapter covers both medical and
remote sensing applications. Medical topics include COVID-
19 detection, prostate segmentation, and brain tumor
segmentation using nnUNet and U-Net. Remote sensing
topics include segmentation of satellite images (for
example, FloodNet, SN7), and landcover classification using
ResNet101 with Fastai. It illustrates how vision systems
solve problems beyond consumer devices.
Chapter 11: Miscellaneous Problems in Image
Processing and Computer Vision - This final chapter
brings together innovative and creative applications of
vision. Topics include deep dreaming, neural style transfer,
image colorization, visualizing CNN features with t-SNE,
generating 3D point clouds, AR with OpenCV, video editing
with MoviePy, image generation from text with GAN-CLS,
seamless cloning, and DALL-E-based generation—pushing
the boundaries of what is possible in computer vision.

Code Bundle and Coloured
Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/j4mhx9r
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Image-
Processing-and-Computer-Vision-Masterclass-with-
Python-2nd-Edition. In case there’s an update to the
code, it will be updated on the existing GitHub repository.
We have code bundles from our rich catalogue of books and
videos available at https://github.com/bpbpublications.
Check them out!

Errata
We take immense pride in our work at BPB Publications and
follow best practices to ensure the accuracy of our content
to provide with an indulging reading experience to our
subscribers. Our readers are our mirrors, and we use their
inputs to reflect and improve upon human errors, if any, that
may have occurred during the publishing processes
involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to
any unforeseen errors, please write to us at :
errata@bpbonline.com

https://rebrand.ly/j4mhx9r
https://github.com/bpbpublications/Image-Processing-and-Computer-Vision-Masterclass-with-Python-2nd-Edition
https://github.com/bpbpublications
mailto:errata@bpbonline.com

Your support, suggestions and feedbacks are highly
appreciated by the BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at
www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :
business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

Piracy
If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link to
the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We have
worked with thousands of developers and tech professionals, just like you, to
help them share their insights with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then
see and use your unbiased opinion to make purchase decisions. We at BPB
can understand what you think about our products, and our authors can see
your feedback on their book. Thank you!
For more information about BPB, please visit www.bpbonline.com.

Join our Discord space
Join our Discord workspace for latest updates, offers, tech
happenings around the world, new releases, and sessions
with the authors:

https://www.bpbonline.com/
mailto:business@bpbonline.com
https://www.bpbonline.com/
mailto:business@bpbonline.com
https://www.bpbonline.com/
https://www.bpbonline.com/

https://discord.bpbonline.com

https://discord.bpbonline.com/

Table of Contents

1. Image Restoration and Inverse Problems in Image
Processing

Introduction
Structure
Objectives
Mathematical model for image restoration
Inverse problems in image processing
Denoising with weighted median filtering
Non-blind deconvolution for image restoration

Image deconvolution with inverse filter
Gaussian blur kernel
Simulating the bokeh blur
Wiener deconvolution with opencv-python
Deconvolution with unsupervised Weiner filter with

scikit-image
Non-blind deconvolution with Richardson-Lucy

algorithm
Blind deconvolution with Richardson-Lucy algorithm

Mathematical foundation
Algorithm overview
Code implementation

Total variation denoising
TV denoising with Rudin-Osher-Fatemi algorithm

TV denoising with Chambolle vs. Bregman
Difficulty
How the Split Bregman method helps

Image denoising with wavelets
Discrete wavelet transform
Wavelet-denoising with pywt
Wavelet-denoising with scikit-image

Denoising using non-local means with opencv-python
Denoising with bilateral filter

Using SimpleITK
Using opencv-python

Denoising with MAP Bayesian with an MRF prior
Optimizing with gradient-based solver

Define prior and gradient functions
Define objective and gradient for optimization
Apply optimization to restore the noisy image
Minimize using L-BFGS-B
Retrieve final output
Visual and quantitative evaluation

Denoising images with Kernel PCA
Conclusion
Key terms
Questions
References

2. More Image Restoration and Image Inpainting
Introduction
Structure
Objectives

Denoising with autoencoders
Sparse denoising autoencoder
Denoising with convolution autoencoder with skip

connection
Deraining with GCANet

Blind deblurring with DeblurGAN
Image inpainting

Inpainting with opencv-python
Inpainting with scikit-learn k-NN regression model

Image denoising with anisotropic diffusion with opencv-
python
Sketch with anisotropic diffusion

Simple deep image painting with keras
Semantic image inpainting with DCGAN
Conclusion
Key terms
Questions
References

3. Image Segmentation
Introduction
Structure
Objectives
Gray level and bitplane slicing

Gray level slicing
Increasing contrast within ROI
Bitplane slicing

Binarizing an image with thresholding
Thresholding with scikit-image

Global thresholding
Local thresholding

Max-entropy thresholding with SimpleITK
Adaptive thresholding with opencv-python

Segmentation using clustering
Clustering with Mahalanobis distance
K-means vs. spectral clustering

MeanShift segmentation with opencv-python and scikit-
learn
MeanShift filtering with opencv-python
Segmentation with MeanShift clustering in lab space

with scikit-learn
Watershed segmentation with opencv-python and

SimpleITK
Watershed with opencv-python

Morphological watershed with SimpleITK
GrabCut segmentation with opencv-python
RandomWalk segmentation with scikit-image
Fast marching segmentation with SimpleITK
Segmentation using SLIC/NCut with scikit-image

SLIC segmentation
Normalized cut

RAG merging
Conclusion
Key terms
Questions
References

4. More Image Segmentation
Introduction

Structure
Objectives
Human skin segmentation with binary classifiers with

scikit-learn
Segmentation by labelling connected components with

scikit-image
Foreground-background separation in a video using

GMM with opencv-python
Semantic segmentation with DeepLabV3+ and ENet

Using pretrained DeepLabV3+ XCeptionNet model
with TensorFlow

With opencv-python and pretrained Caffe ENet model
Panoptic segmentation with the deep learning model

Detectron2
Blurring and changing background in image and video

using DeepLabV3
Outlier detection using autoencoder with H2O
Conclusion
Key terms
Questions
References

5. Image Feature Extraction and Its Applications:
Image Registration

Introduction
Structure
Objectives
Different types of feature detectors and descriptors
Corner detectors with opencv-python

Harris Corner detector

Corner with subpixel accuracy
Shi-Tomasi Corner detector

Image alignment/matching: Image registration
Feature or landmark based image alignment

With ORB features with opencv-python
With ORB features using scikit-image
With SURF features with opencv-python
With DISK features with kornia

Image color channel alignment using image registration
with pystackreg

Deformable image registration with pyelastix
Image registration with SimpleITK

With B-Splines
With Demons

Deep deformable image registration with VoxelMorph
with tensorflow/keras
Training a CNN for registration
Prediction with the trained CNN

Conclusion
Key terms
Questions
References

6. Applications of Image Feature Extraction
Introduction
Structure
Objectives
Panorama with opencv-python

Image stitching

Video stitching
NMF for extracting face features with Nimfa
Face recognition using LBPH with opencv-python

Face recognition
Adaptability

Face feature extraction and recognition using Gabor
filter banks
Feature extraction with Gabor filter bank

With scikit-image
With opencv-python

Face recognition with Gabor features with opencv-
python and scikit-learn

With random forest ensemble classifier
With 2-NN classifier

Pedestrian detection with HOG vs HAAR Cascade
features with opencv-python
Extracting HOG features
Pedestrian detection with HOG NMS
Classification with the SVM model
Computing Bounding-Boxes with HOG-SVM
HAAR-like features for HAAR Cascade classifier
Computing Bounding Boxes with HAAR-Cascade

classifier
HAAR-cascade vs. HOG-SVM in pedestrian detection

Conclusion
Key terms
Questions
References

7. Image Classification

Introduction
Structure
Objectives
Classifying Fashion-MNIST images using machine

learning models with scikit-learn
Understanding the Fashion-MNIST dataset
Classification with machine learning models
Gaussian Naive Bayes model
Linear classifier with SGD training
Random forest ensemble classifier

Classifying Fashion-MNIST images using deep learning
models with tensorflow/keras

Image classification with pretrained models with tf.keras
Popular pre-trained models in tf.keras

Using pretrained models for image classification
Image classification with custom classes using transfer

learning with pytorch
Understanding transfer learning
Setting up the environment

Conclusion
Key terms
Questions
References

8. Object Detection and Recognition
Introduction
Structure
Objectives
Object detection with pretrained deep learning models

With MobileNet-SSD using opencv-python
MobileNet-SSD architecture

With Yolov3 using gluoncv and mxnet
YOLOv3 architecture
Advantages of YOLOv3
Object detection with YOLOv3 with gluoncv

With YOLOv8 using ultralytics
YOLOv8 architecture
Ultralytics YOLOv8 model types
Advantages of YOLOv8
Object detection using YOLOv8 with python

Custom object detection with transfer learning using
YOLOv4 DarkNet

Loading pre-trained weights for transfer learning
Configuring YOLOv4 for custom training

Selective coloring with Mask R-CNN
Face verification with DeepFace

Face embeddings
Similarity metrics

Barcode and QR code detection with Python
Understanding barcode and QR code
Encoding, detection, decoding using Python libraries
Adding barcode/QR code to an image
Detect barcode or QR code

Conclusion
Key terms
Questions
References

9. Application of Image Processing and Computer
Vision in Medical Imaging

Introduction
Structure
Objectives
Medical image processing

Loading and displaying medical images of different
formats and modalities with python libraries

DICOM format
NIfTI format
RAW or MetaImage format

3D visualization of a head MRI image with matplotlib,
vedo and visvis

With matplotlib
With the library visvis
With the library vedo

Applying filters with medpy and itk
Applying gradient filter with scipy and medpy
Applying sigmoid filter with ITK
Applying overlay filter with ITK and opencv-python

Morphological filtering with the library ITK
Computed tomography reconstruction with inverse

Radon transform using scikit-image
Segmentation of brain MRI images with graph cut

algorithms with medpy
Pneumonia classification from chest X-ray using

XceptionNet with tensorflow
Conclusion
Questions
References

10. Application of Image Processing and Computer
Vision in Medical Imaging and Remote Sensing

Introduction
Structure
Objectives
Medical image processing

COVID-19 detection from radiographs with Covid-Net
with tensorflow

Prostate image segmentation with nnUNet with
Medical Decathlon dataset

Binary semantic segmentation of brain tumors using
U-Net with pytorch

U-Net: a convolution neural network
Computer vision and image processing in remote

sensing
Segmentation of FloodNet images using VGG-UNet

with the library keras_segmentation
VGG-UNet architecture
FloodNet dataset

Landcover classification with Fastai ResNet101 with
EuroSAT dataset

Residual networks
EuroSAT dataset

Satellite image segmentation using Fastai and wandb
with SN7 dataset

Conclusion
Key terms
Questions
References

11. Miscellaneous Problems in Image Processing and
Computer Vision

Introduction
Structure
Objectives
Deep dreaming with pytorch
Neural style transfer with perceptual losses

Using pre-trained pytorch model
Real-time style transfer with pytorch ONNX model
Fast style transfer for arbitrary styles with TensorFlow

Hub
Image colorization with pretrained pytorch models

With DeOldify
With CIC

Visualizing VGG16 features in 2D with t-SNE and
classifying with SVM

Creating point cloud from images
Creating depth map with vision transformers
Creating point cloud from depth map with Open3D

Augmented reality with opencv-python
Embedding and playing video with moviepy

Add subtitles
Generating images from text with GAN-CLS
Image editing with seamless cloning
Image generation and editing with DALL-E

Zero-shot text-to-image generation
How to use DALL-E 2 via the OpenAI API

Editing an image with mask
Conclusion

Key terms
Questions
References

Index

CHAPTER 1
Image Restoration and

Inverse Problems in Image
Processing

Introduction
Image restoration is the process of recovering a degradedimage to enhance its quality by reducing noise, blur, orother distortions. The goal of image restoration is to undo orcompensate for the elements that corrupt or degrade animage. Degradation can be caused because of sensor noise,motion blur, defocus blur (camera misfocus), opticalaberrations, and environmental distortions. When an imageis corrupted with some kind of blur, the actual blurringfunction — typically modeled as a Point Spread Function(PSF) — can be estimated, and the blur can be undone torestore the original image through deconvolutiontechniques. Similarly, noise degradation—whether causedby electronic interference, low-light conditions, orcompression artifacts—requires denoising methods such astotal variation regularization, wavelet-based filtering, or

deep-learning-based restoration to recover image details.Recent advancements in AI-driven image restorationleverage transformer-based models, generative
adversarial networks (GAN), and self-supervised learningto enhance image quality beyond traditional techniques.These methods have demonstrated superior performance inhandling complex degradations, blind restoration scenarios,and real-world applications.In this chapter, we shall explore and implementfundamental and modern image restoration techniques,analyzing their effectiveness for different types ofdegradation while considering the latest developments inimage processing and computational imaging.
StructureIn this chapter we shall explore the following topics:

• Mathematical model for image restoration
• Inverse problems in image processing
• Denoising with weighted median filtering
• Non-blind deconvolution for image restoration
• Blind deconvolution with Richardson-Lucy algorithm
• Total variation denoising
• Image denoising with wavelets
• Denoising using non-local means with opencv-python
• Denoising with bilateral filter
• Denoising with MAP Bayesian with an MRF prior
• Denoising images with kernel PCA

Objectives

By the end of this chapter, we will be able to understand thefundamental concepts of image restoration, including thetypes of degradation (for example, noise, blur) that affectimages and how restoration techniques aim to reverse theseeffects. We will also identify the difference betweendenoising and deblurring problems in image restoration andhow these are handled by various algorithms, implementnon-linear spatial filtering techniques such as the weightedmedian filter to effectively reduce noise in an image, applynon-blind deconvolution techniques using Python libraries(for example, opencv-python, SimpleITK) to restoreimages affected by motion blur or defocus blur, leveragingmethods like the Wiener filter and inverse filter, exploreblind deconvolution methods, including the Richardson-Lucyalgorithm, to restore images when the blur kernel isunknown, use total variation (TV) denoising to preserveimportant features like edges while removing noise, usingPython libraries such as scikit-image or SimpleITK, andimplement wavelet denoising to remove noise at multiplefrequency levels using the pywt library. Understand andimplement non-local means (NLM) filtering and bilateralfiltering, which consider spatial and intensity differences forefficient denoising while preserving edges. Additionally, wewill explore Bayesian denoising techniques with Markov
Random Field (MRF) priors for probabilistic imagerestoration, utilizing kernel Principal Component
Analysis (PCA) for denoising, which applies dimensionalityreduction techniques to image restoration problems, anduse popular Python libraries like scikit-image, opencv-
python, SimpleITK, scipy.ndimage, and matplotlib toimplement these techniques and visualize the results.By mastering these topics, you will have a strong grasp ofhow to restore corrupted images using various moderntechniques and how to implement them effectively in Python

for practical applications.
Mathematical model for image
restorationTo formalize the image restoration process, let us begin byexamining its underlying mathematical model, whichdescribes how an observed image is formed throughdegradation mechanisms. The general form of the imagedegradation model is shown in the following figure:

Figure 1.1: Schematic diagram for image restoration problem

Figure 1.1 represents the generative model g(x,y) = f(x,y) ⊛
h(x,y) + n(x,y), where:

• f(x,y) is the original image (represented by x in theaforementioned figure)
• h(x,y) is the PSF, a convolution kernel
• ⊛ is the convolution operation
• n(x,y) is the noise signal
• g(x,y) is the convolved output image (represented by y inthe figure)When the noise is not present in the preceding model, theproblem reduces to deblurring; there are several techniquesfor non-blind and blind deblurring (a few of them we shall

implement).When the blur kernel is absent, the problem reduces todenoising, typically done by spatial / frequency domainfilters, let us start with a generalized form of one such non-linear spatial filter.
Inverse problems in image processingInverse problems in image processing refer to the task ofestimating the original image from its degraded observationby mathematically reversing the effects of distortions suchas blur, noise, and occlusions. It is called an inverseproblem because instead of directly observing the cause (forexample, motion blur), we infer unknown parameters fromthe degraded image, essentially inverting the degradationprocess. While image restoration is a subset of inverseproblems, inverse problems in imaging also encompasstasks like super-resolution, image inpainting, andtomography, making it a broader concept beyond justrestoring images. In this section, we shall focus onrestoration of a degraded image.As discussed in the introduction section, image degradationcan be represented by a convolution of an image with a PSF,combined with the addition of noise [4], so that it can bemathematically modeled as where A ismatrix that represents a two-dimensional convolution with aGaussian blur (with standard deviation σ), and η representsthe additive noise (of standard deviation θ).Here is the original image (not available to us), all wehave is the degraded image g and the convolution matrix A(for non-blind convolution). We want to obtain an estimate
The class of problems is often known as an inverse problemin image processing, where we aim at the data estimation

from inadequate or noisy observations, and it is oftenencountered in practice. It is an ill-posed problem, and thesolution is non-unique due to noise and lack of information.Hence, we aim to obtain an approximate solution.In this section we shall use normal equations (with
regularization) to obtain an estimate for the originalimage.Let us start by importing all the required libraries using thefollowing code snippet:%matplotlib inlineimport numpy as npimport matplotlib.pyplot as pltfrom scipy.ndimage.filters import gaussian_filterfrom skimage.metrics import peak_signal_noise_ratio as psnrfrom scipy.sparse.linalg import LinearOperator, gmresimport warningswarnings.filterwarnings('ignore') # ignore warningsLet us define the convolution process with Gaussian blurkernel with variance using the gaussian_filter()function from scipy.ndimage.filters module.Implement the degradation process with the function
degrade(), which first applies the convolution, followed byaddition of a standard normal noise of variance as shownin the following code block.Initialize and variables.def A(f, sigma): return gaussian_filter(f, sigma)def degrade(f, sigma, theta): g = A(f, sigma) g += theta*np.random.randn(g.shape[0], g.shape[1]) return gsigma, theta = 0.15, 0.075f_true = rgb2gray(imread('images/beans.jpg'))g = degrade(f_true, sigma, theta)From the degradation equation, we can see that it can berepresented as an optimization (minimization) problemwith the classic OLS loss function along with a Ridge

penalization term as:
The true image is restored by solving the preceding normalequation (prove it):
The process of reversing the degradation effects to restorethe true image from the observed degraded image , as asolution to , is generally known as
deconvolution.We can solve the preceding problem using a Krylov solversuch as the Generalized Minimal Residual Method(GMRES).Since the explicit matrix representation of is infeasiblylarge, pass the solver instead of a function that computes
It performs the following two-step process:

The following code snippet solves the preceding equationwith the function gmres() from scipy.sparse.linalg moduleand obtains an estimate for for the original image. Invoke
gmres(), to use GMRES iteration forsolving the linear system of equations given by, to find def ATA(f, alpha=1e-2): y = A(f, sigma) z = A(y, sigma) + alpha*f return zh, w = g.shape

AL = LinearOperator((w*h,w*h), ATA)ATg = np.ravel(A(g, sigma))f_hat = np.reshape(gmres(AL, ATg)[0], (h,w))Plot the degraded image and the restored one with thefollowing code block:plt.figure(figsize=(20,10))plt.subplot(121), plt.imshow(g), plt.title('degraded, PSNR: {:.02f}' \ .format(psnr(f_true, g)), size=20), plt.axis('off')plt.subplot(122), plt.imshow(f_hat), plt.title('restored, PSNR: {:.02f}' \ .format(psnr(f_true, f_hat)), size=20), plt.axis('off')plt.tight_layout()plt.show()Once you run the aforementioned code snippet, you shouldobtain the following figure:

Figure 1.2: Image restoration with the GMRES method

Denoising with weighted median
filteringWhen an image (a 2D or 3D signal) is transmitted over somedistance over a communication channel, it frequently getscontaminated by noise. The simplest model for theacquisition of noise by a signal is additive noise, with theform:

The basic assumptions for noise signal are thefollowing:
• Noise is additive.
• Noise is a random signal (with white Gaussian noisehaving mean).
• Noise is a high-frequency signal.Again, our objective of denoising is to remove noise from the noisy image , while retaining most of theimportant signal features. Here, we shall use a weightedmedian filter to achieve the same.A simple median filter is a nonlinear spatial filter thatreplaces each pixel with the median from a set in a window(patch) surrounding the pixel. This has the effect ofminimizing the absolute prediction error. The output of thefilter can be written as follows:

Where is a window surrounding pixel s. It can beshown that is minimum when (seequestion 1 in the exercise and reference [1]).The median filter is particularly very useful for removingthe salt and pepper (s&p) noise (a type of image noise,where random pixels are replaced with black or whitevalues, resembling scattered salt and pepper grains) froman image. The weighted median filter generalizes themedian filter by allowing some pixels in the window to havemore influence on the output than others. Here, the outputis written as follows:

Where are weighting factors which determine therelative influence pixels in have on the output. Atypical set of weights is shown as follows:

Figure 1.3: Sample weights for a weighted median filterThis weight mask allows the pixels closer to the currentpixel to have a stronger influence on the output.In this section, we shall implement the weighted medianfilter function and apply it to denoise an Integrated
Circuit (IC) grayscale image, degraded with s&p noise.Let us start by importing the required libraries by using thefollowing lines of code:import cv2from skimage.util import random_noiseNow, let us implement the function weighted_median()that applies the Weighted Median Filter (WMF) on animage. The function accepts a (noisy) input image and a
weight mask for the WMF. The following is a step-by-stepbreakdown of how the algorithm works:1. It slides a kernel window across the image (a standardway to implement a spatial filter).2. Next, for each position of the window, it sorts the pixelsin the window in descending order. Then it places thecorresponding pixel weights in the same order as thesorted pixels.

3. Finally, it determines the weighted median byincrementing the index until the following holds true.

Let us implement the aforementioned algorithm using thepython function weighted_median(), as shown in the nextcode snippet. The function np.argsort() is used to obtainthe sorted indices of the pixels in a window. The function
np.cumsum() is used to compute the cumulative sum of theweight mask values in the following implementation.def weighted_median(im, mask): h, w = im.shape sz = mask.shape[0] im1 = im.copy() mask1 = mask.ravel() for i in range(h-sz+1): for j in range(w-sz+1): win = im[i:i+sz, j:j+sz].ravel() indices = np.argsort(win)[::-1] win, mask1 = win[indices], mask1[indices] csum1, csum2 = np.cumsum(mask1), np.cumsum(mask1[::-1])[::-1] k = 0 while csum1[:k].sum() < csum2[k:].sum(): k += 1 im1[i+sz//2, j+sz//2] = win[k] return im1Now, read the input gray-scale image. Add impulse (s&p)noise to the input image using the function
random_noise() from skimage.util module to obtain thenoisy image.Construct the weight mask aforementioned, using numpy
slicing, as done in the next code snippet. Subsequently,apply the weighted median filter function to denoise(smooth) the degraded image, by invoking the

weighted_median() function on the corrupted image:im = cv2.imread('images/ic.jpg', 0)im = im / im.max()noisy_im = random_noise(im, mode='s&p')weight_mask = np.ones((5,5))weight_mask[1:-1,1:-1] = 2denoised_im = weighted_median(noisy_im, weight_mask)Plot the original input image, the noisy (degraded) image,and the denoised (restored) output image side-by-side. Use
skimage.util module’s peak_signal_noise_ratio() functionto compute the Peak Signal-to-Noise Ratio (PSNR, whichmeasures the quality of a reconstructed image bycomparing it to the original and computed using the formula
PSNR , where MAX is the maximumpixel value and MSE is the Mean Squared Error) of thenoisy and denoised images and observe that PSNR improveda lot after restoration. You should obtain a figure as follows:

Figure 1.4: Image restoration with weighted median filter

Non-blind deconvolution for image
restorationDeconvolution is an operation inverse to convolution, it is acomputationally intensive image processing technique forimage restoration. In general, the objective of deconvolution

is to find an (approximate) solution for from a convolutionequation of the form: given and theconvolution kernel . In this section, we shall discuss a fewdeconvolution algorithms with the assumption that thedeconvolution is non-blind, i.e., the PSF, which describeshow a single point source of light is blurred by an imagingsystem, modeling the system’s response to an ideal pointinput, and the convolution kernel is known.
Image deconvolution with inverse
filterThe inverse filter is the most straightforward
deconvolution method. Considering that the convolutionof two images in the spatial domain is equivalent to
multiplication of the Fourier transforms of the twoimages in the frequency domain (by the convolution
theorem), the inverse filter attempts to invert themultiplication.If in the spatial domain, the convolution operation isrepresented as , in the frequencydomain it can be represented by a simple multiplication, where and represent the2D Discrete Fourier Transform (DFT, which converts aspatial-domain image into its frequency components,computed in 2D as) of (the original image), (the convolution kernel) and (the convolvedimage), respectively (note that we are ignoring the noisehere, the impact of noise on inverse filter is left as anexercise). A naive approach for image restoration is tomultiply the DFT of the blurred image by inverse of

The next step is to apply the 2D IDFT (Inverse Discrete
Fourier Transform, converts an image back to spatialdomain from its frequency domain representation, and it iscomputed in 2D as:) to obtain therestored image from its frequency domain representation.The aforementioned method is called inverse filtering,where is the inverse filter.
However, the problem in this formulation is that maynot exist / it may be computationally impossible to compute (for example, when). The ideal (morestable) inverse filter (also known as pseudo-inverse filter)can be approximated as follows:

Figure 1.5: Pseudo-inverse filterWhere is a small threshold.Another way to compensate for the values close to zero in is just to get rid of high-frequency components beyond acutoff threshold (for example,) with naiveinverse filtering with the deconvolution operator asfollows:

Figure 1.6: Another implementation of the inverse filterWhere is a high frequency threshold.In this section, we shall implement the pseudo-inverse filterusing the aforementioned two approaches and restore adegraded image. Let us start by importing the requiredlibraries using the following lines of code:from scipy import signalimport scipy.fftpack as fpfrom skimage.io import imreadfrom skimage.color import rgb2grayfrom mpl_toolkits.mplot3d import Axes3Dfrom matplotlib.ticker import LinearLocator, FormatStrFormatterLet us implement the frequency domain convolution usingthe function convolve2d(), notice that before performingthe convolution as multiplication in the frequency domain,we must ensure that the PSF (convolution kernel) ispadded properly to have shape exactly equal to the imageshape. Let us also implement the pseudo-inverse filter anduse the post-processing cutoff, as shown in the next codesnippet:def convolve2d(im, psf, k): M, N = im.shape freq = fp.fft2(im) assert(k % 2 == 1 and k > 0 and k <= min(M,N)) # assumption: min(M,N) >= k > 0, k odd, kxk kernel psf = np.pad(psf, (((M-k)//2,(M-k)//2+(1-M%2)), ((N-k)//2,(N-k)//2+(1-N%2))),\ mode='constant') freq_kernel = fp.fft2(fp.ifftshift(psf)) return np.abs(fp.ifft2(freq*freq_kernel))
def inverse_filter_cutoff(y, h, eta): Hf = fp.fft2(fp.ifftshift(h))

 M, N = Hf.shape u, v = np.meshgrid(range(N), range(M)) indices = np.sqrt(u**2 + v**2) <= eta Hf[indices] = np.ones((M,N))[indices] / Hf[indices] Hf[np.sqrt(u**2 + v**2) > eta] = 0 Yf = fp.fft2(y) I = Yf*Hf im = np.abs(fp.ifft2(I)) return im, Hf
def pseudo_inverse_filter(y, h, epsilon): Hf = fp.fft2(fp.ifftshift(h)) M, N = Hf.shape Hf[(np.abs(Hf)<epsilon)] = 0 indices = np.where((np.abs(Hf)>=epsilon)) Hf[indices] = np.ones((M,N))[indices] / Hf[indices] Yf = fp.fft2(y) I = Yf*Hf im = np.abs(fp.ifft2(I)) return im, HfLet us define the following functions to plot the frequency
spectrums, both in 2D (as heatmap) and 3D (as surface
plot):def plot_freq_filter(F, title, size=20): plt.imshow(20*np.log10(0.01 + np.abs(fp.fftshift(F))), cmap='inferno') plt.title(title, size=size), plt.colorbar(orientation='horizontal')
def plot_freq_spec_3d(freq): fig = plt.figure(figsize=(10,10)) ax = fig.gca(projection='3d') Y = np.arange(-freq.shape[0]//2,freq.shape[0]-freq.shape[0]//2) X = np.arange(-freq.shape[1]//2,freq.shape[1]-freq.shape[1]//2) X, Y = np.meshgrid(X, Y) Z = (20*np.log10(0.01 + fp.fftshift(freq))).real surf = ax.plot_surface(X, Y, Z, cmap=plt.cm.inferno, linewidth=0, \ antialiased=True) ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) plt.show()Now, let us create a couple of degraded (grayscale) imageswith two different types of blur kernels, first with a
Gaussian blur and then using a motion blur kernel, andrestore the degraded versions in each case using the

pseudo-inverse filters (using the functions
inverse_filter_cutoff() and pseudo_inverse_filter()),compare the quality of the denoised images with PSNRmetric and plot the frequency spectrums, using thefollowing code snippets.
Gaussian blur kernelGaussian blur kernel (in image processing) is a kernel (amatrix or a 2D array) used to smooth (or blur) an image byaveraging pixel values with a Gaussian distribution,reducing noise and detail. It applies a weighted average tothe surrounding pixels, with the center pixel having thehighest weight and decreasing weights for pixels fartherfrom the center, following the shape of a Gaussian (bellcurve).Mathematically, a 2D Gaussian function is defined as:
Where:

• are the pixel coordinates relative to the center of thekernel
• is the standard deviation (controls the extent ofblurring)
• gives the weight for each pixel based on itsdistance from the centerThe kernel values are derived from this Gaussian functionand normalized so that they sum to 1, ensuring no change inimage brightness. The image is convolved with this kernelto produce the blurred effect. The following Python codesnippet shows how a degraded image (blurred withGaussian kernel is restored using an inverse filter):(M, N), k, sigma2, nsigma2 = im.shape, 15, 0.125, 0.0025

im = rgb2gray(imread('images/house.jpg')) kernel = np.outer(signal. windows.gaussian(k, sigma2), \ signal. windows.gaussian(k, sigma2))im_blur = convolve2d(im, kernel, k) #, mode='same')im_cor = random_noise(im_blur, var=nsigma2)freq = fp.fft2(im_cor)epsilon = 1e-3eta = 1 / epsilonkernel = np.pad(kernel, (((M-k)//2,(M-k)//2+1), ((N-k)//2,(N-k)//2+1)), \ mode='constant')im_res_cutoff, F_cutoff = inverse_filter_cutoff(im_cor, kernel, eta)im_res_pseudo, F_pseudo = pseudo_inverse_filter(im_cor, kernel, epsilon)The preceding Python code demonstrates image restorationby applying an inverse filter to a degraded image. Thefollowing is a breakdown of how it works:
• Defining image parameters:o M, N: Dimensions of the image.o k: Size of the blur kernel.o sigma2: Standard deviation for generating theGaussian kernel (controls blur intensity).o nsigma2: Variance of the noise added to the blurredimage.
• Image loading and conversion: The image is loadedand converted to grayscale using rgb2gray(imread(.)).
• Generating the blur kernel: A Gaussian blur kernel iscreated using signal.windows.gaussian(), whichgenerates a 1D Gaussian, and np.outer() forms a 2Dkernel, by exploiting the separability of the Gaussianfunction in 2D.
• Blurring the image: The image is blurred byconvolving it with the Gaussian kernel using

convolve2d(), where convolution (in 2D) ismathematically defined as: , with and representing

the image and the kernel, respectively.
• Adding noise: Random noise with variance nsigma2 isadded to the blurred image using random_noise(), tosimulate a noisy, degraded image.
• FFT of the corrupted image: The corrupted (blurredand noisy) image is transformed into the frequencydomain using the Fast Fourier Transform (FFT) with

fp.fft2().
• Inverse filter application:o Kernel padding: The kernel is padded to match theimage size using np.pad().o Inverse filter: The following two variations of theinverse filter are applied:

฀ Cutoff inverse filter (inverse_filter_cutoff()):This applies a frequency domain cutoff to limithigh-frequency noise using the inverse of thekernel (with a threshold eta).
฀ Pseudo-inverse filter (pseudo_inverse_filter()):This uses a regularized pseudo-inverse approach tostabilize the inversion, avoiding divisions by smallvalues using epsilon.Both filters attempt to undo the blur and noise degradation,thereby restoring the image. If you run the preceding codesnippet and plot the degraded and restored images (alongwith the magnitude of the frequency spectrums) using theaforementioned two implementations, you should obtain afigure as follows:

Figure 1.7: Image restoration with (pseudo) inverse filterIf you plot the magnitude of frequency spectrums in 3D, youwill obtain a figure like the next one:

Figure 1.8: Frequency spectrum of the degraded vs. restored image

As we have seen in the last section, Gaussian blur kernel

applies a symmetric, isotropic smoothing effect to an imageby convolving it with a 2D Gaussian function, which assignshigher weights to pixels closer to the center. It is commonlyused to reduce noise or create a soft-focus effect. Incontrast, a motion blur kernel simulates the effect ofobject motion or camera shake by averaging pixelintensities along a specific direction and distance. UnlikeGaussian blur, motion blur is directional and anisotropic,resulting in elongated streaks that mimic the perceivedmotion. They serve distinct purposes: Gaussian blur focuseson uniform smoothing, while motion blur captures thedirectional nature of movement.
Motion blur kernelA motion blur kernel in image processing is used to simulatethe effect of camera or object movement during exposure,causing the image to appear smeared along the direction ofmotion. It is a linear filter that averages pixel values alonga straight line in the direction of the blur, giving theappearance of motion.Mathematically, a motion blur kernel is often representedas a 2D matrix where non-zero values form a line with equalweights in the direction of the blur. For example, a simplehorizontal motion blur kernel of size N×N can be written asthe following matrix (with the first row as all ones and allthe elements of the rest of the matrix as zeros):

In the preceding example, the kernel has N non-zeroelements (all equal to 1/N) in the first row, simulatinguniform averaging along a horizontal path of length N. Theimage is convolved with this kernel, which results in ablurring effect along the specified motion direction.

For vertical or diagonal motion blur, the non-zero values inthe kernel would be arranged along a vertical or diagonalline, respectively. The general motion blur can be extendedto other directions by adjusting the orientation of thekernel.Let us now degrade an image using motion blur and restore(deblur) using the inverse filter, using the following codesnippet:im = rgb2gray(imread('images/car.jpg')) (M, N), k = im.shape, 21 # k x k kernelkernel = np.zeros((k, k)) # construct a 21 x 21 motion-blur kernelkernel[int((k-1)/2), :] = np.ones(k) # fill middle row of kernel matrix with 1skernel = kernel / kim_blur = convolve2d(im, kernel, k)im_cor = im_blurfreq = fp.fft2(im_cor)kernel = np.pad(kernel, (((M-k)//2,(M-k)//2+1), ((N-k)//2,(N-k)//2+1)), \ mode='constant')epsilon = 10e-3im_res_pseudo, F_pseudo = pseudo_inverse_filter(im_cor, kernel, epsilon)A couple of steps from the preceding code snippet demandmore explanation:1. Creating the motion blur kernel:a. A k x k matrix of zeros (kernel = np.zeros((k, k)))is created.b. The middle row of this matrix is filled with ones(kernel[int((k-1)/2), :] = np.ones(k)) to simulate
horizontal motion blur.c. The kernel is normalized by dividing by k to ensurethat the sum of all elements is 1, ensuring properblurring.2. Blurring the image:a. The image is blurred by convolving it with the motionblur kernel using convolve2d(). This simulates themotion blur effect on the image.

b. In this case, no additional noise is added; thecorrupted image im_cor is simply the blurred image.If you run the preceding code snippet and plot the motion-
blurred and the deblurred (restored) images in both the
spatial and frequency domains, you should obtain a figureas follows:

Figure 1.9: Restoration of a motion-blurred image with pseudo-inverse filterIf you plot the magnitude of frequency spectrums in 3D, youwill obtain a figure as follows:

Figure 1.10: Frequency spectrum of the image, blur kernel, blurred and
restored image

Simulating the bokeh blurThe bokeh effect is a pleasing visual artifact, and it oftenenhances the aesthetics of a photograph. Let us understandhow the effect can be created. Light rays (from lightsources) get reflected by the objects in the scene, and thecamera lens focuses them onto the image plane. The pointsthat appear in focus are the ones that fall inside a certaindistance range, and the remaining ones appear out of focus(being too far / too close). Among these points, the brightspots (for example, light sources) create circles of confusionthat are more visible than the ones created by darker points(by the contrast effect). This phenomenon is known as thebokeh effect. In this section, you will learn how to simulatethis effect using Python code with 2D convolution.Let us start by importing the required libraries using the

next line of code:from skimage.color import rgb2gray, rgba2rgbConsider a white pixel at the center of a black image. Let usshift this image in all directions by a single pixel andaccumulate the results. It will smear the white pixel over itsneighbors.Let us implement the function apply_bokeh_blur() tosimulate this effect. The function takes two arguments: aninput image and a binary mask image (a small whitestar/hexagon/circle at the bottom left corner in a blackbackground) of the same shape. Start with a blank outputimage where the smearing effects will get accumulated.For each white pixel from the mask image, shift theinput color image by , using the function np.roll(),strengthen the effect by using func() (for example, a cubicfunction), and multiply it by the mask pixel value, and addthe result to the output image.Finally, normalize the pixel values, as shown in thefollowing code snippet:def func(x): return x**3def apply_bokeh_blur(img, mask): h, w = mask.shape out = np.zeros(img.shape) total = 0 for i in range(h): for j in range(w): if mask[i, j] != 0: out += mask[i, j] * func(np.roll(img, (i,j), (0,1))) total += mask[i, j] out /= total out /= out.max() return outRead the input RGB color image of an X-mas tree. Let us usea black image with a small white star (mask) at the bottomleft corner as the mask image. Invoke the function

apply_bokeh_blur() with the input and the mask image toobtain the output image with the desired effect.mask = rgb2gray(rgba2rgb(imread('images/xmask.png')))img = cv2.resize(imread('images/xtree.png') / 255, mask.shape[::-1])out = apply_bokeh_blur(img, mask)Plot the input image and the output image using bokeh
blur. Create visually interesting results by varying theshape of the mask (for example, use a hexagonal maskinstead); you should get a figure as follows:

Figure 1.11: Applying the bokeh blur to an image

Wiener deconvolution with opencv-
pythonThe inverse filter performs poorly when the noise level ishigh. Wiener filter is an improved version of the inversefilter, it works in the frequency domain and uses prior
regularization (penalization of high-frequency terms whichhave a poor Signal-to-Noise Ratio). The regularizationparameter generally needs to be hand-tuned. Refer to thefollowing figure for an example of Wiener deconvolution:

Figure 1.12: Wiener deconvolutionThe frequency response of the Wiener filter can beexpressed as:

Where SNR, or the Signal-to-Noise Ratio, is the ratio ofthe frequency responses of the original image (signal) tonoise. Here is a brief explanation:
• First note that and , forsome frequency
• When the noise is (i.e. is), the Wiener filtersimply reduces to an inverse filter, i.e.,

• With the increase of noise at certain frequencies, whichresults in a drop in the SNR ratio, the Wiener filterattenuates frequencies according to their filtered SNRratio, since
• The parameter balances between the data and theregularization term.In this section, we shall implement the Wiener filter todeblur a degraded image again, but this time using opencv-

python (cv2) library functions. It shows how DFT can beused apply Wiener deconvolution to an image with a user-defined PSF.Let us first implement the function blur_edge() to apply
Gaussian blur on an image. Also, implement the functions
motion_kernel() and defocus_kernel() to create themotion blur and defocus blur kernels, respectively. Thefunction deconvolve() implements the Wienerdeconvolution as follows:def blur_edge(img, d=31): h, w = img.shape[:2] img_pad = cv2.copyMakeBorder(img, d, d, d, d, cv2.BORDER_WRAP) img_blur = cv2.GaussianBlur(img_pad, (2*d+1, 2*d+1), -1)[d:-d,d:-d] y, x = np.indices((h, w)) dist = np.dstack([x, w-x-1, y, h-y-1]).min(-1) w = np.minimum(np.float32(dist)/d, 1.0) return img*w + img_blur*(1-w)def motion_kernel(angle, d, sz=63): kern = np.ones((1, d), np.float32) c, s = np.cos(angle), np.sin(angle) A = np.float32([[c, -s, 0], [s, c, 0]]) sz2 = sz // 2 A[:,2] = (sz2, sz2) - np.dot(A[:,:2], ((d-1)*0.5, 0)) kern = cv2.warpAffine(kern, A, (sz, sz), flags=cv2.INTER_CUBIC) return kerndef defocus_kernel(d, sz=63): kern = np.zeros((sz, sz), np.uint8) cv2.circle(kern, (sz, sz), d, 255, -1, cv2.LINE_AA, shift=1)

 kern = np.float32(kern) / 255 return kerndef deconvolve(img, kern): kern /= kern.sum() kern_pad = np.zeros_like(img) kh, kw = kern.shape kern_pad[:kh, :kw] = kern freq = cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT) kern_freq = cv2.dft(kern_pad, flags=cv2.DFT_COMPLEX_OUTPUT, nonzeroRows = kh) kern_freq2 = (kern_freq**2).sum(-1) kern_wiener = kern_freq / (kern_freq2 + noise)[...,np.newaxis] res = cv2.mulSpectrums(freq, kern_wiener, 0) res = cv2.idft(res, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT) res = np.roll(res, -kh//2, 0) res = np.roll(res, -kw//2, 1) return resRead the input image as a gray-scale image and apply the
Gaussian blur to the image as follows:img = cv2.imread('images/barbara.jpg', cv2.IMREAD_GRAYSCALE)img = np.float32(img) / 255img = blur_edge(img)angle, d, snr = np.deg2rad(135), 22, 25noise = 10**(-0.1*snr)Defocus the image by applying the defocus blur kernel andthen restore the defocused image using the deconvolve()function defined as follows:kern_defocus = defocus_kernel(d)img_defocussed = cv2.filter2D(img,-1, kern_defocus) # apply defocus blurres_defocussed = deconvolve(img_defocussed, kern_defocus)Next, apply motion blur to the original image and thenrestore the defocused image using the deconvolve()function defined as follows:kern_blur = motion_kernel(angle, d)img_blur = cv2.filter2D(img,-1, kern_blur) # apply motion blurres_blur = deconvolve(img_blur, kern_blur)Plot the original image, and the defocus and the motion blurkernels. You should obtain a figure as follows:

Figure 1.13: Input (Barbara) image with the defocus and motion blur kernelNow, if you plot the defocused, blurred and restoredimages, you should obtain a figure as follows:

Figure 1.14: Restoring defocused/motion/blurred images using deconvolution
with the Wiener filter

Deconvolution with unsupervised
Weiner filter with scikit-imageThe unsupervised Wiener algorithm uses a data learningalgorithm (based on an iterative stochastic Gibbs sampler)to obtain self-tuned regularization parameters . Thealgorithm is fast since it is based on linear models but maynot restore sharp edges like the non-linear methods (forexample, TV restoration, we shall explore later in thischapter).From the Bayesian perspective, the deconvolved(estimated) image can be defined as the posterior mean(defined by the sum of all possible images weighted by theirprobability). But the exact sum being intractable, thealgorithm uses Markov Chain Monte Carlo (MCMC)simulation to draw images under posterior law (drawinghighly probable images more often than the less probableimages) and then computes the empirical mean of thesamples.In this section, we shall use skimage.resoration module’simplementation of unsupervised Wiener filter todeconvolve and restore an image degraded with noise (weshall also scipy.signal’s implementation of the Wiener
filter, we shall leave the comparison of the restored imagequalities and parameter tuning for the Gibbs sampler forunsupervised Wiener as an exercise for the interestedreader).Let us start by importing all the required libraries asfollows:from skimage import color, restorationfrom scipy.signal import convolve2dRead the cameraman grayscale image and degrade with
box-blur (for example, a 5×5 kernel of ones normalized by25, to average each pixel with its 5×5 neighborhood), and

Gaussian noise, using the next code snippet:im = rgb2gray(imread('images/cameraman.jpg'))noisy = im.copy()psf = np.ones((5, 5)) / 25noisy = convolve2d(noisy, psf, 'same')noisy += 0.1 * im.std() * np.random.standard_normal(im.shape)Use the unsupervised_wiener() function from
skimage.restoration to apply the unsupervised Wiener
deconvolution on the degraded image. The functionaccepts the following arguments:

• image: The degraded input image.
• psf: The impulse function, 5×5 average kernel is usedhere.
• reg: The regularization operator, the default of which isLaplacian.The function returns the deconvolved image (posterior

mean), and a dictionary with the keys noise and prior (weare not using them here).Use scipy.signal module’s wiener() function to apply theclassic Wiener deconvolution to the degraded image, andcompare the following output image with the previous one:deconvolved_unsup, _ = restoration.unsupervised_wiener(noisy, psf)deconvolved = scipy.signal.wiener(noisy, (5,5))

Figure 1.15: Image restoration with scipy.signal implementation of Wiener
filter and its unsupervised version

Non-blind deconvolution with
Richardson-Lucy algorithmThe Richardson–Lucy algorithm, also known as Lucy–
Richardson deconvolution [9], is an iterative procedure forrecovering an underlying image that has been blurred by aknown point spread function. It is an iterative Bayesianalgorithm for image restoration. The iterative updation stepof the algorithm is shown in the following figure:

Figure 1.16: Iterative updation step of the Richardson-Lucy algorithm

Since the PSF is known, we can just focus on justfinding the restored by iterating over the precedingequation until convergence. An initial guess is required forthe restored to start the algorithm. In subsequentiterations, large deviations of the estimate from the trueobject are reduced rapidly during the early stages, whilefiner details are recovered more gradually in lateriterations. Advantages of this algorithm include anonnegativity constraint if the initial guess , andthe conservation of total energy as the iteration proceeds.Now, let us deconvolve a degraded image using
Richardson-Lucy deconvolution algorithm, using
skimage.restoration module’s implementation. Thealgorithm is based on a PSF, which is described as theimpulse response of the optical system. The blurred imageis progressively sharpened through a number of iterations,the number of which (num_iter) needs to be hand-tuned.First, read the input cameraman image, convert it tograyscale. Then, convolve the image with a 5×5 box kernelto blur it and add random Poisson noise with a rateparameter , using the function np.random.poisson(), andobtain the degraded image, as shown in the following codesnippet:im = color.rgb2gray(imread('images/cameraman.jpg'))im_noisy = im.copy()psf = np.ones((5, 5)) / 25im_noisy = convolve2d(im_noisy, psf, 'same')im_noisy += (np.random.poisson(lam=25, size=im.shape) - 10) / 255.

Next, restore the image with the Richardson-Lucyalgorithm (with the non-blind version and a known PSF),using the function richardson_lucy() from scikit-image’srestoration module, as shown in the next code snippet, trydifferent number of iterations (for example, 20, 50 etc.).The function accepts the following arguments, and therelevant ones are described as follows:
• image: The degraded input image.
• psf: The point spread function (blur kernel).
• num_iter: Specifies the number of iterations for theupdate process, acting as a regularizationhyperparameter.The function returns the deconvolved (restored) image as:deconvolved_RL = restoration.richardson_lucy(im_noisy, psf, num_iter=20)Plot the restored images at different iterations, along withthe input and noisy image. You should get a figure asfollows:

Figure 1.17: Restoring degraded cameraman image with (non-blind)
Richardson-Lucy algorithm

Blind deconvolution with Richardson-
Lucy algorithmSo far, we have discussed image restoration using non-
blind deconvolution techniques, where the PSF is known.In such cases, image restoration reduces to an inversefiltering problem. However, in blind deconvolution, wherethe PSF is unknown, we need an iterative algorithm thatsimultaneously estimates the PSF and the latent (true)
image. The Richardson–Lucy (RL) algorithm, initially

developed for Maximum Likelihood (ML) deconvolutionunder a Poisson noise model, has been extended to handlethe blind case through an iterative PSF estimationframework [10].
Mathematical foundationIn standard non-blind Richardson–Lucy deconvolution,the image is estimated iteratively by fixing the known PSF.For an observed degraded image c(x), the image update isperformed as:

Where we have:
• : estimate of the true image at iteration,
• : PSF,
• ∗: convolution operator,
• : flipped PSF.In blind Richardson–Lucy, both the true image andPSF are unknown and estimated by alternating steps:
• Image Update: Fix the PSF g, and update f usingEquation (1).
• PSF Update: Fix the image f, and compute g using asimilar update step:

This alternation continues for a number of outer iterations.The iteration indices:
• : image update iteration
• : PSF update iteration

Algorithm overviewAt the -th outer iteration, assuming the current estimate ofthe image is , the algorithm:1. Uses the current PSF estimate to update usingthe RL formula.2. Then, using the updated image , updates the PSF
3. This alternation is repeated for a fixed number ofiterations or until convergence.Initial guesses are provided for both the image andthe PSF , and the aforementioned steps are repeatediteratively.

Code implementationLet us now implement the blind Richardson–Lucy
deconvolution using Python. Start by importing therequired libraries, as always:
from skimage import color, io
from scipy.signal import gaussian, convolve2d
from skimage.metrics import peak_signal_noise_ratio as psnr
import numpy as np
import matplotlib.pyplot as pltDefine the function richardson_lucy_blind(), it performs
blind image deconvolution using the Richardson–Lucy
(RL) algorithm. In blind deconvolution, both the latent
(true) image , and the point spread function (PSF) are unknown and must be estimated simultaneouslyfrom a blurred and noisy observation The function alternates between:

• Image update (fix PSF , update).
• PSF update (fix image , update).This is done over n_psf_updates outer iterations (i.e., blindupdates), and within each outer iteration, the image is

updated for n_image_updates inner iterations (assumingthe current PSF is correct), as shown in the next codesnippet. The next table summarizes the algorithm stepsexecuted inside the function:
Step Purpose Equation

Image update Refine latent image usingcurrent PSF
PSF update Refine blur kernel usingcurrent image Normalization Ensure PSF validity

Table 1.1: Algorithm steps executed inside the functionThe function returns the restored image and estimated PSF,as shown in the following code snippet:
def richardson_lucy_blind(b, f_init, g_init, \ n_psf_updates=10, n_image_updates=10):
 """
 Blind Richardson-Lucy deconvolution (corrected version).
 Parameters:
 b : 2D np.ndarray
 Blurred and noisy input image.
 f_init : 2D np.ndarray
 Initial guess for the true image.
 g_init : 2D np.ndarray
 Initial guess for the PSF (must be normalized).
 n_psf_updates : int
 Number of outer iterations (PSF updates).
 n_image_updates : int
 Number of inner iterations (image updates).

 Returns:
 f : 2D np.ndarray
 Restored image.
 g : 2D np.ndarray
 Estimated PSF.
 """ eps = 1e-7 # Small constant to prevent division by zero f = f_init.copy() g = g_init.copy()

 for i in range(n_psf_updates): # --- Fix PSF and update image --- for k in range(n_image_updates): conv_fg = convolve2d(f, g, mode='same', boundary='wrap') relative_blur = b / (conv_fg + eps) correction = convolve2d(relative_blur, \ np.flip(np.flip(g, axis=0), axis=1), \ mode='same', boundary='wrap') f *= correction # --- Fix image and update PSF --- conv_fg = convolve2d(f, g, mode='same', boundary='wrap') relative_blur = b / (conv_fg + eps) g *= convolve2d(f, relative_blur, mode='valid', boundary='wrap')
 # Normalize PSF to maintain energy g = np.clip(g, 0, None) # Ensure non-negative g /= np.sum(g) return f, gRead the Lena grayscale image as input. Apply Gaussian kernel (using the function gaussian_kernel()) toblur the image and add Gaussian noise (using the function
np.random.randn()) to degrade the image, as shown in thefollowing code snippet:
def gaussian_kernel(size=5, sigma=1): """Generates a 2D Gaussian kernel.""" g1d = gaussian(size, std=sigma) kernel = np.outer(g1d, g1d) kernel /= np.sum(kernel) # Normalize return kernel
 im = io.imread('images/lena.jpg', True)psf_true = gaussian_kernel(5, 5) #np.ones((5,5)) / 25blurred = convolve2d(im, psf_true, 'same', boundary='wrap')noisy = blurred + 0.25 * np.random.randn(*blurred.shape)Initialize the image estimate (f_init) with the degradedimage itself, and the PSF estimate (g_init) with a flat boxkernel to start with. Invoke the function
richardson_lucy_blind() to apply the blind deconvolutionto the degraded image for simultaneous estimation of theblur kernel (g_estimated) and restoration of the image

(f_restored), as shown in the following code snippet:
Initial guessesf_init = noisy.copy()g_init = np.ones((5,5)) / 25 # flat guessg_init = np.random.random((5, 5))g_init /= np.sum(g_init)
Perform blind deconvolutionf_restored, g_estimated = richardson_lucy_blind(noisy, f_init, g_init)Plot the restored image along with the original and thedegraded images (compute the PSNR values), and youshould obtain a figure like the one shown as follows (notethe increase in PSNR in the restored image):

Figure 1.18: Restoring degraded Lena image with (blind) Richardson-Lucy
algorithm

Total variation denoisingTV denoising is a classical image processing technique thataims to restore images while preserving important featureslike edges. It is based on the idea that natural imagestypically have sparse gradients — meaning, they are mostlypiecewise smooth with sharp transitions at edges. TVmethods seek to exploit this property by minimizing thetotal variation norm, promoting solutions that are smooth inhomogeneous regions while maintaining sharp

discontinuities.TV denoising methods assume that the high total variationin signals is caused by excessive/spurious detail. The goal isto remove unwanted but preserve important details (forexample, edges) in the image by reducing the total variationof the (degraded) image so that it remains a close match tothe original image. This is known as the Rudin-Osher-
Fatemi (ROF) model [5]. The original TV regularizationmethod targeted image denoising under Gaussian noise,nevertheless it has evolved into a more general techniquefor inverse problems.In this section we shall use functions from
skimage.restoration to implement TV denoising.
TV denoising with Rudin-Osher-Fatemi
algorithmTV regularization is a technique that was originallydeveloped for Additive White Gaussian Noise (AWGN)image denoising by Rudin, Osher, and Fatemi. Theyproposed to estimate the denoised image u as the solutionof the following minimization problem:
where is a positive parameter, here the first term is for
regularization and the second term represents the data
fidelity term, which depends on the noise model. This the problem is referred to as the ROF problem.Denoising is performed as an infinite-dimensionalminimization problem, where the search space is all
Bounded Variation (BV) images. refers the family offunctions (with bounded variation) over the domain , is the total variation over the domain, and is a penalty

term. When is smooth, the total variation is equivalent tothe integral of the gradient magnitude:
Where is the Euclidean norm. Then, the objectivefunction of the minimization problem becomes:
Using the Euler-Lagrange equation for minimization ofthe preceding functional [6] results in the following Partial
Differential Equation (PDE):

Here is the time-dependent version of the ROF equation:
In this section, you will learn how to denoise an image with
scikit-image implementation of TV denoising, using thealgorithm proposed by Chambolle, as shown in thefollowing figure:

Figure 1.19: TV denoising algorithm by ChambolleTV denoising tries to minimize the total variation of animage (which is roughly equivalent to the integral of thenorm of image gradient) and often produces cartoon-like(piecewise-constant) images.Let us start by importing the required libraries, using thefollowing code snippet. Notice that the version of the scikit-
image library must be import skimageprint(skimage.__version__) # should be >= 0.14from skimage.restoration import denoise_tv_chambolle
0.17.2Read the image, convert it to a grayscale, and add Gaussiannoise to the image using the function
np.random.normal()as follows:im = 255*rgb2gray(imread('images/cameraman.jpg'))noisy = im + np.random.normal(loc=0, scale=im.std() / 4, size=im.shape)Use the function denoise_tv_chambolle() from scikit-
image restoration module to implement TV denoising.The function accepts the following arguments:

• image: Input image to be denoised.
• weight: Denoising weight. Larger weight results inmore denoising (at the cost of fidelity to the inputimage).

• n_iter_max: Maximum number of iteration steps to berun to optimize.It returns the denoised image. The following code snippetshows how the function can be used to denoise the noisy
cameraman grayscale image. The denoising strength iscontrolled by the weight parameter; higher values result instronger smoothing. Different values of weight (10, 25, 50,and 100) are tested to observe the effect on image quality:for weight in [10, 25, 50, 100]: tv_denoised = denoise_tv_chambolle(noisy, weight=weight)The following figure shows the original, noisy, and TV-denoised images with a couple of different weights:

Figure 1.20: TV denoising of the noisy cameraman image (with scikit-image’s
Chambolle implementation)

As shown in Figure 1.20, as we go on increasing the
weights, we get more denoising effect, at the cost of
fidelity to the input image (for example, texture
flattening).
TV denoising with Chambolle vs.
BregmanIn this section, we shall implement total-variation denoisingwith split Bregman optimization [5], using

skimage.restore module functions. As discussed, TVdenoising, also called TV regularization, seeks to recover adenoised image (u) from a noisy image (f) by minimizing thetotal variation energy (formulated by the ROF model)
• The first term encourages similarity to theobserved image.
• The second term penalizes large gradients,preserving edges while smoothing out noise.
• λ is a regularization parameter that controls the trade-off between the two.

DifficultyThe mix of the ℓ2 term (smooth, differentiable) and the ℓ1term (non-smooth) makes direct optimization difficult.
How the Split Bregman method helpsThe Split Bregman method reformulates the problem byintroducing an auxiliary variable , which splits theproblem into more manageable subproblems:

This constraint is incorporated using Bregman iteration,leading to the following iterative scheme and theoptimization problem is solved in an iterative fashion. TheSplit Bregman method breaks the problem into easier parts:1. It introduces a new variable d to split the gradient fromthe image.2. Then it solves the problem step by step, alternatingbetween:

a. Updating the image u (solving a smooth least-squares problem).b. Updating the gradient d (using a soft thresholding /shrinkage rule).c. Adjusting a helper variable b (Bregman variable)that guides convergence.This results in fast, stable optimization—ideal forproblems involving total variation and sparsity.As described in the last section, Chambolle’s algorithmsolves the ROF TV denoising model. But instead ofintroducing an auxiliary variable like Bregman, it directly
solves the dual problem. The method uses dual variable
projection to enforce the constraint, thereby avoiding theℓ1-non-differentiability directly. It works well and is simpleto implement for denoising tasks. The following tablecompares these two methods:

Feature Chambolle’s method Split Bregman

Formulation Dual (solves dual ROFproblem) Primal with variable splitting
Handlesconstraints? Yes, via projection (dualnorm ≤ 1) Yes, via soft-thresholding +penaltyAuxiliaryvariables? No Yes (d, b variables)
Flexibility Mostly for TV denoising More general (inpainting,CS, etc.)
Update types Gradient descent +projection Alternating minimization(shrinkage + least squares)
Convergence Fast and stable for basic TV Fast, scalable to morecomplex problems

Table 1.2: Comparison of Chambolle’s method and split
BregmanNow, let us use skimage.restoration module’simplementation of the preceding algorithms to recover a

degraded image. Let us start by importing the requiredlibraries using the following line of code:from skimage.restoration import denoise_tv_chambolle, denoise_tv_bregmanRead the image, convert it to grayscale, and add Gaussiannoise to the image to create the degraded version, this timeusing the random_noise() function from skimage.util asfollows:img = img_as_float(imread('images/zelda.png'))noisy = random_noise(img, var=0.02)noisy = np.clip(noisy, 0, 1)We shall use the function denoise_tv_bregman() from
scikit-image restore module for split-Bregman method.This function accepts the following arguments:

• image: Degraded input image (converted to float withpixel values in [0,1] using img_as_float).
• weight: Denoising weight, the regularization parameterlambda is chosen as 2 * weight.
• isotropic: False if anisotropic TV denoising.
• channel_axis: For color images, specify the colorchannel (for example, the last channel, i.e., -1), TVdenoising is applied separately for each channel.The function returns a denoised image.The following code snippet shows how the function can beused to denoise the RGB color image of Zelda, for differentweights and modes (isotropic vs. anisotropic), thencompares it with the one obtained by denoising with TV

Chambolle, and evaluates the quality of the restoredimages using PSNR values (with the function
peak_signal_noise_ratio() from skimage.metricsmodule):def plot_image(img, title): plt.imshow(img), plt.axis('off'), plt.title(title, size=20)

plt.figure(figsize=(20,22))plt.subplot(331), plot_image(img, 'Original')plt.subplot(332), plot_image(noisy, 'Noisy, PSNR: {}' \ .format(np.round(psnr(img, noisy),3)))i = 3for weight in [0.1, 0.25]: tvd_out = denoise_tv_chambolle(noisy, weight=weight, channel_axis=-1) plt.subplot(3,3,i) plot_image(tvd_out, 'TVD Chambolle (w={}), PSNR: {}' \ .format(weight, np.round(psnr(img, tvd_out),3))) i += 1for weight in [10, 7]: for isotropic in [False, True]: tvd_out = denoise_tv_bregman(noisy, weight=weight, isotropic=isotropic, \ channel_axis=-1)plt.subplot(3,3,i)plot_image(tvd_out, 'TVD Bregman (w={}), PSNR: {}, iso: {}'.format(weight,\ np.round(psnr(img, tvd_out),3), str(isotropic)[0])) i += 1plt.subplots_adjust(wspace=0.05, hspace=0.05, top=0.95, bottom=0, left=0, right=1) plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 1.21: TV denoising of the noisy Zelda image (with scikit-image’s
Chambolle vs. Bregman method)

Image denoising with waveletsWavelets provide a powerful and general framework forrepresenting and analyzing multiresolution images. Animage can be reconstructed by summing over its Laplacianpyramid levels. Wavelets extend this idea by offering a
mathematically grounded basis for such decomposition.A wavelet is a localized wave-like oscillation with zero
mean and finite energy, defined over a finite duration.

Wavelets [17] represent the scale of features in an image, aswell as their position. Unlike sinusoids in the Fourier basis,wavelets decay rapidly and are capable of capturing both
spatial (or temporal) and frequency information. Thismakes them especially effective in representing abrupttransitions and localized features in signals and images.Formally, wavelets form an orthonormal basis for ,the space of square-integrable functions, allowing a function to be expressed as: , where is the scaled and shifted version of the mother
wavelet , with scale and translation .The key concepts in wavelets are:

• Scaling (dilation): Controls the resolution. A waveletscaled by a factor is Larger capturescoarse features (low frequency); smaller captures finefeatures (high frequency).
• Shifting (translation): Moves the wavelet along thesignal: , enabling localization in space ortime.
• Dyadic scales and shifts (powers of 2): We do notneed continuous scale shifts—dyadic decompositionsuffices: We do not need to calculate wavelet coefficients at everypossible scale. We can choose scales based on powers of 2,i.e., and translation as , with and getequivalent accuracy.In multiresolution analysis (MRA), which underpins thewavelet transform:
• The signal space is decomposed into nested subspacesVj, each representing the signal at a particularresolution or scale.
• The scaling function ϕ(t) spans the approximation

space Vj. It captures the coarse (low-frequency)components of the signal.
• The wavelet function ψ(t), on the other hand, spans the

detail space Wj, capturing the high-frequency or
detail components.A discrete function thus be approximated as a sum ofscaled and translated wavelets , plus a coarseapproximation , as shown in the following figure [8]:

Figure 1.22: Approximation of a function by waveletsHere is an arbitrary starting scale, and .The preceding represents x the DWT for a 1-D signal x, animage being a 2D signal, we need a 2D DWT instead. Theconcept extends naturally to 2D signals such as imagesusing tensor products of 1D wavelets.The 2D DWT decomposes an image into four components ateach scale:
• LL: Approximation (ϕ ⊗ ϕ)
• LH: Horizontal detail (ϕ ⊗ ψ)
• HL: Vertical detail (ψ ⊗ ϕ)
• HH: Diagonal detail (ψ ⊗ ψ)This is done by applying the 1D DWT along rows and then

columns of the image.Mathematically, a 2D function f(x, y) can be expressed as:

Where we have,
• : Approximation coefficients (LL)
• : Horizontal, vertical, diagonal detailcoefficients

Discrete wavelet transformThe basic ingredient in discrete wavelet transform(DWT) is the MRA. The main point is that the waveletcoefficients encode local information about the image in away that makes it possible to discard all coefficients withabsolute values below a given threshold and still be able toreconstruct the signal (image) with acceptable accuracy(allowing a sparse representation).Again, an image, being a 2D function, can be represented bya sum of approximation plus details. The 2D DWTdecomposes an image into approximation and details (forexample, horizontal, vertical, and diagonal details) atdifferent scales/levels (using downsampling at Nyquist rate)recursively.Similarly, IDWT reconstructs the images from theapproximate and detailed coefficients at different scales(using upsampling), as shown in the following figure:

Figure 1.23: Image reconstruction with 2D discrete wavelet transform and its
inverseThus, wavelet transforms enable sparse representation and

are widely used in denoising, compression, image
fusion, and feature extraction.Summarizing, the general steps in wavelet-based imageprocessing include:

• Compute the 2D discrete wavelet transform (DWT).
• Modify the transform coefficients (for example, fordenoising or compression).
• Compute the inverse discrete wavelet transform(IDWT) for reconstruction.Wavelets come in different sizes and shapes; the followingfigure shows a few well-known families of wavelet basisfunctions (there are many others), they need to be chosencarefully based on the application:

Figure 1.24: Wavelet families

The following figure shows how the function wavedec2()(which implements 2D DWT) from the Python package
pywt works (at level = n):

Figure 1.25: The function wavedec2() from the python package pywtIn this section, we will see how an image can be denoisedand restored using wavelets (DWT), first using the DWTimplementation from the library pywt and then using thecorresponding implementation from skimage.restoration.
Wavelet-denoising with pywtThresholding is a nonlinear technique, yet it is very simplebecause it operates on one wavelet coefficient at a time. Thekey idea is to choose a threshold value (for example,
Donoho-Johnstone universal threshold) and zero out thewavelet coefficients obtained from multilevel DWT belowthe threshold, in order to remove noise from the degradedinput image.In this section, you will learn how to use the functions fromthe library pywt to denoise an image using thresholdingthe wavelet coefficients of a degraded image. Waveletdenoising has the following steps:1. Perform a multilevel wavelet decomposition (use

wavedecn() from pywt).2. Identify a thresholding technique (soft or hardthresholding mode).3. Threshold (using the threshold() function from pywt)and reconstruct (use waverecn() from pywt).Let us start by importing the pywt library:import pywt
Read the grayscale input image of beans and degrade it byadding Gaussian noise with:noise_sigma = 0.1im = rgb2gray(imread('images/a.jpg'))noisy = im + np.random.normal(0, noise_sigma, size=im.shape)Let us perform multilevel wavelet decomposition using thefunction wavedecn(), which accepts the input image, thename of the wavelet family (db1) and number of levels (=2here) of decomposition. This function provides a generalizedimplementation of DWT for n-dimensional data (including2D, 3D, etc.), whereas wavedec2() performs 2D DWT on 2Ddata (for example, grayscale images), also wavedecn()returns more structured coefficient access.Let us plot the approximate and detailed coefficients atdifferent scales by using the function coeffs_to_array(), byarranging the wavelet coefficients list obtained from
wavedecn() in a single array, using the next code snippet:levels = 2wavelet = 'db1'coeffs = pywt.wavedecn(im, wavelet=wavelet, level=levels) arr, _ = pywt.coeffs_to_array(coeffs)plt.figure(figsize=(20,20))plt.imshow(arr, cmap='gray')plt.title('Discrete Wavelet Transform Coefficient for db1 Wavelet for level 3', \ size=20)plt.show()If you run the preceding code snippet, you should obtain a

figure like the following one:

Figure 1.26: Multilevel wavelet decomposition with db1 wavelet family

Implement wavelet denoising with thresholding: definethe denoise() function that accepts the degraded image,the name of the wavelet basis to be used, the noise
standard deviation , and the mode of thresholding(hard or soft).Threshold the detail (i.e., high frequency) coefficients usinga Donoho-Johnstone universal threshold ,here refers to the number of elements in the detailcoefficients.
Hard thresholding sets coefficients below the threshold tozero, while soft thresholding shrinks all coefficientstoward zero by the threshold value. The following figuredemonstrates the difference between soft and hard

thresholding:

Figure 1.27: Soft vs. hard thresholding for a signal

In soft thresholding with threshold value (t), the data (x) isreplaced by , i.e., with python expression
data/np.abs(data) * np.maximum(np.abs(data) - value,
0) [18].Invoke the function denoise() with appropriate argumentsto obtain a smoothed image with different types of wavelets,starting from the degraded beans image, using thefollowing code snippet:def denoise(img, wavelet, noise_sigma, mode='soft'): levels = int(np.floor(np.log2(img.shape[0]))) coeffs = pywt.wavedecn(img, wavelet, level=3) #levels) threshold = noise_sigma*np.sqrt(2*np.log2(img.size)) denoised_detail = [{key: pywt.threshold(level[key], value=threshold, \ mode=mode) for key in level} for level in coeffs[1:]] denoised_root = pywt.threshold(coeffs[0], value=threshold, mode=mode) denoised_coeffs = [denoised_root] + [d for d in denoised_detail]

 out = pywt.waverecn(denoised_coeffs, wavelet) return outim = rgb2gray(imread('images/beans.jpg'))noisy = im + np.random.normal(0, noise_sigma, size=im.shape)im_denoised_haar = denoise(noisy, wavelet='haar', noise_sigma=noise_sigma)im_denoised_haar_hard = denoise(noisy, wavelet='haar', noise_sigma=noise_sigma, \ mode='hard')im_denoised_db6 = denoise(noisy, wavelet='db6', noise_sigma=noise_sigma)Plot the restored image using different wavelet families ofbasis functions (for example, haar, db6, bior2.8, coif2)and different modes of thresholding (hard vs. soft), alongwith the original and the degraded images. You shouldobtain a figure like the following one:

Figure 1.28: Image denoising using different wavelet families with hard vs. soft
thresholding

Wavelet-denoising with scikit-imageIn this section, you will learn how to use wavelet-baseddenoising functions from skimage.restoration module.Similar to the frequency domain in DFT, the wavelet domain

is yet another domain corresponding to a sparserepresentation of the image (with the majority of valueszero and true random noise represented using many smallvalues). For denoising, the usual approach is to set allvalues below a threshold (t) to 0. If the threshold used islarge, it can additionally remove the finer details in theimage. In a multichannel (3D) input image, waveletdenoising is performed on each color plane separately.Let us start by importing the required functions from scikit-
image library’s restoration module:
from skimage.restoration import (denoise_wavelet, estimate_sigma)Read the (RGB) color input image and degrade it withGaussian noise, using the random_noise() function, asshown in the next code snippet.Use the function estimate_sigma() from
skimage.restoration module to estimate noise standarddeviation (it estimates by analyzing high-frequencycomponents in the degraded image using a wavelet-basedapproach) for different color channels.The estimated standard deviation is expected to a bitsmaller than the specified , due to clipping in
random_noise().Use the function denoise_wavelet() to apply the waveletdenoising on the degraded image. The following are few ofthe arguments it accepts:

• image: Input image to be denoised.
• sigma: The noise standard deviation. It is used tocompute detail coefficient thresholds.
• wavelet: The algorithm (type of wavelet) to be used,

db1 being the default one.
• mode: Type of denoising, can be soft or hard. Softthresholding finds the best approximation of the original

image from the input noisy image, given the noise isadditive.
• convert2ycbcr: Set to True, to perform waveletdenoising in YCbCr colorspace given multichannel (RGBcolor) input image, yielding better results often.
• method: Refers to the thresholding method to be used,which can be either of BayesShrink or VisuShrink.The function denoise_wavelet() applies BayesShrinkthresholding by default. Separate thresholds for each ofwavelet sub-bands are computed in this adaptivethresholding method.The VisuShrink thresholding, on the other hand, applies asingle universal threshold to all of the wavelet detailcoefficients. It removes all Gaussian noise with a given s.d. () with high probability, but it is also prone to produceoverly-smooth images.Use different scale factors (for example, 2, 3, 4) withestimated (sigma_est) to decrease the threshold by thesefactors and observe the impact on the denoised image.Compute PSNR as an indication of the denoised outputimage quality, given the input noisy image.Plot the denoised images using different methods andthresholding modes, along with their psnr values as follows:original = img_as_float(imread('images/cat.jpg'))sigma = 0.12noisy = random_noise(original, var=sigma**2)sigma_est = estimate_sigma(noisy, average_sigmas=True, channel_axis=-1)print(f'Estimated Gaussian noise standard deviation = {sigma_est}')

Estimated Gaussian noise standard deviation = 0.1208983266753569im_bayes = denoise_wavelet(noisy, convert2ycbcr=True, method='BayesShrink', \ mode='soft', rescale_sigma=True, channel_axis=-1)psnr_noisy, psnr_bayes = psnr(original, noisy), psnr(original, im_bayes)for sigma in [sigma_est/2, sigma_est/3, sigma_est/4]: im_visushrink = denoise_wavelet(noisy,convert2ycbcr=True,method='VisuShrink', \ mode='soft', sigma=sigma, rescale_sigma=True, channel_axis=-1)

 psnr_visushrink = psnr(original, im_visushrink) # plot the denoised output images im_visushrink and psnr_visushrink here
 # TODO: your code here, by now you can write code to plot images.If you plot the denoised output images, you should obtain afigure as follows:

Figure 1.29: Wavelet denoising with BayesShrink vs. ViruShrink thresholding

scikit-image internally uses pywavelets for theimplementation. The thresholding methods assume anorthogonal wavelet transform (for example, Daubechies -
db2, symmlet - sym2 families); they are desirable for thefollowing reasons:

• They ensure the white noise in the input remains whitenoise in the subbands (as opposed to the biorthogonal

wavelets that produce colored noise in the subbands).
• In pywavelets, the orthogonal wavelets are alsoorthonormal, and hence, the noise variance in thesubbands remains the same as that of input.

Denoising using non-local means with
opencv-pythonThe principle of the first denoising method suggestsreplacing the color of a pixel with an average of the colorsof nearby (local) pixels. While simple local averagingreduces noise, it also tends to blur important image details.According to the law of variance of the mean inprobability theory, averaging independent and
identically distributed (i.i.d.) random variables each withvariance results in a mean with variance , and thus astandard deviation of . That is, averaging multipleindependent noisy observations reduces the variance—forexample, averaging nine independent pixels reduces thestandard deviation of the noise by a factor of three.However, in real images, the most similar pixels to a givenpixel may not be spatially close to it. This insight is thefoundation of the non-local means (NLM) denoisingalgorithm, which improves upon local methods by scanninga larger region of the image to find all patches that closelyresemble the one centered around the target pixel.Denoising is then done by computing the average color ofthese most resembling pixels, weighted the similarity ofthese pixels to the target pixel. It reduces the loss of detail(blurring) in the denoised image (when compared to itslocal counterpart), at the cost of more computation time.Formally, a denoising method applied to a noisy image

can be defined as a decomposition ,where is a filtering parameter which usually depends on thethe noise variance . Ideally, is smoother than and (i.e., the noise guessed by the method, defined asthe method noise) should look like the realization of a whitenoise [20].Given a noisy image , the estimated value, for a pixel , is computed as a weighted average:, where the family of weights depend on the similarity between theneighborhoods (patches) and , centered at pixels and . These weights satisfy the usual conditions: and . The similarity between two pixels and depends on the similarity of the intensity gray level vectors and , where denotes a square neighborhood(patch) of fixed size and centered at a pixel .The similarity is usually measured as the Gaussian-
weighted Euclidean distance between the patches and , and the weights are computed as:
Where is a normalizing constant to ensure that weightssum to 1.In summary, the NLM algorithm considers a patch aroundeach pixel, searches for similar patches throughout a largerregion, averages them using similarity-based weights, andreplaces the central pixel accordingly. Unlike local methods,the residual noise in NLM tends to resemble white noise—making it less visually distracting.In this section, we explore how to apply OpenCV’s
cv2.fastNlMeansDenoisingColored() function to performsuch denoising in practice. The function first converts theimage from RGB colorspace to CIELAB (Commission

Internationale de l’Éclairage Lab*, where L* representslightness, and a* and b* represent color-opponentdimensions). It then denoises L and AB channels separatelyusing the function cv2.fastNlMeansDenoising(). Thefunction accepts the following arguments:
• src: The input image, here the Zelda RGB color image isused.
• templateWindowSize: The template patch size (inpixels) to be used to compute weights.
• searchWindowSize: Size of the window to be used tocompute the weighted average for a given pixel (thelarger the window, the slower the filter).
• h: Controls filter strength for L (luminance) channel.Larger h removes noise along with image details.
• hColor: Same as h for color components. For mostimages having is enough to remove colorednoise without color distortion.The function returns the denoised image.Let us now proceed to use the aforementioned function todenoise a noisy color input image. First load the RGB colorimage of Zelda and degrade it with Gaussian noise, using

cv2.randn()as follows:
import cv2img = cv2.imread('images/zelda.jpg')noisy = img + cv2.randn(np.copy(img), (0,0,0),(10,10,10))The following code snippet demonstrates the use of thefunction on the noisy color input image for different valuesof parameters searchWindow (for example, 15, 21) and h(for example, 7, 10, 15). Plot and compare the denoisedoutput image’s quality with PSNR and also compare thetime taken to denoise, you should obtain a figure like Figure
1.30:
for sz in [15, 21]:

 for h in [7, 10, 15]: start = time() dst = cv2.fastNlMeansDenoisingColored(noisy, None, \ templateWindowSize=12, searchWindowSize=sz, h=h, hColor=10) end = time() # plot the denoised output image dst
 # TODO: your code hereIf you run the preceding code snippet, and plot the original,noisy input and denoised output images, you should obtain afigure as follows:

Figure 1.30: Denoising the Zelda color image with non-local means algorithm
(opencv-python’s implementation)

Denoising with bilateral filterA bilateral filter is a non-linear edge-preserving and noise-reducing smoothing, commonly used in image denoising.Like traditional spatial filters (for example, the average orGaussian filter), each pixel is replaced by a (weighted)average of its neighbors (where weights can come from aGaussian distribution). However, unlike those filters, thebilateral filter assigns weights based not only on the spatial

proximity of pixels but also on their radiometric
similarity (for example, intensity or color difference),enabling it to preserve the sharp edges [19]. The filter relieson two key parameters:

• σₛ (spatial parameter): controls the influence ofneighboring pixels based on their Euclidean distance.
• σᵣ (range parameter): controls the influence ofneighboring pixels based on their intensity differenceFormally, for a pixel located at (i, j), and one of itsneighbors at (k, l), the weight assigned is:

Where we have:
• and are the intensity values at pixels and
• is the spatial standard deviation,
• is the range standard deviation.After computing all weights, the denoised pixel intensityat is computed as where isthe denoised intensity of pixel The filter behavior depends on the values of and
• As increases, at , the filter approaches astandard Gaussian blur, losing edge-preservation.
• As increases, the spatial neighborhood grows, leadingto smoother large-scale structures.In this section, you will explore how to apply bilateralfiltering from the libraries SimpleITK and opencv-pythonto denoise a corrupted image, while maintaining edgesharpness.

Using SimpleITK
SimpleITK library’s BilateralImageFilter() uses bilateralfiltering to blur an image using both spatial (also called
domain) and range neighborhoods. As described, thepixels that are close to a pixel in the image domain andsimilar to a pixel in the image range are used to calculatethe filtered value. Two Gaussian kernels (one in the imagedomain and one in the image range) are used to smooth theimage.The result is an image that is smoothed in homogeneousregions yet has edges preserved. The result is similar to
anisotropic diffusion (refer to the one discussed in thebook Image Processing masterclass with python), but theimplementation is non-iterative. Another benefit to bilateralfiltering is that any distance metric can be used for kernelsmoothing the image range. Hence, color images can besmoothed as vector images, using the CIE distancesbetween intensity values as the similarity metric (theGaussian kernel for the image domain is evaluated usingCIE distances).Let us start by importing the required libraries, as usual:import SimpleITK as sitk
Read the input Zelda image as a grayscale image,instantiate the ShotNoiseFilter object to degrade theimage with shot noise. The shot noise follows a Poissondistribution, using the following code snippet:img = sitk.ReadImage('images/zelda.jpg', sitk.sitkUInt8)sf = sitk.ShotNoiseImageFilter()noisy = sf.Execute(img)Instantiate an object of the BilaterImageFilter class:f = sitk.BilateralImageFilter()
Use the methods SetDomainSigma() and

SetRangeSigma(), to set and parameters,respectively. DomainSigma is specified in the same unitsas the Image spacing. RangeSigma is specified in the unitsof intensity.Use the member function Execute() to apply the filter onthe noisy input image, to have the denoised output returned.Use a few different values of (same as defined above)and , to observe the impact of these parameters on thedenoised output.Plot the images using the function show_image() the codesnippet shown as follows:def show_image(img, title=None): nda = sitk.GetArrayViewFromImage(img) plt.imshow(nda, cmap='gray'), plt.axis('off') if(title): plt.title(title, size=20)plt.figure(figsize=(20,17))plt.subplot(331), show_image(img, 'original')plt.subplot(332), show_image(noisy, 'noisy')i = 3for σ_d in [5, 10]: for σ_r in [25, 50, 75]: f.SetDomainSigma(σ_d) f.SetRangeSigma(σ_r)denoised = f.Execute(noisy)plt.subplot(3,3,i), show_image(denoised, 'denoised (σ_d={}, σ_r={})' \ .format(σ_d, σ_r)) i += 1plt.tight_layout()plt.show()If you run the given code snippet, you should obtain a figureas follows:

Figure 1.31: Denoising the grayscale Zelda image with bilateral filter
(SimpleITK’s implementation)

Using opencv-pythonAs explained, bilateral filtering operates both in the rangeand the domain of an image, unlike a traditional filter thatoperates only on the domain. Two pixels in an image can beclose because of their spatial proximity or similarity in pixelvalues (i.e., in some perceptually meaningful manner),which is why bilateral filtering combines filtering in boththe domain and range space.In this section, you will explore how to use opencv-pythonimplementation of a bilateral filter to clean a degraded

image and preserve the edges simultaneously. However,bilateral filters are computationally expensive and can beslow.Let us start by reading the RGB color image of Zelda anddegrading the image by adding random Gaussian noise tothe image using the cv2.randn() function, with standarddeviation for each color channel, using the next couple oflines of code:img = cv2.imread('images/zelda.jpg')noisy = img + cv2.randn(np.copy(img), (0,0,0), (10,10,10))Apply the bilateral filter using the function
cv2.bilateralFilter() that accepts the followingparameters:

• src: The (noisy) input image (can be grayscale or color).
• d: Diameter of pixel nbd (or the filter size). Large filters() are very slow, let us use for real-timeapplications.
• sigmaColor: (same as defined earlier), s.d. of theGaussian in color space (larger value implies mixing offarther colors in the nbd, resulting in larger areas ofsemi-equal color).
• sigmaSpace: s.d. of the Gaussian in coordinate space(larger value indicates farther pixels influencing eachother, provided their colors are close).For simplicity, both the sigma parameters can be set to thesame value. Small (for example, < 10) values will not havemuch effect, whereas large (for example, < 150) will have astrong effect (the output image will be cartoonish).Use a few different values for the parameters d (forexample, 9,15), sigmaColor, and sigmaSpace (forexample, both in) to observe the impact on theseparameters on bilateral denoising and plot the denoisedoutput images:

for d in [9, 15]: for σ_c in [75, 180]: for σ_s in [75, 180]: dst = cv2.bilateralFilter(noisy,d=d,sigmaColor=σ_c,sigmaSpace=σ_s) # plot the denoised output image dst here
 # TODO: your code…If you plot the denoised output images obtained usingbilateral filtering with different combination of parametervalues, by running the preceding code snippet, you shouldobtain a figure as follows:

Figure 1.32: Denoising the Zelda color image with bilateral filter (opencv-
python’s implementation)

Denoising with MAP Bayesian with an
MRF priorIn Bayesian image denoising, the goal is to estimate the
optimal noiseless image given an observed noisy image .The optimal noiseless image is defined as the one thatmaximizes the posterior probability given the observednoisy image, using Bayes’ theorem:

The Maximum A Posteriori (MAP) estimate of the cleanimage is given by:
Since P(Y) is constant with respect to X, this is equivalent tominimizing the negative log-posterior:
To compute the posterior probability and compute MAPestimation, we need to first define the following two keyprobabilistic terms:

• Likelihood term : Represents the noise model;describes how the noisy how the noisy observation isgenerated from the underlying clean image , typicallymodeled using a Gaussian distribution in the case ofadditive white noise.
• Prior term : Captures assumptions about thesmoothness or structure of the clean image using a

Markov Random Field (MRF). A 4-neighborhood MRF
prior is commonly used, which satisfies the Markov
property—meaning each pixel’s value depends only onits four immediate neighbors (up, down, left, right).

Assumptions and noise modelLet us first define the following variable to formally definethe model:
• be the observed noisy image,
• be the unknown true image,
• is modelled as an MRF, with 4-neighborhooddependency,
• The noise is assumed to be i.i.d. Gaussian withvariance Then the likelihood model becomes:

MRF prior: Image regularizationThe MRF prior is defined using pairwise potential
functions over neighboring pixels:
Different choices of the function lead to differentsmoothing characteristics:

• Quadratic prior (used here):
• Huber prior: Handles small variations quadratically andlarge differences linearly (edge-preserving), here

• Discontinuity-adaptive log prior:, good for sharp edges.
Combined MAP estimation objectiveThe MAP estimate is obtained by minimizing the negativelog-posterior (obtained by combining the likelihood and theprior), which leads to minimization of the following energy(or cost) function:

Where is a parameter balancing fidelity (data) and
regularity (smoothness).Now, let us implement a MAP Bayesian denoising algorithm[22], that uses the aforementioned noise model coupled withthe MRF prior.
Optimizing with gradient-based solver

Let us start by importing the required libraries as follows:
from scipy.optimize import minimize
Implement the gradient function grad_g() for the priorchosen and use the L-BFGS-B optimization method from
scipy.
Define prior and gradient functionsThe following code snippet defines the quadratic MRF
prior function and the corresponding gradient:
def g(u): return np.sum(u**2)
def grad_g(u): return 2*u
Define objective and gradient for optimizationFor the chosen function, minimize the followingobjective function (using the minimize() function from the
scipy.optimize module) to get the denoised image:
Where are the 4 neighboring pixels at position ,and denote the noisy and clean pixel intensities atposition , respectively.Define the optimization objective (cost) function in
comp_obj_fun(), which accepts the input noisy image Yand the output image , along with a weight .The function is a regularizer; for example, (quadratic prior) enforces smoothness. This decompositionreflects the Bayesian framework where the data fidelityterm arises from the likelihood, and theneighborhood smoothness terms arise from the

prior.The role of is to promote edge preservation byencouraging neighboring pixel values to be similar—exceptat edges where large differences are permitted, while theterm enforces fidelity to the observed noisy imageand contributes to noise removal.The constant is to give weights to noise removal and edgepreservation (controls the weighting between the prior andthe likelihood).Define the function compute_grad() to compute thegradient of cost, it uses the function grad_g() to compute, using the next code snippet:
def compute_grad(X,Y,alpha): X, Y = X.reshape(im_size), Y.reshape(im_size) X1, X2, X3, X4 = np.roll(X, -1, 0), np.roll(X, 1, 0), np.roll(X, -1, 1), \ np.roll(X, 1, 1) grad = alpha*grad_g(X-Y) + grad_g((X-X1) + (X-X2) + (X-X3) + (X-X4)) return grad.ravel()
def compute_obj_fun(X,Y,alpha): X, Y = X.reshape(im_size), Y.reshape(im_size) X1, X2, X3, X4 = np.roll(X, -1, 0), np.roll(X, 1, 0), np.roll(X, -1, 1), \ np.roll(X, 1, 1) cost = alpha*g(X-Y) + g(X-X1) + g(X-X2) + g(X-X3) + g(X-X4) return cost
Apply optimization to restore the noisy imageRead the input grayscale image of a ship and add salt andpepper noise to the image. Initialize the output image withzeros before starting the iterative optimization, using thefollowing code snippet:original = cv2.imread('images/ship.png', 0)original = original / original.max()noisy = random_noise(original, mode='s&p')denoised = np.zeros_like(noisy)im_size, alpha = original.shape, 1.5If you plot the original and the noisy input images, alongwith the initialization for the denoised (black) zero output

image and the difference image (computed as noisy -
denoised) at the very outset, you will get a figure asfollows:

Figure 1.33: Denoising image with iterative LFBGS-B optimization algorithm
(starting with zero image)

Minimize using L-BFGS-BThe minimize() function from scipy.optimize module is aniterative solver that finds the minimum of a scalar functionusing optimization algorithms like BFGS, CG or L-BFGS-B,given an initial guess and optional gradient (jacobian). Herewe shall use the minimize() function to minimize theobjective function compute_obj_fun defined, and we shallpass the gradient function compute_grad as the Jacobianargument to the minimize() function). The minimize()function takes the following arguments, a few of therelevant ones are listed as follows:
• func: Objective function we want to minimize.
• x_0: The initial guess (of the clean image) to start with(we initialized with zeros).
• jac: Function to compute gradient.
• args: Extra arguments to be passed to objective functionand its derivative.
• method: Solver to be used (for example, L-BFGS-B).

• maxiter: Sets the maximum number of iterations
• gtol: Specifies the gradient norm tolerance forconvergence.Let us use the maximum iteration (maxiter) as for theiterative solver and tolerance (gtol) as 0.1, as shown in thefollowing code snippet:res = minimize(func=compute_obj_fun, x0=denoised.ravel(), \ jac=compute_grad, method='L-BFGS-B', args=(noisy.ravel(), alpha), \ options={'maxiter':4, 'gtol':0.1, 'disp': True})

Retrieve final outputRetrieve the solution (res) obtained and reshape it back intothe size of the original image, to obtain the denoised outputimage:denoised = res.x.reshape(im_size)
Visual and quantitative evaluationPlot the denoised output image along with the differenceimage and compute the PSNR to measure the quality ofimage. The final output should be the one, as shown in thenext figure, note the increase in PSNR in the denoisedimage:

Figure 1.34: Denoising image with iterative LFBGS-B optimization algorithm
(denoised image after 4 iterations)

To summarize, the aforementioned method uses a principledBayesian approach with an MRF prior to denoise images:
• Likelihood: Captures how likely the observed image isgiven a denoised candidate.
• MRF prior: Encourages piecewise smoothness whileallowing discontinuities (edges).
• Optimization: Uses gradient-based techniques tominimize the energy.

Denoising images with Kernel PCA
Kernel PCA (kPCA) is an extension of Principal
Component Analysis (PCA), a widely used lineardimension reduction technique. Unlike standard PCA, whichis limited to linear mappings, kPCA introduces non-linearitythrough the use of kernel functions.In kPCA we select a mapping function that conceptuallytransforms the input data into a high-dimensional featurespace. However, instead of explicitly computing thistransformation, kPCA uses a kernel function, which calculatesthe inner product in the feature space indirectly. Thisapproach, known as the kernel trick, avoids thecomputational cost of operating in the high-dimensional(intractable) feature-space. [21].Using the dual form, the kPCA never actually computes theeigenvectors (the principal components) and eigenvalues ofthe covariance matrix in the -space. Instead, it uses thekernel trick to compute the projections of the data onto theprincipal components, as shown in the following figure:

Figure 1.35: Image denoising with kPCA

While in standard PCA the number of Principal
Components (PC) is bounded by the number of inputfeatures, in kPCA the number of components is bounded by

the number of samples (since it works in the dual space).Many real-world datasets have large numbers of samples,and hence, often, finding all the components with a fullkPCA is a waste of computation time, as data is mostlydescribed by the first few components (for example,
n_components).In this section, you will explore how to use sci-kit-learn's
decomposition module’s KernelPCA implementation todenoise corrupted MNIST images (of handwritten digits).The idea will be to learn a PCA basis (with and without akernel) on noisy images and then use these models toreconstruct clean images using these learnedrepresentations.Let us start by importing the required libraries, modulesand functions, using the following code snippet:
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA, KernelPCADownload the mnist train data from Kaggle:
https://www.kaggle.com/oddrationale/mnist-in-csv as a
.csv file, where there are 60k rows, with each row having785 columns: the last columns correspond to the pixelvalues of a 28×28 handwritten digit image and the firstcolumn represents the label (class) of the digit (0-9).Read the .csv file using the function read_csv() from
pandas and display the first few rows as follows:df = pd.read_csv('images/mnist_train.csv')df.head()

https://www.kaggle.com/oddrationale/mnist-in-csv

Figure 1.36: MNIST digits – Pandas DataFrame with 784 columns (each row
represents a 28 x 28 digit)

Convert the images data to a numpy array and scale thepixel values in between - using the MinMaxScaler() fromthe module sklearn.preprocessing, using the next codesnippet:y = np.array(df.label.tolist())X = df.drop(columns=['label']).valuesX = MinMaxScaler().fit_transform(X)X.shape, y.shape
((60000, 784), (60000,))Use the function train_test_split() from
sklearn.model_selection to split the dataset into atraining and a test dataset, with 1000 and 100 randomlyselected images, respectively. These images are noise-free,and we will use them to evaluate the accuracy of thedenoising approaches.In addition, let us create a copy of the original dataset andadd Gaussian noise to create noisy version of the training,and test images separately, using the following codesnippet:X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, \ random_state=0, train_size=1_000, test_size=100)rng = np.random.RandomState(0)noise = rng.normal(scale=0.25, size=X_test.shape)X_test_noisy = X_test + noisenoise = rng.normal(scale=0.25, size=X_train.shape)X_train_noisy = X_train + noiseThe goal here is to demonstrate that corrupted images canbe denoised by learning a PCA basis from clean

(uncorrupted) images. We will compare the denoisingperformances of PCA and kernel PCA (kPCA).Instantiate objects of PCA and KernelPCA classes from
sklearn.decomposition module to fit PCA and kPCAmodels on the training images, respectively.The KernelPCA constructor accepts the followingarguments, a few relevant ones are listed as follows:

• n_components: Number of components (we havechosen first 30 PCs for PCA and first 400 PCs for kPCA,out of 784 possible components).
• kernel: Kernel used for kPCA (here the Radial Basis

Function (rbf) kernel is used, it is defined as).
• gamma: Kernel coefficient for the rbf kernel.
• alpha: Hyperparameter of the ridge-regression thatlearns the inverse-transform (when

fit_inverse_transform=True).
• fit_inverse_transform: Learn the inverse transform(used for reconstruction).Use the fit() methods to fit the models on training imagesfor both models as follows:pca = PCA(n_components=30)kernel_pca = KernelPCA(n_components=400, kernel="rbf", gamma=1e-3, \ fit_inverse_transform=True, alpha=5e-3)pca.fit(X_train_noisy)_ = kernel_pca.fit(X_train_noisy)pca.n_features_in_, kernel_pca.n_features_in_# (784, 784)Now, let us project the noisy test images on the kernelspace (with the function transform()) and then reconstruct(with inverse_transform()) the images (note that

KernelPCA supports both transform() and
inverse_transform()). Since the number of componentsused is less than the number of original features, it is not an

exact but an approximate reconstruction, i.e., anapproximation of the original test images will be obtained.By discarding the components that contribute the least tothe overall variance in PCA (and similarly in kPCA), the aimis to suppress noise and retain the most significantstructural information in the data.For kPCA, a better reconstruction should happen since anon-linear kernel is used to learn the basis, and a kernel
ridge is used to learn the mapping function as follows:X_reconstructed_kernel_pca = kernel_pca.inverse_transform(kernel_pca.transform(\ X_test_noisy))X_reconstructed_pca = pca.inverse_transform(pca.transform(X_test_noisy))Let us use the mean squared error (MSE) toquantitatively assess the image reconstruction (for example,compute MSE for PCA with np.mean((X_test -
X_reconstructed_pca) ** 2)), and similarly compute forcompute MSE for kPCA.Plot the original (uncorrupted) and the reconstructed testdigit images (obtained with PCA and kPCA) along with the
MSE values, using the plot_digits() function. You shouldget a figure like the following one:

Figure 1.37: PCA vs. kPCA reconstructions of noisy MNIST digits

From the preceding output, although it can be seen thatPCA has lower MSE than kPCA, observe that kPCA is able toremove background noise better and provide a smootherimage.Moreover, the results of the denoising with kPCA willdepend on the hyperparameters n_components, gamma,and alpha (tune them and note the change in MSE).
ConclusionIn this chapter, we focused on solving quite a few problemsin image restoration and inverse problems in imageprocessing. By now, you should be able to apply non-linearfilters such as median and weighted median filters todenoise an image, apply non-blind deconvolutions to restoredegraded images using Inverse, Wiener filters, blind andnon-blind deconvolution with RL algorithm, TV denoisingwith Chambolle and Bregman algorithms, Waveletdenoising, nonlocal and bilateral filters for imagerestoration, Bayesian MAP estimation and Kernel PCA forimage denoising, using different Python libraries such as
scikit-image, scipy.ndimage, SimpleITK, opencv-
python, pywt, and matplotlib.In the next chapter, we shall continue our discussion onsolving more image restoration and image inpaintingproblems; we shall see how a few deep neural nets (such asAutoEncoders and GANs) can be applied to solve problemssuch as image deblurring and deraining.
Key termsTV denoising, Richardson-Lucy, kernel PCA, Wiener, MAPBayesian, Wavelet, Deconvolution, ROF, Chambolle,

Bregman.
Questions1. Prove that the solution to the optimization(minimization) problem with the loss function

is given by the following normal equation:
2. Rather than using the normal equations to solve inverseproblems, numerical analysis suggests that it ispreferable to solve the augmented equations, as shownin the following equation, which can be done by a least

squares solver (lsqr).
Compare the performance with the one you used in thischapter to solve normal equations, in terms of thenumber of iterations required to achieve convergence.3. The sum of absolute deviations is minimum when it istaken from the median: Let us be a setof numbers s.t., . Prove that is minimum when 4. Start with the noisy beans image; visualize how the
DWT coefficients change when thresholded withdifferent threshold values, along with plotting thechange in PSNR of the denoised image, with hard vs.soft thresholding, and find the thresholds correspondingto the peak PSNR values; you should get a figure thatlooks like the one shown:

Figure 1.38: Denoising the beans grayscale image with DWT (hard vs. soft
thresholding)

5. Use Savitzky–Golay filter (scipy.signal.savgol_filter) todenoise an image. Tune the window-length and
polynomial-degree parameters to understand the impacton smoothing.

6. Impact of noise on Inverse Filter: Start with, where is thefrequency spectrum of the additive noise. Show thatrestoration with an inverse filter gets impacted badly asthe additive noise gets stronger (demonstrate with anexample). Can the Wiener filter resolve the problem?7. Compare the restored image quality (for example, with
PSNR) obtained with the Wiener deconvolutionimplementations from scipy.signal and those obtainedusing the Wiener-Hunt deconvolution and itsunsupervised version’s implementations fromskimage.restoration.8. Use denoise_nl_means() and denoise_bilateral()functions from skimage.restoration to apply non-localmean and bilateral denoising on a noisy image. Comparethe results with those obtained using opencv-python.9. Use the code for non-local means denoisingimplementation with opencv-python to visualize (in 3D)how the PSNR and the time taken to denoise varies withinput parameters h and searchWindowSize, you shouldobtain a figure as follows:

Figure 1.39: 3D plot of PSNR w.r.t. parameters h and searchWindowSizeTry changing the value of the other parameters too, inroddr to observe the impact on the denoised imagequality and the computational efficiency.10. Anisotropic diffusion: Refer to the book Image
Processing Masterclass with Python (Chapter 5) toimplement the classic Perona–Malik algorithm torestore a degraded image and compare the outputobtained with the other restoration methods.11. Deep Inverse problems in Python: Implement deepimage reconstruction with the Python package deepinpy,as explained in the following research paper
https://www1.icsi.berkeley.edu/~stellayu/publicatio
n/doc/2020deepInPyISMRM.pdf.

References1.
https://math.stackexchange.com/questions/113270/
the-median-minimizes-the-sum-of-absolute-
deviations-the-ell-1-norm/4281480#42814802.
https://www.owlnet.rice.edu/~elec539/Projects99/B
ACH/proj2/intro.html3. https://www.youtube.com/watch?v=WYtKSZcX944

https://www1.icsi.berkeley.edu/~stellayu/publication/doc/2020deepInPyISMRM.pdf
https://math.stackexchange.com/questions/113270/the-median-minimizes-the-sum-of-absolute-deviations-the-ell-1-norm/4281480#4281480
https://www.owlnet.rice.edu/~elec539/Projects99/BACH/proj2/intro.html
https://www.youtube.com/watch?v=WYtKSZcX944

4.
http://www0.cs.ucl.ac.uk/staff/S.Arridge/teaching/o
ptimisation/5. https://www.ipol.im/pub/art/2012/g-
tvd/article_lr.pdf6. https://mathworld.wolfram.com/Euler-
LagrangeDifferentialEquation.html7. https://sipi.usc.edu/database/database.php8.
http://leap.ee.iisc.ac.in/sriram/teaching/MLSP_16/r
efs/W24-Wavelets.pdf9.
https://courses.cs.duke.edu/cps258/fall06/reference
s/Nonnegative-iteration/Richardson-alg.pdf10.
https://web.archive.org/web/20190110142859/https
://pdfs.semanticscholar.org/9e3f/a71e22caf358dbe8
73e9649f08c205d0c0c0.pdf11. https://www.amazon.com/Python-Image-
Processing-Cookbook-processing-
ebook/dp/B084ZN7Y5F/12. https://www.amazon.com/Hands-Image-
Processing-Python-interpretation-
ebook/dp/B07J664F9S/13. https://www.amazon.com/Image-Processing-
Masterclass-Python-Techniques-
ebook/dp/B08YK4CC7S/14. https://www.scratchapixel.com/lessons/digital-
imaging/simple-image-manipulations/bookeh-effect15. https://arxiv.org/pdf/1004.5538.pdf16. https://scikit-
image.org/docs/dev/api/skimage.restoration.html

http://www0.cs.ucl.ac.uk/staff/S.Arridge/teaching/optimisation/
https://www.ipol.im/pub/art/2012/g-tvd/article_lr.pdf
https://mathworld.wolfram.com/Euler-LagrangeDifferentialEquation.html
https://sipi.usc.edu/database/database.php
http://leap.ee.iisc.ac.in/sriram/teaching/MLSP_16/refs/W24-Wavelets.pdf
https://courses.cs.duke.edu/cps258/fall06/references/Nonnegative-iteration/Richardson-alg.pdf
https://web.archive.org/web/20190110142859/https://pdfs.semanticscholar.org/9e3f/a71e22caf358dbe873e9649f08c205d0c0c0.pdf
https://www.scratchapixel.com/lessons/digital-imaging/simple-image-manipulations/bookeh-effect
https://arxiv.org/pdf/1004.5538.pdf
https://scikit-image.org/docs/dev/api/skimage.restoration.html

17. https://in.mathworks.com/videos/understanding-
wavelets-part-1-what-are-wavelets-121279.html18. https://web.stanford.edu/dept/statistics/cgi-
bin/donoho/wp-
content/uploads/2018/08/denoiserelease3.pdf19.
https://users.soe.ucsc.edu/~manduchi/Papers/ICCV
98.pdf20.
http://www.iro.umontreal.ca/~mignotte/IFT6150/Ar
ticles/Buades-NonLocal.pdf21.
https://citeseerx.ist.psu.edu/viewdoc/download;jses
sionid=C2973F67552E7DD1D2FB5D592DFE9ACB?
doi=10.1.1.100.3636&rep=rep1&type=pdf22.
https://github.com/wncc/CodeInQuarantine/blob/m
aster/Week_3_ML/denoising-task/task.pdf

https://in.mathworks.com/videos/understanding-wavelets-part-1-what-are-wavelets-121279.html
https://web.stanford.edu/dept/statistics/cgi-bin/donoho/wp-content/uploads/2018/08/denoiserelease3.pdf
https://users.soe.ucsc.edu/~manduchi/Papers/ICCV%2098.pdf
http://www.iro.umontreal.ca/~mignotte/IFT6150/Articles/Buades-NonLocal.pdf
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=C2973F67552E7DD1D2FB5D592DFE9ACB?doi=10.1.1.100.3636&rep=rep1&type=pdf
https://github.com/wncc/CodeInQuarantine/blob/master/Week_3_ML/denoising-task/task.pdf

CHAPTER 2
More Image Restoration and

Image Inpainting

IntroductionImage restoration and inpainting are crucial tasks in imageprocessing and computer vision, aimed at recovering degradedor missing parts of an image. Restoration techniques enhanceimage quality by removing noise, correcting blur, andreconstructing lost information, while inpainting focuses onfilling in missing or damaged regions in a visually plausiblemanner.In this chapter, we shall continue with image restoration,focusing on solving image inpainting problems, using bothtraditional and deep learning-based approaches. As explainedin Chapter 1, Image Restoration and Inverse Problems in
Image Processing, inpainting is a restoration process wheredamaged, missing, or corrupted parts of an image arefilled/replaced. We shall learn how to use variational methodsto solve image inpainting problems. However, our main focusin this chapter will be to use recent advanced deep learningmodels, such as autoencoders and GANs, to solve imagedenoising and inpainting problems.

StructureIn this chapter, we will go over the following topics:
• Denoising with autoencoders
• Blind deblurring with DeblurGAN
• Image inpainting
• Image denoising with anisotropic diffusion with opencv-python
• Simple deep image painting with keras
• Semantic image inpainting with DCGAN

ObjectivesBy the end of this chapter, the reader will have a deeperunderstanding of various image restoration and inpaintingtechniques to recover degraded images and reconstructmissing regions. You will explore denoising with autoencoders,blind deblurring using DeblurGAN, and different inpaintingmethods. Additionally, you will gain hands-on experience withanisotropic diffusion-based denoising in opencv-python, deepimage inpainting with Keras, and semantic inpainting using
Deep Convolutional Generative Adversarial Network(DCGAN). These techniques will equip you with the skills toeffectively restore and enhance images for practicalapplications in computer vision.
Denoising with autoencodersAn autoencoder is a neural network that learns arepresentation of input data (using its hidden layers) in an unsupervised manner. In other words, itlearns an approximation to the identity function so that theoutput is similar to the input (as shown in Figure 2.1). Byplacing constraints on the network, for example, by having a

much smaller number of hidden units (than the input), we candiscover interesting structures in the input data (for example,learn a compressed representation in the hidden units andthen reconstruct the output). Refer to the following figure:

Figure 2.1: Basic architecture of an autoencoder

A denoising autoencoder is a stochastic version of anautoencoder that takes inputs corrupted by noise and then it istrained to recover the original inputs, to learn a goodrepresentation. We first train a denoising autoencoder to learnrobust representations from a set of noisy & (ground-truth)clean (training) input images and then use it to generatedenoised output images given noisy (test) input images.
Sparse denoising autoencoderIn sparse autoencoder, a sparsity constraint is imposed onthe hidden units and the autoencoder is trained to discoverinteresting structure in the input. When the output value of ahidden neuron is close to 1, it can be considered to be active(firing). On the contrary, if its output value is close to 0, it isconsidered inactive. The constraint is to keep the hidden

neurons inactive most of the time. Refer to the Figure 2.1: if denotes the activation of the hidden unit (in thehidden layer, i.e., the layer 2), when the network is given aspecific input and the average activation of hidden unit isdenoted by , then the constraint enforced is, where the hyperparameter represents sparsity. It istypically assigned to a very small value close to 0 (for example, = 0.05).In order to satisfy the sparsity constraint, the majority of thehidden unit’s activations must be around 0 and thus an extrapenalty term is added to the optimization objective functionthat penalizes deviating significantly from . For example,the following Kullback-Leibler (KL) divergence term for eachhidden unit , is added as penalty term to the cost function:

This penalty function has the property that minimum when . Otherwise, it increases monotonically as diverges from . Hence, when this penalty term isminimized, it will force to be close to . The overall costfunction is:

Here, is the size of the hidden layer (number of hiddenunits) and represents the weights and bias parametersthat are learned with back-propagation of the loss, with being a hyperparameter controlling the penalty (sparsity)term’s weight.Now that we went through the basic concepts, we are readyimplement a sparse denoising autoencoder with
tensorflow. We shall start with a noisy version of notMNIST

input images (of English alphabets) and train an autoencoderto reconstruct clean images from the input.As usual, let us start by importing the required Pythonlibraries. Note that we shall use the features of tensorflow v1and disable the eager execution for v2:import tensorflow as tfprint(tf.__version__)
2.6.0tf.compat.v1.disable_eager_execution()import mathimport matplotlib.pyplot as pltimport osimport numpy as npfrom cv2 import imreadLet us load the input notMNIST alphabet () images fromthe corresponding folder using the following function
read_images(). Note that it searches all the png image filesinside each of the 10 subfolders (one for each alphabet), using
os.walk() function, and stores the image and label (class) foreach image found. Refer to the following code snippet:def read_images(dataset_path = 'images/notmnist'): images = [] labels = [] label = 0 classes = sorted(os.walk(dataset_path).__next__()[1]) for c in classes: c_dir = os.path.join(dataset_path, c) walk = os.walk(c_dir).__next__() for sample in walk[2]: if sample.endswith('.png'): try: image = imread(os.path.join(c_dir, sample), 0) images.append(image.ravel()) labels.append(c) except: None label += 1 images = np.asarray(images, dtype=np.uint8) return imagesThe next function kl_divergence() implements the KL

divergence function, the penalty term to be added to theoptimization cost function to ensure sparsity:def kl_divergence(p, p_hat): return p * tf.math.log(p) - p * tf.math.log(p_hat) + \ (1 - p) * tf.math.log(1 - p) - (1 - p) * tf.math.log(1 - p_hat)Now, let us normalize the pixel values in the input imagesbetween [0,1] and shuffle the images before starting training:x_train = read_images()x_train = x_train / x_train.max()np.random.shuffle(x_train)Let us set the hyperparameter values. Note that the number ofhidden units in the single hidden layer is chosen to be 200and each input image is 28×28. Hence, when flattened, theinput dimension becomes 784. Refer to the following codesnippet:p = 0.01learning_rate = 1e-3epochs = 40batch_size = 100reg_term_lambda = 2*1e-3beta = 3n = 784 n_hidden = 200Let us now dive into the core of the implementation, follow thenext steps, to define the model:1. Let us define the tensorflow (v1) placeholders for theinputs (one for the original input and another one for thecorrupted version) / reconstructed outputs (), and
tensorflow variables to store the weight and biasparameters to be learned. Initialize the variables with
tf.random.normal() function with appropriate arguments.2. Note that we have a couple of sets of weight parameters (), , the first one between the input and the hiddenlayer, and the other one between the hidden and the outputlayer. The same is true for the bias parameters.3. Compute the forward propagation with matrixmultiplications for both the hidden and output layers.

4. Compute the average activation of hidden units 5. Compute the KL divergence penalty term , to ensurethe sparsity.6. Define the squared loss function for reconstruction. Notethat the loss function uses the reconstruction error of theoriginal image and not the noisy input, that is,
7. Add regularization on the weights (to preventoverfitting) with the cost function.8. Add an additional penalty term as the KL divergence
9. The cost function is the sum of the above 3 functions:
10. During forward pass, you need to compute values sothat you can compute the penalty term for sparsity.11. Note that we are using Adam (Adaptive MomentEstimation, uses adaptive learning rates and momentumfor efficient stochastic gradient descent) optimizer here(for updating the parameters with backpropagation).Refer to the following code snippet:x = tf.compat.v1.placeholder(tf.float32, [None, n])x_noisy = tf.compat.v1.placeholder(tf.float32, [None, n])xhat= tf.compat.v1.placeholder(tf.float32, [None, n])W1 = tf.Variable(tf.random.normal([n, n_hidden], stddev=0.03), name='W1')b1 = tf.Variable(tf.random.normal([n_hidden]), name='b1')W2 = tf.Variable(tf.random.normal([n_hidden, n], stddev=0.03), name='W2')b2 = tf.Variable(tf.random.normal([n]), name='b2')linear_layer_one_output = tf.add(tf.matmul(x_noisy, W1), b1)layer_one_output = tf.nn.sigmoid(linear_layer_one_output)linear_layer_two_output = tf.add(tf.matmul(layer_one_output,W2),b2)xhat = tf.nn.sigmoid(linear_layer_two_output)mse_loss = (xhat - x)**2p_hat = tf.reduce_mean(tf.clip_by_value(\ layer_one_output,1e-10,1.0),axis=0)kl = kl_divergence(p, p_hat)cost = tf.reduce_mean(tf.reduce_sum(mse_loss, axis=1)) + \ reg_term_lambda*(tf.nn.l2_loss(W1) + tf.nn.l2_loss(W2)) + \

 beta*tf.reduce_sum(kl)optimiser = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate,\ beta1=0.9, beta2=0.999, epsilon=1e-08).minimize(cost)init_op = tf.compat.v1.global_variables_initializer()Let us go over the following steps now, to learn the weightparameters of the model:1. Train the model on the dataset. Let us run training
epochs (for example, run for 40 epochs) inside a sessioncreated with tf.compat.v1.Session(), using the followingcode snippet.2. The session allows the execution of graphs or part ofgraphs. It allocates resources for this purpose and holdsthe actual values of intermediate results and variables.3. Iterate over the batches, and each time fetch
batch_size=100 images from the training dataset with
x_train[cur:cur+batch_size].4. Add random Gaussian noise (with np.random.normal()function) to corrupt the input images () and the (current)batch with noise standard deviation 0.15 (try changingthis), 5. Note that you need to pass both and (in batches)to tensorflow session.run() graph computation’s
feed_dict, for the corresponding placeholders.6. Compute the loss function value (averaged across thebatches) for every epoch and store in in the list losses.7. Obtain the weights learned so far, with W1.eval(session).8. Predict the denoised images () with the model trained sofar, with xhat.eval(session).Refer to the following code snippet:losses = []with tf.compat.v1.Session() as sess: sess.run(init_op) total_batch = int(len(y_train) / batch_size) cur = 0 for epoch in range(epochs):

 mean_cost = 0 for i in range(total_batch): batch_x = x_train[cur:cur+batch_size] noise = np.random.normal(0, 0.15, batch_x.shape) batch_x_noisy = batch_x + noise _, c = sess.run([optimiser, cost], \ feed_dict={x: batch_x, x_noisy: batch_x_noisy}) mean_cost += c / total_batch losses.append(mean_cost) if((epoch + 1) % 10 == 0): input_images = batch_x noisy_image = batch_x_noisy weight_images = W1.eval(sess).transpose() output_images = xhat.eval(feed_dict={x: batch_x, \ x_noisy: batch_x_noisy}, session=sess) # TODO: plot images here cur += batch_sizeAs can be seen from the preceding code snippet, you can plotthe training progress (expected decrease in loss functionvalue) and visualize the original and denoised images(obtained with model prediction), the code for plotting is leftas an exercise (fill-in the TODO section before), as follows:1. Plot the loss function values to see the decay over epochs(left as an exercise, insert your code at the TODO section,inside the preceding code snippet. The following Figure 2.2shows the output that you could see after 40 epochs:

Figure 2.2: Decay of the loss function value over epochs2. Plot the original and noisy inputs, the weights learned, andthe denoised output (for example, every 10 epochs). Youshould obtain a figure like the following one (after 40epochs, for example):

Figure 2.3: Denoising notMNIST images with sparse denoising autoencoder

Denoising with convolution
autoencoder with skip connectionIn this section, you will learn to use a very deep fullyconvolutional Residual Encoder-Decoder Neural Network(RED-Net), for image denoising and restoration. The networkis composed of multiple convolution and transposed-convolution layers, enabling it to learn end-to-end mappings

from corrupted images (provided as input) to denoised originalimages (to be produced as output). The convolution layerseliminate corruptions by capturing the abstraction of imagecontents. Transposed-convolutional layers recover the imagedetails by up-sampling the feature maps [1].To avoid difficulty in training, convolutional and transposed-convolutional layers are symmetrically linked with skip-layerconnections (as shown in the following Figure 2.4), to get thetraining process converge faster with better results:

Figure 2.4: RED-Net architecture
Source: https://arxiv.org/pdf/1606.08921.pdfThe skip connections from convolutional layers to theirmirrored corresponding transposed-convolutional layersexhibit the following couple of advantages:

• It handles the vanishing gradient problem while back-propagation.
• The skip connections pass image details from convolutionallayers to transposed-convolutional layers, which isbeneficial in recovering the clean image.Again, we shall implement the deep learning model with

tensorflow, and this time, we shall use the keras libraryfunctions. Let us start by importing the required libraries:import tensorflow as tffrom keras import layers, models, initializersimport numpy as npimport cv2

https://arxiv.org/pdf/1606.08921.pdf

import matplotlib.pyplot as pltLet us go over the following, as a detailed guidance for a step-by-step implementation:1. In general, there are the following layers in the network:convolution (Conv2D), transposed-convolution(Conv2DTranspose) and element-wise sum (Add). Eachlayer is followed by a Rectified Linear Unit (ReLU).2. An additional layer BatchNormalization is added. Itapplies a transformation that maintains the mean outputclose to 0 and the output standard deviation close to 1. Thelayer will only normalize its inputs during inference afterbeing trained on data with similar statistics to theinference data and tackles the internal covariate shiftproblem.3. For the element-wise sum layer, the output is the element-wise sum of two inputs.4. Learning the end-to-end mapping from corrupted imagesto clean images needs to estimate the weights Θrepresented by the convolutional and transposed-convolutional kernels.5. Convolution layers work as feature extraction units,preserving the image’s details and eliminating thecorruption. After a forward pass through the convolutionallayers, the corrupted input gets converted into a clean one,although subtle details may be lost. The transposed-convolutional layers are then combined to recover thedetails, outputting the recovered clean version. Moreover,skip connections from a convolutional layer to itscorresponding mirrored transposed-convolutional layer areadded. The passed convolutional feature maps are summedto the transposed-convolutional feature maps element-wiseand passed to the next layer after rectification.6. Depth of the network used for image denoising varies from20 and 30 layers. This is implemented with a for loop, byadding group of layers iteratively, as done in the next code

snippet, with the rednet() function which returns a modelof the specified depth, with the depth and the number offilters (n_filters), for the convolution/transposed-convolution layers (defaulting to 128), passed as inputarguments.7. Note that transposed-convolution is sometimes (wrongly)called deconvolution, since deconvolution implies removingthe effect of convolution, which is not the goal here. It isalso known as upsampled convolution, which is intuitive tothe task it is used to perform, that is, upsample the inputfeature map.Refer to the following code sample:def rednet(depth=20, n_filters=128, kernel_size=(3, 3), \ skip_step=2, n_channels=1): num_connections = np.ceil(depth / (2 * skip_step)) \ if skip_step > 0 else 0 x = layers.Input(shape=[None, None, n_channels], name="InputImage") y = x encoder_layers = [] with tf.name_scope("REDNet"): for i in range(depth // 2): with tf.name_scope("EncoderLayer{}".format(i + 1)): y = layers.Conv2D(n_filters, kernel_size=kernel_size, \ kernel_initializer=initializers.glorot_uniform(),\ padding="same", activation=None, use_bias=False, name="Layer{}_Conv".format(i + 1))(y) y = layers.BatchNormalization(name="Layer{}_BatchNorm" \ .format(i + 1))(y) y = layers.ReLU(name="Layer{}_Actv".format(i + 1))(y) encoder_layers.append(y) j = int((num_connections - 1) * skip_step) # Encoder layers count k = int(depth-(num_connections-1)*skip_step) # Decoder layers cnt for i in range(depth // 2 + 1, depth): with tf.name_scope("DecoderLayer{}".format(i + 1)): y = layers.Conv2DTranspose(n_filters, \ kernel_size=kernel_size, \ kernel_initializer=initializers.glorot_uniform(), \ padding="same", activation=None, use_bias=False, \ name="Layer{}_Conv".format(i))(y) y = layers.BatchNormalization(name="Layer{}_BatchNorm"\

 .format(i))(y) if i == k: y = layers.Add(name="SkipConnect_Enc_{}_Dec_{}"\ .format(j, k))([encoder_layers[j - 1], y]) k += skip_step j -= skip_step y = layers.ReLU(name="Layer{}_Actv".format(i))(y) with tf.name_scope("OutputLayer"): y = layers.Conv2DTranspose(1, kernel_size=kernel_size, \ kernel_initializer=initializers.glorot_uniform(), \ padding="same", activation=None, use_bias=False, \ name="Output_Conv")(y) y = layers.BatchNormalization(name="Output_BatchNorm")(y) y = layers.Add(name="SkipConnect_Input_Output")([x, y]) y = layers.ReLU(name="Output_Actv")(y) return models.Model(inputs=[x], outputs=[y])rednet30 = rednet(30, n_channels=3)Next, create a noisy input dataset by following the next steps:1. Let us use the CIFAR10 image dataset (available in
tf.keras.datasets), add noise to the images (and laterdenoise it using RED-Net).2. Load the training and test datasets using the load_data()function and normalize the pixel values, using the followingcode block:(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()x_train = x_train / 255x_test = x_test / 255np.random.shuffle(x_train)noise = np.zeros(x_train.shape)for i in range(x_train.shape[-1]): noise[..., i] = np.random.normal(0, 0.1, size=x_train.shape[:-1])x_train_noisy = x_train + noisenoise = np.zeros(x_test.shape)for i in range(x_test.shape[-1]): noise[..., i] = np.random.normal(0, 0.1, size=x_test.shape[:-1])x_test_noisy = x_test + noiseNow, compile the model and run training (using fit() on thenoisy and clean training images) for 10 epochs. Train on a

GPU (use Google Colab) for faster training, on CPU it will be

slow. Refer to the following code snippet:rednet30.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=5*1e-6), loss=tf.keras.losses.binary_crossentropy)history = rednet30.fit(x_train_noisy, x_train, batch_size=64, epochs=10)Plot the decaying loss from the history, using the followingcode snippet:plt.plot(range(len(history.history['loss'])), history.history['loss'])plt.grid()plt.xlabel('Epochs', size=10)plt.ylabel('Loss', size=10)plt.show()If you run the preceding code snippet, you should obtain afigure like the next one:

Figure 2.5: Learning over epochsPredict to restore the clean images from the noisy test images:x_test_p = rednet30.predict(x_test_noisy)Choose a random sample of 10 noisy test images, denoise themwith RED-Net. Plot the noisy along with the recovered images.You should obtain a figure as follows:

Figure 2.6: Denoising images from CIFRA10 dataset with RED-Net

Deraining with GCANetIn this problem, we shall focus on de-raining an image using a
pre-trained deep learning model (dehazing network), that is,the input will be an image in a rainy environment and theoutput will be one without the rain-streak component. Given ahazy input image, the dehazing network tries to retrieve theuncorrupted content. Again, instead of using traditionalhandcrafted or low-level image priors as the constraints forhandcrafted, the output haze-free image will be directlyrestored using an end-to-end deep neural net named Gated
Context Aggregation Network (GCANet). In this network,the latest smoothed dilation technique is used to get rid of thegridding artifacts caused due to the dilated convolution, and agated sub-network will be used to fuse the features fromdifferent levels. The following Figure 2.7 shows thearchitecture of the deep neural net [3]:

Figure 2.7: GCANet architecture
Source: https://arxiv.org/pdf/1811.08747.pdf

https://arxiv.org/pdf/1811.08747.pdf

Let us understand how this model works:
• Using the encoder, a hazy input image is encoded into thefeature maps. Next, more context information isaggregated, and features from different levels are fused(without down-sampling) to enhance the feature maps.
• Smoothed dilated convolution (implemented usingdilated convolutional layer) and an extra gated sub-network are used.
• The target haze residue is computed after decoding theenhanced feature maps back to original image space. Next,the residue obtained is added to the hazy input image, andthe final haze-free image is obtained.
• The feature maps from different levels areextracted and fed into the gated fusion subnetwork. Threedifferent importance weights, namely, () areoutput by the gated fusion sub-network (corresponding tothe three feature levels, respectively). Finally, theregressed importance weights obtained are used to(linearly) combine these three feature maps from differentlevels.Let us implement the model, this time using PyTorch. Start byimporting the libraries needed:import torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch.autograd import Variableimport numpy as npfrom PIL import Imageimport osLet us deep dive into the core of the implementation using thefollowing code snippet using the original GCANetimplementation [8]:
• The class SmoothDilatedResidualBlock in the next codeblock implements the smooth dilated ResBlock (Residual

Block is a key component in deep neural networks that

helps in training very deep models by using skip
connections to mitigate the vanishing gradient problem)by stacking smooth dilated convolution blocks using the
ShareSepConv class, ordinary convolution blocks(nn.Conv2d), and instance normalization blocks(nn.InstanceNorm2d, which computes the mean andstandard deviation across each individual channel for asingle example and implements instant-specificnormalization).

• Note that all the classes inherit from torch.nn.Moduleand they implement a couple of methods:o __init__(): The constructor called upon the instantiationof the object, it defines the structure of the network andinitializes the member variables.o forward(): This method is called to run a forward passon the layers in the block.Refer to the following code snippet:class ShareSepConv(nn.Module): def __init__(self, kernel_size): super(ShareSepConv, self).__init__() assert kernel_size % 2 == 1, 'kernel size should be odd!' self.padding = (kernel_size - 1) // 2 weight_tensor = torch.zeros(1, 1, kernel_size, kernel_size) weight_tensor[0, 0, (kernel_size - 1) // 2, \ (kernel_size - 1) // 2] = 1 self.weight = nn.Parameter(weight_tensor) self.kernel_size = kernel_size def forward(self, x): inc = x.size(1) expand_weight = self.weight.expand(inc, 1, self.kernel_size, \ self.kernel_size).contiguous() return F.conv2d(x, expand_weight, None, 1, self.padding, 1, inc)class SmoothDilatedResidualBlock(nn.Module): def __init__(self, num_channels, dilation=1, groups=1): super(SmoothDilatedResidualBlock, self).__init__() self.pre_conv1 = ShareSepConv(dilation*2 - 1) self.conv1 = nn.Conv2d(num_channels, num_channels, 3, 1, \ padding=dilation, dilation=dilation, groups=groups, bias=False) self.norm1 = nn.InstanceNorm2d(num_channels, affine=True)

 self.pre_conv2 = ShareSepConv(dilation*2 - 1) self.conv2 = nn.Conv2d(num_channels, num_channels, 3, 1, \ padding=dilation, dilation=dilation, groups=groups, bias=False) self.norm2 = nn.InstanceNorm2d(num_channels, affine=True) def forward(self, x): y = F.relu(self.norm1(self.conv1(self.pre_conv1(x)))) y = self.norm2(self.conv2(self.pre_conv2(y))) return F.relu(x+y)class ResidualBlock(nn.Module): def __init__(self, num_channels, dilation=1, groups=1): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(num_channels, num_channels, 3, 1, \ padding=dilation, dilation=dilation, \ groups=groups, bias=False) self.norm1 = nn.InstanceNorm2d(num_channels, affine=True) self.conv2 = nn.Conv2d(num_channels, num_channels, 3, 1, \ padding=dilation, dilation=dilation, \ groups=groups, bias=False) self.norm2 = nn.InstanceNorm2d(num_channels, affine=True) def forward(self, x): y = F.relu(self.norm1(self.conv1(x))) y = self.norm2(self.conv2(y)) return F.relu(x+y)The class GCANet implements the GCANet architecture. Asshown in Figure 2.7, the network first uses a bunch ofconvolution layers, followed by a bunch of
SmoothDilatedResidualBlock layers, followed by a
ResidualBlock, and finally a transposed convolution(nn.ConvTranspose2d) block, followed by a bunch ofconvolution blocks.class GCANet(nn.Module): def __init__(self, in_c=4, out_c=3, only_residual=True): super(GCANet, self).__init__() self.conv1 = nn.Conv2d(in_c, 64, 3, 1, 1, bias=False) self.norm1 = nn.InstanceNorm2d(64, affine=True) self.conv2 = nn.Conv2d(64, 64, 3, 1, 1, bias=False) self.norm2 = nn.InstanceNorm2d(64, affine=True) self.conv3 = nn.Conv2d(64, 64, 3, 2, 1, bias=False) self.norm3 = nn.InstanceNorm2d(64, affine=True) self.res1 = SmoothDilatedResidualBlock(64, dilation=2) self.res2 = SmoothDilatedResidualBlock(64, dilation=2) self.res3 = SmoothDilatedResidualBlock(64, dilation=2)

 self.res4 = SmoothDilatedResidualBlock(64, dilation=4) self.res5 = SmoothDilatedResidualBlock(64, dilation=4) self.res6 = SmoothDilatedResidualBlock(64, dilation=4) self.res7 = ResidualBlock(64, dilation=1) self.gate = nn.Conv2d(64 * 3, 3, 3, 1, 1, bias=True) self.deconv3 = nn.ConvTranspose2d(64, 64, 4, 2, 1) self.norm4 = nn.InstanceNorm2d(64, affine=True) self.deconv2 = nn.Conv2d(64, 64, 3, 1, 1) self.norm5 = nn.InstanceNorm2d(64, affine=True) self.deconv1 = nn.Conv2d(64, out_c, 1) self.only_residual = only_residual def forward(self, x): y = F.relu(self.norm1(self.conv1(x))) y = F.relu(self.norm2(self.conv2(y))) y1 = F.relu(self.norm3(self.conv3(y))) y = self.res1(y1) y = self.res2(y) y = self.res3(y) y2 = self.res4(y) y = self.res5(y2) y = self.res6(y) y3 = self.res7(y) gates = self.gate(torch.cat((y1, y2, y3), dim=1)) gated_y = y1 * gates[:,[0],:,:] + y2 * gates[:, [1], :, :] + \ y3 * gates[:, [2], :, :] y = F.relu(self.norm4(self.deconv3(gated_y))) y = F.relu(self.norm5(self.deconv2(y))) if self.only_residual: y = self.deconv1(y) else: y = F.relu(self.deconv1(y)) return yAlong with the input image, if the pre-calculated edges in theinput image are fed as auxiliary information to the network, itoften turns out to be very helpful to the network learning. Forthis purpose, the function edge_compute() pre-computes theedges from the image.def edge_compute(x): x_diffx = torch.abs(x[:,:,1:] - x[:,:,:-1]) x_diffy = torch.abs(x[:,1:,:] - x[:,:-1,:]) y = x.new(x.size()) y.fill_(0) y[:,:,1:] += x_diffx

 y[:,:,:-1] += x_diffx y[:,1:,:] += x_diffy y[:,:-1,:] += x_diffy y = torch.sum(y,0,keepdim=True)/3 y /= 4 return yLet us understand how to instantiate the model class, load thepretrained weights and run inference on the model, with astep-by-step explanation of the next code snippet:1. Instantiate the GCANet class into the variable net andload the pretrained model weights using the method
torch.load(). Then set the network to evaluation modewith net.eval(), and it becomes ready for prediction.2. Read the rainy input image (with PIL’s Image.open()method). The image size is assumed to be a multiple of 4. Ifit is not, it is resized accordingly.3. Concatenate (using torch.cat()) the pre-calculated edges(using edge_compute()) with the hazy input image alongthe channel dimension to obtain the final input to themodel.4. Compute numpy ndarray to pytorch tensor (with
torch.from_numpy()) and back (using the method
.numpy()), as and when required.5. torch.no_grad() deactivates autograd engine, by settingall of the requires_grad flags to False temporarily.6. Run a forward pass on the neural net (using net()) topredict the derained output image.7. Plot the input and output derained image using thefollowing code snippet:model = 'models/wacv_gcanet_derain.pth' net = GCANet(in_c=4, out_c=3, only_residual=False)net.float()net.load_state_dict(torch.load(model, map_location='cpu'))net.eval()img_path = 'images/bridge.jpg'img = Image.open(img_path).convert('RGB')

im_w, im_h = img.sizeif im_w % 4 != 0 or im_h % 4 != 0: img = img.resize((int(im_w // 4 * 4), int(im_h // 4 * 4))) img = np.array(img).astype('float')img_data = torch.from_numpy(img.transpose((2, 0, 1))).float()edge_data = edge_compute(img_data)in_data = torch.cat((img_data, edge_data), dim=0)\ .unsqueeze(0) - 128 in_data = in_data.float()with torch.no_grad(): pred = net(Variable(in_data))out_img_data = pred.data[0].cpu().float().round().clamp(0, 255)out_img = Image.fromarray(out_img_data.numpy().astype(np.uint8)\ .transpose(1, 2, 0))plt.figure(figsize=(12,10))plt.subplots_adjust(0,0,1,0.95,0.05,0.05)plt.subplot(121), plt.imshow(img.astype(int)), plt.axis('off') plt.title('original', size=20)plt.subplot(122), plt.imshow(out_img), plt.axis('off') plt.title('derained', size=20)plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 2.8: Deraining with pretrained GCANet

Blind deblurring with DeblurGANIn this section, we shall learn how to solve the blind motion-deblurring problem for a single photograph, using an end-to-end generative deep learning model called DeblurGAN. Thelearning is based on a conditional Generative Adversarial
Network (GAN) and content loss. As described in Chapter 1,
Image Restoration and Inverse Problems in Image Processing,the family of deblurring problems is divided into two types:
blind and non-blind deblurring, without and with anassumption that the blur kernel is known, respectively. Whenthe blur function is unknown, and blind deblurring algorithmsestimate both latent sharp image and blur kernel (as
Richardson-Lucy algorithm, implemented in Chapter 1,
Image Restoration and Inverse Problems in Image Processing).GAN, a form of unsupervised machine learning, trains two

competing networks, namely, the discriminator and thegenerator simultaneously, as shown in Figure 2.9. Their rolesare:
• The generator G receives noise as an input and generatesa sample. The goal of the generator is to fool thediscriminator by generating perceptually convincingsamples that can not be distinguished from the real ones.
• The discriminator D receives a real and generated (fake)sample and tries to distinguish between them. The goal ofthe discriminator is to detect the fake image generated, itacts as a binary classifier, outputting 1 when the input is areal image and 0 in case of a fake one.Refer to the following figure:

Figure 2.9: Schematic diagram of a generative adversarial networkIf be a real image and be a fake image generated by (from noise , by),
• The discriminator tries to maximize and minimize (or equivalently maximize) to detect fakeimages generated by .
• The generator tries to maximize (or equivalentlyminimize) to fool D.Where we have:
• : The discriminator’s estimate of the probability that(real) image x is real (i.e., from the true data distribution).
• : The discriminator’s estimate of the

probability that a generated (fake) image is real.

Hence, the game between the generator and discriminatorthen can be formulated by the following minimax objective (inthe space), also called adversarial loss:
Where, is the data distribution and is the modeldistribution, defined by . The input is a sample froma simple noise distribution and is the (fake) image outputby the generator-given input . GANs are known for theirability to generate samples of good perceptual quality.
Conditional GAN (cGAN) is an extension of the GANframework. An additional conditional information is input toboth discriminator and generator (as shown in Figure 2.10)that describes some aspect of the images (for example, if it isMNIST images, C could describe the digit class/label). Thisattribute information is inserted in both the generator and thediscriminator. Hence, when the adversarial training is over,the generator can generate a digit of a specific class whenasked. Unlike vanilla GAN, cGAN learns mapping fromobserved image x and random noise vector z to .Here we have:

• x: Conditioning input (for example, a label, an image, orsome observed data)
• z: Random noise vector (used to introducestochasticity/variety)
• y: Target output (for example, a label-specific image,deblurred image, translated image, and so on)The goal of DeblurGAN (which is effectively a form of

Conditional GAN) is to recover sharp image given only ablurred image as an input (which acts a the conditioning
input to the cGAN), without any information about the blurkernel. Debluring is done by the trained CNN , which actsas the generator. For each it estimates the corresponding image. In addition, during the training phase, the critic

network is introduced, and both networks are trained in anadversarial manner (i.e., the generator and critic compete,with the generator trying to fool the critic and the critic tryingto distinguish real from fake).DeblurGAN learns: , the next table maps thevariables:
Symbol Meaning in cGAN Meaning in DeblurGAN

x Conditioning input Blurred image
z Noise vector Omitted () or ignored
y Target output Sharp image

Table 2.1: Mapping the variables
DeblurGAN does not use a noise vector z during inference ortraining. It’s deterministic — the generator maps directlyfrom the blurred image to a sharp one (there’s a single correctsharp image for a given blur).The loss function is formulated as a combination of content
loss (which is the perceptual difference between thegenerated deblurred image and the ground truth sharp image)and adversarial loss:

The following figure shows the architecture of the generatornetwork G:

Figure 2.10: Generator architecture in DeblurGAN
Source: https://arxiv.org/pdf/1711.07064

https://arxiv.org/pdf/1711.07064

As can be seen from the preceding figure, it contains two
strided convolution blocks with stride 1 or 2, nine residualblocks (ResBlocks) and two transposed convolution blocks.Each ResBlock consists of a convolution layer, instancenormalization layer, and ReLU activation. Dropoutregularization with a probability of 0.5 is added after the firstconvolution layer in each ResBlock. In addition, a global skipconnection, referred to as ResOut, is introduced CNN learns aresidual correction to the blurred image , so . Itis found that such formulation makes training faster andresulting model generalizes better [2].Let us start our implementation by importing all the requiredlibraries, using the following code block:import tensorflow as tffrom tensorflow.keras.layers import Input, Conv2D, Activation, Add, \ UpSampling2D, BatchNormalization, Dropoutfrom tensorflow.keras.layers import LeakyReLU, Conv2D, Dense, Flatten, \ Lambda, InputSpec, Layerfrom tensorflow.keras.models import Modelimport tensorflow.keras.utils as conv_utilsimport tensorflow.keras.backend as Kfrom PIL import Imageimport numpy as npimport matplotlib.pylab as pltfrom glob import globLet us go through the following python implementation steps,accompanied by detailed explanation:

• Refer to the preceding network architecture. We are goingto implement a slightly modified version of this networkusing keras.
• The function res_block() in the following code snippetinstantiates a Keras Resnet block using Keras functional

API. It accepts the following parameters: an input (tensor),number of filters, kernel size and shape of strides for theconvolution, whether to use dropout or not and returns a
Keras model. It uses couples of ReflectionPadding2Dinstances with an optional Dropout layer (to prevent

overfitting) in the middle.
• The function normalize_tuple() transforms a singleinteger or iterable of integers into an integer tuple.
• Note that here we are going to expect the input image onlyin the channels_last image data format (modify the code ifyou want to support other data formats), which is the sameas K.image_data_format().data_format = K.image_data_format()def res_block(input, filters, kernel_size=(3, 3), strides=(1, 1), \ dropout=False): x = ReflectionPadding2D((1, 1))(input) x = Conv2D(filters=filters, kernel_size=kernel_size, \ strides=strides)(x) x = BatchNormalization()(x) x = Activation('relu')(x) if dropout: x = Dropout(0.5)(x) x = ReflectionPadding2D((1, 1))(x) x = Conv2D(filters=filters, kernel_size=kernel_size, \ strides=strides,)(x) x = BatchNormalization()(x) merged = Add()([input, x]) return mergeddef normalize_tuple(value, n): return (value,) * n if isinstance(value, int) else tuple(value)def spatial_reflection_2d_padding(x, padding=((1, 1), (1, 1))): #assert len(padding)==2 & len(padding[0])==2 & len(padding[1])==2 pattern = [[0, 0], list(padding[0]), list(padding[1]), [0, 0]] return tf.pad(x, pattern, "REFLECT")class ReflectionPadding2D(Layer): def __init__(self, padding=(1, 1), **kwargs): super(ReflectionPadding2D, self).__init__(**kwargs) self.data_format = data_format if isinstance(padding, int): self.padding = ((padding, padding), (padding, padding)) elif hasattr(padding, '__len__'): # assert len(padding) == 2: height_padding = normalize_tuple(padding[0], 2) width_padding = normalize_tuple(padding[1], 2) self.padding = (height_padding, width_padding) self.input_spec = InputSpec(ndim=4)def compute_output_shape(self, input_shape):

 rows = input_shape[1] + self.padding[0][0] + self.padding[0][1] \ if input_shape[1] is not None else None cols = input_shape[2] + self.padding[1][0] + self.padding[1][1] \ if input_shape[2] is not None else None return (input_shape[0], rows, cols, input_shape[3])
 def call(self, inputs): return spatial_reflection_2d_padding(inputs, padding=self.padding) def get_config(self): config = {'padding': self.padding, 'data_format': self.data_format} base_config = super(ReflectionPadding2D, self).get_config() return dict(list(base_config.items()) + list(config.items()))Let us proceed to the next part:

• Now implement the generator model, using the preceding
res_block. Note that the input shape of the image usedhere is hard coded to (256,256,3), you may want to playwith the size and observe the impact on the output.

• As shown in the model architecture diagram, the followingimplementation uses nine (n_blocks_gen=9) res_blocks.
• Note that the res_blocks use dropout(use_dropout=True) to prevent overfitting.
• It uses BatchNormalization layer though instead ofinstance normalization (to see the difference, we have tochange the network to use instance normalization insteadand observe the impact).
• It uses UpSampling2D layer instead of

Conv2DTranspose (find out the difference, left as anexercise).n_blocks_gen = 9def generator_model(): inputs = Input(shape=(256, 256, 3)) x = ReflectionPadding2D((3, 3))(inputs) x = Conv2D(filters=ngf, kernel_size=(7, 7), padding='valid')(x) x = BatchNormalization()(x) x = Activation('relu')(x) n_downsampling = 2 for i in range(n_downsampling):

 mult = 2**i x = Conv2D(filters=ngf*mult*2, kernel_size=(3, 3), strides=2, \ padding='same')(x) x = BatchNormalization()(x) x = Activation('relu')(x) mult = 2**n_downsampling for i in range(n_blocks_gen): x = res_block(x, ngf*mult, use_dropout=True)
n_blocks_gen = 9def generator_model(): inputs = Input(shape=(256, 256, 3)) x = ReflectionPadding2D((3, 3))(inputs) x = Conv2D(filters=ngf, kernel_size=(7, 7), padding='valid')(x) x = BatchNormalization()(x) x = Activation('relu')(x) n_downsampling = 2 for i in range(n_downsampling): mult = 2**i x = Conv2D(filters=ngf*mult*2, kernel_size=(3, 3), strides=2, \ padding='same')(x) x = BatchNormalization()(x) x = Activation('relu')(x) mult = 2**n_downsampling for i in range(n_blocks_gen): x = res_block(x, ngf*mult, use_dropout=True) for i in range(n_downsampling): mult = 2**(n_downsampling - i) x = UpSampling2D()(x) x = Conv2D(filters=int(ngf * mult / 2), kernel_size=(3, 3), \ padding='same')(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = ReflectionPadding2D((3, 3))(x) x = Conv2D(filters=output_nc, kernel_size=(7, 7), padding='valid')(x) x = Activation('tanh')(x) outputs = Add()([x, inputs]) outputs = Lambda(lambda z: z/2)(outputs) model = Model(inputs=inputs, outputs=outputs, name='Generator') return modelLet us go over the following points:

• Once the generator architecture is defined, we are ready toload the pretrained weights in the generator and run

deblurring.
• The function load_image() in the following code snippetuses the PIL library method Image.open() to open load animage from disk, given its path.
• The function preprocess_image() normalizes the inputimage pixels (assuming that pixel values are in [0,255]).
• The function deprocesss_image() does the reverseoperation: it converts normalized pixel values back into therange [0,255] and changes the image type back to an 8-bitunsigned integer (np.uint8).
• The function deblur() accepts a couple of inputparameters, the first one being the blurred image to besharpened and the second one being the pre-trainedDeblurGAN model that will be used to deblur the image.The function preprocesses the blurred input image, loadsthe pre-trained weights in the generator model, and usesthe generator to predict the generated (de-blurred) image,deprocesses it, and returns it.
• Finally, load the original input image and its blurredversion (implement a custom blur kernel to simulate amotion-blurred version of the input image, refer to thequestions at the end of the chapter). Invoke the deblur()function with the blurred image as an input argument toobtain the sharpened output in return.def load_image(path): img = Image.open(path) return imgdef preprocess_image(img): img = img.resize((256,256)) img = np.array(img) img = (img - 127.5) / 127.5 return imgdef deprocess_image(img): img = img * 127.5 + 127.5 return img.astype('uint8')def deblur(blurred, model_path): x_test_lst = [preprocess_image(blurred)]

 batch_size = len(x_test_lst) x_test = np.array(x_test_lst) g = generator_model() g.load_weights(model_path) generated_images = g.predict(x=x_test, batch_size=1) generated = np.array([deprocess_image(img) \ for img in generated_images])[0] return generatedblurred = load_image('images/parrot_blur.jpg') deblurred = deblur(blurred, 'models/generator.h5')If you plot the original, blurred, and deblurred (withDeblurGAN) images, you should get the following outputfigure:

Figure 2.11: Deblurring images with DebulrGAN

Image inpaintingImage inpainting is a form of image restoration andconservation, and the technique is generally used to repair

images with missing areas. Given an image and a (corrupted)region Ω inside it, the goal of an image inpainting method is tomodify the pixel values inside Ω, so that this inpainted regiondoes not stand out with respect to its neighboring regions(surroundings). The goal of inpainting is either to restoredamaged portions or to remove unwanted elements present inan input image. The region Ω is provided by the user, with abinary mask (where the white/black pixels represent thedamaged/undamaged part of the image, respectively, orsometimes the other way around). In this section, we shalllearn how to apply a few inpainting techniques to restore thedamaged parts of an input image, first using a few variationalmethods with the library opencv-python and then using amachine learning based method using the scikit-learn library.
Inpainting with opencv-pythonThere are several algorithms out there for digital imageinpainting, but OpenCV natively provides implementations fora few of them, namely:

• INPAINT_TELEA: This algorithm uses Fast Marching
Method (FMM) for inpainting the corrupted region in animage. The algorithm starts from the boundary of theregion to be inpainted and then proceeds gradually insidethe region. It first fills everything in the boundary. A pixel(to be inpainted) is replaced by the (normalized) weightedsum of all known pixels in a small neighborhood around it(nearby pixels in the neighborhood/near the normal of theboundary/on the boundary contours get more weightage).After the pixel gets inpainted, it goes to the next andnearest pixel to be inpainted, by using the FMM (bytreating the region to be inpainted as level sets).

• INPAINT_NS: This algorithm is based on fluid dynamicsand is called Navier-Stokes based inpainting. It is aheuristic-based algorithm, with couple of constraints:o Preserve gradients

o Continue to propagate color information in smoothregions
Partial differential equations (PDE) are used to updateimage intensities inside the region with the constraints. Ittravels from known to unknown regions along the edgesfirst (to maintain the continuity of the edges). It propagatesimage smoothness information (estimated by theLaplacian) along the isophotes (contour line joining pixelswith same intensity), at the same time, it matches thegradients at the boundary of region to be inpainted.

• INPAINT_SHIFTMAP: This algorithm searches fordominant correspondences (transformations) of imagepatches and tries to seamlessly fill-in the area to beinpainted using these transformations.
• INPAINT_FSR: This algorithm uses Frequency Selective

Reconstruction (FSR), which is a high-quality signalextrapolation algorithm. Successively, the signal of adistorted block is extrapolated using known samples andalready reconstructed pixels as support. An essentialfeature of FSR is the fact that the calculations are carriedout in the Fourier domain, which leads to a fastimplementation. This further has two quality profiles, oneof the them needs to be chosen, depending on how fast weneed the reconstruction, they are: INPAINT_FSR_FASTand INPAINT_FSR_BEST.In this section, we shall simply use the opencv-pythonimplementations described, to inpaint an image distorted byadding a random pattern. We shall compare the quality of theinpainted outputs obtained with different algorithms using thefollowing two metrics, namely,
• PSNR: PSNR between the original image f andreconstructed image is expressed as:

Here, is for a grayscale image of type uint8and MSE is defined as:

Where, F represents the Frobenius norm of the errorimage matrix and s is size of image f (s = number ofpixels). PSNR is a representation of absolute error in dB.
• Structural Similarity Index Method (SSIM): In thisperception-based model, image degradation isapprehended as perception-change in structural-information. SSIM is defined by [9]:

Here, and respesent the mean, standarddeviation and covariance of the images, and, where the values and are used for grayscale images.Moreover, l refers to luminance (brightness), c refers tocontrast (range of the pixel intensities, distance between theintensities of the darkest and the brightest regions) and srefers to structure (the local luminance pattern), where α, βand γ are +ve constants.Let us dive into the following python implementation steps:1. Let us start by importing the required libraries. Also, notethe version of opencv-python (cv2) used.import numpy as npfrom matplotlib import pyplot as pltimport cv2print(cv2.__version__)

4.5.52. Read the input color image and the mask image as agrayscale image (with the flag cv2.IMREAD_GRAYSCALEwhich is 0).3. Create the binary mask for the region to be inpainted, bythresholding the mask image, by using a constant threshold(for example, 128).4. Create the corrupted image image_defect by masking thesame region in each color channel, as done in the next codeblock:image_orig = cv2.imread('images/house.jpg') mask = cv2.imread('images/random_mask.jpg', 0)thres = 128mask[mask > thres] = 255mask[mask <= thres] = 0image_defect = image_orig.copy()for layer in range(image_defect.shape[-1]): image_defect[np.where(mask)] = 05. Let us run the preceding algorithms one after another onthe corrupted image and store the recovered images in apython dictionary images_rec, indexed by the algorithmnames.6. The algorithms INPAINT_TELEA and INPAINT_NS canbe accessed by the function cv2.inpaint(), whereas, the
INPAINT_SHIFTMAP and INPAINT_FSR can beaccessed by the function cv2.xphoto.inpaint().7. The function cv2.inpaint() accepts the followingarguments:a. src: The source image with corrupted/missing regions).b. inpaintMask: A binary mask indicating pixels to beinpainted.c. inpaintRadius: Specifies the radius of the circularneighborhood around a pixel used for inpainting. A valueof 3 is commonly used, especially when the regions to beinpainted are narrow or thin, as smaller radii tend to

produce sharper and less blurry results in such cases.d. flags: INPAINT_NS (Navier-Stokes based method) or
INPAINT_TELEA (fast marching based method).8. The function cv2.xphoto.inpaint() expects an additionalargument dst to store the inpainted output image. Thesealgorithms expect the mask to have black pixelscorresponding to the region Ω to be inpainted. That is whywe need to invert the mask since the original mask haswhite pixels corresponding to Ω.images_rec = {}for algo_name, algo_id in zip(['TELEA', 'NS'], \ [cv2.INPAINT_TELEA, cv2.INPAINT_NS]): images_rec[algo_name] = cv2.inpaint(image_defect, mask, 3, \ algo_id)inverse_mask = (255 - mask) image_rec = np.zeros_like(image_defect, dtype=np.uint8)for algo_name,algo_id in zip(['SHIFTMAP', 'FSR_FAST', 'FSR_BEST'], \ [cv2.xphoto.INPAINT_SHIFTMAP, cv2.xphoto.INPAINT_FSR_FAST, \ cv2.xphoto.INPAINT_FSR_BEST]): cv2.xphoto.inpaint(src=image_defect, mask=inverse_mask, \ dst=image_rec, algorithmType=algo_id) images_rec[algo_name] = image_rec.copy()9. Use the functions peak_signal_noise_ratio() and

structural_similarity() from the library skimage.metricsto compute the PSNR and SSIM between the original andrecovered images, for different algorithms.10. Moreover, you can compute the time taken by differentalgorithms to produce the inpainted output (for example,use the time module).11. Display the output inpainted image by running analgorithm, and plot the quality of inpainting reported byPSNR and SSIM values, using the
show_recovered_image() function from the followingcode snippet.12. Be sure to convert the image color space from BGR to
RGB before displaying it with matplotlib (use

cv2.cvtColor() function with cv2.COLOR_BGR2RGBargument), since the image is read with cv2.imread(),which reads the image in BGR color space by default.from skimage.metrics import peak_signal_noise_ratio as psnr, \ structural_similarity as ssimdef show_recovered_image(im_orig, im_rec, algo_name): plt.imshow(im_rec), plt.axis('off') plt.title('{} \n PSNR: {:.02f}, SSIM: {:.02f}'.format(\ algo_name, psnr(im_orig, im_rec), ssim(im_orig, im_rec, \ data_range=im_rec.max()-im_rec.min(), multichannel=True)), \ size=20)Let us plot the original input image, binary mask, degradedimage and all the recovered images obtained by runningdifferent inpainting algorithms (use the function
show_recovered_image() defined previously). You shouldobtain a figure as shown in Figure 2.12. Notice that theinpainting algorithm FSR_FAST produces the best qualityoutput in terms of PSNR and SSIM metrics:

Figure 2.12: Image inpainting with opencv-python

Inpainting with scikit-learn k-NN
regression modelIn this section, we shall formulate the image inpaintingproblem as a supervised machine learning regression problem.More specifically, we shall try to learn an approximatefunction for the image function , by:

• Training a supervised machine learning model thatlearns the function (by updating its parameters), byminimizing a loss function , for ,that is, for the region where the image is not corrupted (). For example, for a model like linear regression, we canuse the Sum Squared Error (SSE), also called the lossfunction defined by or equivalently the MSEobtained by dividing SSE by image size.
• Using the model we just trained (and the function wejust learned), to predict the pixel values with, for the region to inpaint (that is,where the image pixels are corrupted).Here, we shall use the k-Nearest Neighbor (kNN) regressionmodel (KNeighborsRegressor from scikit-learn library’s

neighbors module) to learn the function . We can use anyother regression model too (for example, try the ordinary leastsquare linear regression with MSE loss function and theensemble model random forest regression and compare theresults).First, let us follow the next steps to create a masked image,masking the corrupted pixels that need to be inpainted:
• First read the original input and the mask image as

np.uint8 arrays, using the following code snippet.
• Note that here we are assuming that the input is agrayscale image and thus reading both the input and maskimages with cv2.imread with mode flag as 0 (that is,

cv2.IMREAD_GRAYSCALE). We can extend theimplementation to inpaint an RGB color input image simply

by learning a model for each color channel (see exerciseproblem).
• Threshold the mask image (with a constant threshold 0.5,for example) to obtain a binary mask (here, the inpaintingregion is defined by the white pixels in the mask),convert it to boolean array. Assuming that the white pixelsin mask define the corrupted region, let us now create thedegraded image (image_defect) by turning thecorresponding pixels off:image_orig = cv2.imread('images/lena.jpg', 0) mask = cv2.imread('images/mask.jpg', 0)mask = mask / mask.max()thres = 0.5mask[mask > thres] = 1mask[mask <= thres] = 0mask = mask.astype('bool')image_defect = image_orig.copy()for layer in range(image_defect.shape[-1]): image_defect[mask] = 0Next, instantiate a kNN regression model with scikit-learn, fitit on the known pixels and predict the unknown (corrupted)pixels, following the next steps:1. First, we need to preprocess the image, so that it issuitable to be used by the kNN regression model (need toseparate out the feature and the target variables). The onlyfeature variables (that we shall use here to predict a targetpixel value) are the coordinates of the pixel. Hence,let us generate all possible image coordinates in the gridthat a pixel in the image can possibly have. This is exactlydone by np.meshgrid() function, as shown in the nextcode snippet. Extract the pixel values for all pixels in thegrid, note that the coordinates are swapped, can yousay why?2. Next, let us divide the image into two parts, namelytraining and test dataset. The training dataset (x_train,

y_train, d_train) will correspond to the uncorruptedregion in the image (from where the model will learn the

association between the pixel value and the coordinates).In contrast, the test dataset (x_test, y_test, d_test) willcorrespond to the corrupted region (on these coordinatesthe trained model will predict pixel values). Here is wherethe Boolean mask will come in handy. Use the invertedmask and the mask, respectively, to obtain the training andthe test dataset.3. Instantiate a KNeighborsRegressor class (with defaultparameters) and train the model (with the method fit()) onthe training dataset.4. The kNN regression model uses the local interpolation ofthe target variable values from the kNN pixels from thetraining dataset, to predict the target variable value for atest datapoint.5. The number of neighbors k to be used for prediction(n_neighbors argument in the KNeighborsRegressorclass constructor) defaults to 5. Try changing thishyperparameter (for example, to 3,7,9) and observe the(overfitting / underfitting) impact on the inpaintingresult.6. Finally, predict the corrupted pixels corresponding to thetest dataset (with the method predict()). Use the binary
mask array again to create an output image (image_out)with the known and the predicted pixels, this is the finalinpainted image:from sklearn.neighbors import KNeighborsRegressorx, y = np.meshgrid(range(image_orig.shape[1]), \ range(image_orig.shape[0]))d = image_orig[y, x]x_train, y_train, d_train = x[~mask], y[~mask], d[~mask]x_test, y_test, d_test = x[mask], y[mask], d[mask]image_out = np.zeros_like(image_orig)d_pred = np.zeros_like(d_test)model = KNeighborsRegressor() model.fit(np.vstack((x_train, y_train)).T, d_train)d_pred = model.predict(np.vstack((x_test, y_test)).T)image_out[~mask] = image_orig[~mask]

image_out[mask] = d_predNow, plot the original, corrupted, and the inpainted(recovered) image side by side. You should obtain a plot likethe following figure. Note that the algorithm could successfullyinpaint the damaged image.

Figure 2.13: Inpainting a corrupted Lena image with scikit-learn kNN regressor

Image denoising with anisotropic
diffusion with opencv-pythonIn this section, we shall learn how to use the anisotropic (heat)diffusion equation to denoise an image, preserving the edgesusing an extended image processing function from the library
opencv-python. Isotropic diffusion is identical to applying aGaussian filter, which blurs an image without preserving theedges in the image, as we have already seen. It refers to auniform diffusion process where the smoothing is appliedequally in all directions. This approach treats all regions of theimage the same, typically leading to the even blurring of bothedges and homogeneous regions.
Anisotropic diffusion, on the other hand, is direction-dependent and allows for selective smoothing. It preservesedge details by reducing the diffusion (or smoothing) acrossedges while allowing diffusion within homogeneous regions.This approach helps in enhancing important features likeedges in images while reducing noise. The features of

anisotropic diffusion are listed as follows:
• It can be used to smooth (denoise) an image by keeping theedges mostly unchanged (even sharpened).
• It is anisotropic in the sense that the diffusion happens indifferent neighboring direction at different rates(depending on the presence of an edge or not). This isimplemented by the PDE shown in Figure 2.14, where the

conductivity term uses an edge stopping function (kernel) to stop diffusion along sharp edges in the input.
• The anisotropic diffusion process is an iterative process,the Gaussian kernel or an inverse-square kernel function used as a conductivity function (c), according to

Perona-Malik equation 1 or equation 2 [6, 7],respectively, as shown in the following figure:

Figure 2.14: Anisotropic diffusion equation
Source: http://image.diku.dk/imagecanon/material/PeronaMalik1990.pdfLet us start the implementation by importing the requiredlibraries, modules and functions, using the following codesnippet:

http://image.diku.dk/imagecanon/material/PeronaMalik1990.pdf

import numpy as npimport matplotlib.pylab as pltimport cv2print(cv2.__version__)from skimage.io import imreadfrom skimage.util import random_noise
4.5.5Follow the next steps for implementation with opencv-
python:1. First, read the input RGB color image from disk and addrandom Gaussian noise (with a variance of 0.05) to it, using

scikit-image library’s util.random_noise() function, toobtain the noisy degraded image.2. Apply the Gaussian blur (also can be thought of as
isotropic diffusion) to the image to remove noise, using
cv2.GaussianBlur() function, with the input noisy imageand a tuple representing the blur kernel size (11×11) asfirst two input arguments. Set the third argument to thefunction to 0 (OpenCV is instructed to automaticallycompute the variance of the Gaussian blur based on thekernel size).3. Now let us compare the denoised output with oneobtained using anisotropic diffusion performed with thefunction cv2.ximgproc.anisotropicDiffusion().4. The function cv2.ximgproc.anisotropicDiffusion()applies Perona-Malik anisotropic diffusion to the noisyinput image. The function accepts the followingparameters:a. src: The 3-channel input (in our case, it will be thenoisy RGB color image noisy).b. alpha: Time delta forwarded per iteration (typically hasvalues in [0,1]).c. K: Sensitivity to edges in the image.d. niters: Number of iterations to run.5. Use aplha=0.05 and K=30 for two different numbers of

iterations, namely, 5 and 10 (to see how the convergencetakes place at successive iterations). Play with the valuesof the parameters, plot the output denoised images, andobserve the impact on the quality of the denoised outputimage (in terms of edges preserved, blurring, PSNR, SSIM)as follows:im = imread('images/building.jpeg')noisy = (255*random_noise(im, var=0.05)).astype(np.uint8)plt.figure(figsize=(12,13))plt.subplots_adjust(0,0,1,0.95,0.05,0.05)plt.gray()plt.subplot(221), plt.imshow(noisy), plt.axis('off')plt.title('Noisy Image', size=20)output_blur = cv2.GaussianBlur(noisy, (11,11), 0)plt.subplot(222)show_recovered_image(im, output_blur, \ 'gaussian blur: kernel=(11,11)')niters = [5, 10]for i in range(2): plt.subplot(2,2,i+3) output_aniso = cv2.ximgproc.anisotropicDiffusion(noisy, \ alpha=0.05, K=30, niters=niters[i]) show_recovered_image(im, output_aniso, \ 'anisotropic diffusion: #iter=' + str(niters[i]))plt.show()If you run the preceding code snippet, you should obtain afigure like the next one:

Figure 2.15: Denoising image with anisotropic diffusion with opencv-pythonAs can be seen from the preceding figure, the denoised imageswith anisotropic diffusion preserve edges better.
Sketch with anisotropic diffusionAnisotropic diffusion can produce sketches from an image bysubtracting the diffused image from the original image (withdifferent iterations and varying parameter values we can getedges at different scale-space). The following code provides asimple implementation. Let us understand the implementationstep-by-step:

1. This time we shall use the anisotropic diffusionimplementation
medpy.filter.smoothing.anisotropic_diffusion() fromthe library medpy (install the library first, if you have notalready done so).2. Note that the input image used is a 4-channel .png image(with an additional channel for transparency). So, we needto first convert it to a 3 channel image using the function
rgba2rgb() from scikit-image’s color module and thenconvert it to a grayscale image (expected input for thefunction anisotropic_diffusion()).3. The function edges_with_anisotropic_diffusion()computes the edges as a difference between the originaland diffused image.4. The function sketch() makes the edges more prominent(by elementwise multiplication of edges image with originalimage) to produce the output sketch.Refer to the following Python code snippet:import warningswarnings.filterwarnings('ignore')

! pip install medpyfrom medpy.filter.smoothing import anisotropic_diffusionfrom skimage.io import imreadfrom skimage.color import rgb2gray, rgba2rgbfrom skimage.filters import gaussiandef sketch(img, edges): output = np.multiply(img, edges) output[output > 1] = 1 output[edges == 1] = 1 return outputdef edges_with_anisotropic_diffusion(img, niter=100, \ kappa=50, gamma=0.2): img = gaussian(img, sigma=0.5) output = img - anisotropic_diffusion(img, niter=niter,\ kappa=kappa, gamma=gamma, voxelspacing=None, option=1) output[output > 0] = 1 output[output < 0] = 0 return outputim = rgb2gray(rgba2rgb(imread('images/umbc.png')))

output_aniso = sketch(im, edges_with_anisotropic_diffusion(im))Plot the input and output images side by side, and you shouldobtain a figure like the following one:

Figure 2.16: Sketching with anisotropic diffusion

Simple deep image painting with kerasIn this section, we shall use the same idea that we used inimage inpainting with supervised machine learning, but thistime using deep neural network with keras. We shallreconstruct RGB values for an entire image as a function of thepixel coordinates only, and approximate the vector-valued function using a function which willbe learned from the image data with the deep neural net,using the squared-loss function, given by . Thereconstruction will be done by prediction with this model andwe shall call this process as painting the image, since it willreproduce a smooth approximation of the image, as we shallsee.Let us start by importing the libraries and modules required:import tensorflow as tffrom tensorflow.keras.models import Sequentialfrom tensorflow.keras.layers import Densefrom tensorflow.keras import backend as Kfrom keras.utils.vis_utils import plot_modelfrom PIL import Imageimport numpy as npimport matplotlib.pylab as plt

Now, let us go through the following step-by-stepimplementation:1. The function get_data() in the following code snippetextracts the feature variables (pixel coordinates) andtarget variable (RGB pixel values), to get the dataready for training.2. The function accepts a PIL image as input, and the imagedata can be extracted with the method Image.getdata(),as shown in the following code snippet.3. Extract the r, g, b values.def get_data(img): width, height = img.size pixels = img.getdata() x_data, y_data = [],[] for y in range(height): for x in range(width): idx = x + y * width r, g, b = pixels[idx] x_data.append([x / width, y / height]) y_data.append([r, g, b]) x_data = np.array(x_data) y_data = np.array(y_data) return x_data, y_dataim = Image.open("images/me.jpg")x, y = get_data(im)4. The function create_model() in the following codesnippet uses keras Sequential API to define the deepneural net model.5. The network consists of a few fully connected (Dense)layers, with nonlinear Relu activation.6. The input of the model is of dimension (input_shape) 2(namely, the coordinates of a pixel).7. The output of the model has dimension 3 (Dense(3))(namely, the pixel values).8. The loss function used is MSE (mean_squared_error),with Adam optimizer, which is defined by the

model.compile() method.9. The function generate_image() accepts the trainedmodel as an input argument and reconstructs the sameimage (by predicting the pixel values with the model) ofgiven width and height and the pixel coordinates x. Thisnested for loop populates the output image pixel-by-pixelusing RGB values predicted by the model, reconstructing afull-color image from the model’s output.o idx = x + y * width converts the 2D coordinates (x, y)into a flat index idx, assuming y_pred is a flattenedlist/array of pixel RGB values.o r, g, b = y_pred[idx] retrieves the predicted RGBvalues for the pixel at position (x, y).Now, refer to the next code snippet:def create_model(): model = Sequential() model.add(Dense(2, activation='relu', input_shape=(2,))) model.add(Dense(20, activation='relu')) model.add(Dense(20, activation='relu')) model.add(Dense(20, activation='relu')) model.add(Dense(20, activation='relu')) model.add(Dense(20, activation='relu')) model.add(Dense(20, activation='relu')) model.add(Dense(20, activation='relu')) model.add(Dense(3)) model.compile(loss='mean_squared_error', optimizer='adam') return modeldef generate_image(model, x, width, height): img = Image.new("RGB", [width, height]) pixels = img.load() y_pred = model.predict(x) for y in range(height): for x in range(width): idx = x + y * width r, g, b = y_pred[idx] pixels[x, y] = (int(r), int(g), int(b)) return img10. Create the model and plot the model architecture usingthe plot_model() function from keras.utils.vis_utils

module, as shown in the following figure:m = create_model()plot_model(m, to_file='images/model_arch.png', show_shapes=True, \ show_layer_names=True)Refer to the following figure:

Figure 2.17: Keras model architecture

11. Train the model on the dataset created (using the fit()method), for 10 epochs and with batch_size 5.12. Use the model to predict the pixel RGB values for thegiven coordinates. It returns the reconstructed (painted)image.13. Plot the original input and the reconstructed outputimage as follows:m.fit(x, y, batch_size=5, epochs=10, verbose=1, \ validation_data=(x, y))out = generate_image(m, x, im.width, im.height)plt.figure(figsize=(10,10))plt.subplot(121), plt.imshow(im), plt.axis('off') plt.title('Original', size=20)plt.subplot(122), plt.imshow(out), plt.axis('off')plt.title('Neural Net Painted', size=20)plt.show()
Epoch 1/10
61440/61440 [==============================] - 125s
2ms/step - loss: # 1449.2676 - val_loss: 1249.4037
Epoch 2/10
61440/61440 [==============================] - 120s
2ms/step - loss: # 1041.2477 - val_loss: 647.8983

Epoch 3/10
61440/61440 [==============================] - 134s
2ms/step - loss: # 539.8658 - val_loss: 321.4036
Epoch 4/10
61440/61440 [==============================] - 145s
2ms/step - loss: # 361.0727 - val_loss: 332.0901
Epoch 5/10
61440/61440 [==============================] - 120s
2ms/step - loss: # 319.6828 - val_loss: 258.9804
Epoch 6/10
61440/61440 [==============================] - 121s
2ms/step - loss: # 299.9219 - val_loss: 260.5214
Epoch 7/10
61440/61440 [==============================] - 140s
2ms/step - loss: # 287.6617 - val_loss: 237.3738
Epoch 8/10
61440/61440 [==============================] - 129s
2ms/step - loss: # 275.5465 - val_loss: 272.4277
Epoch 9/10
61440/61440 [==============================] - 142s
2ms/step - loss: # 269.4614 - val_loss: 253.6740
Epoch 10/10
61440/61440 [==============================] - 129s
2ms/step - loss: # 258.9236 - val_loss: 259.6959If you run the preceding code snippet, you should obtain afigure like the next one:

Figure 2.18: Neural painting with Keras

Semantic image inpainting with DCGAN
DCGAN introduces certain architectural constraints inimplementing an ordinary GAN and yields better results withstronger representation learning. It eliminates the fullyconnected layers (and also the global average pooling,

which hurts the convergence speed), turning it into an all-
convolutional net, replaces deterministic spatial poolingfunctions (such as max-pooling) with strided convolutions,allowing the discriminator and the generator to learn theirown spatial downsampling and spatial upsampling,respectively.Here are the architecture guidelines for stable DCGAN [4]:

• Use strided convolutions and fractional-strided
convolutions instead of the pooling layers, for thediscriminator and the generator, respectively.

• Use batch-normalization in generator and discriminator(except for the layers generator output and thediscriminator input).
• For deeper architectures, get rid of fully connected hiddenlayers.
• For all layers in the generator, use the ReLU activation(except for the output, for which, use Tanh activation).
• For all layers in the discriminator, use the LeakyReLUactivation.The following figure shows the DCGAN generator architecture:

Figure 2.19: DCGAN generator architecture
Source: https://arxiv.org/pdf/1511.06434.pdfIn this section, we shall learn how to use DCGAN for imagecompletion, given a partially corrupted image. Let usunderstand how we can implement it with semantic image

https://arxiv.org/pdf/1511.06434.pdf

inpainting using DCGAN:
• Semantic image inpainting is a challenging task wherelarge missing regions have to be filled based on theavailable visual data.
• Unlike traditional inpainting (which relies on low-levelfeatures like edges or textures), semantic inpainting uses

high-level understanding of objects and scenes toplausibly reconstruct what is missing. For example:o If part of a face is missing, a semantic inpainting modelcan infer and generate eyes, nose, or mouth using priorknowledge of how faces typically look.o It doesn’t just fill in similar colors or textures — it fills inthe correct object parts, based on learned context.
• Given a trained generative model, the closest encoding ofthe corrupted image is searched in the latent imagemanifold using the context and prior losses. Thisencoding is then passed through the generative model toinfer the missing content.
• The inference is possible irrespective of how the missingcontent is structured.
• Back-propagation to the input data is employed to find theencoding close to the provided corrupted image.
• To fill large missing regions in images, our method forimage inpainting utilizes the generator G and the

discriminator D, both of which are trained withuncorrupted data. The encoding closest to the corruptedimage is recovered while being constrained to themanifold, as shown in the following figure. After isobtained, the missing content can be generated by usingthe trained generator [5].Refer to the following figure:

Figure 2.20: Semantic image inpainting with DCGAN
Source: https://arxiv.org/pdf/1607.07539.pdf

• The process of finding can be formulated as an
optimization problem. Let be the corrupted image and be the binary mask with a size equal to the image toindicate the missing parts. The closest encoding isdefined as:

• The context loss constrains the generated image z giventhe input corrupted image and the hole mask , whereasthe prior loss penalizes unrealistic images.
• Weighted context loss: To fill large missing regions, weneed to take advantage of the remaining available data.The context loss is designed to capture such information. Aconvenient choice for the context loss is simply the normbetween the generated sample and the uncorruptedportion of the input image , but such a loss treats eachpixel equally, which is not desired.
• A context loss is to be defined with the hypothesis that theimportance of an uncorrupted pixel is positively correlatedwith the number of corrupted pixels surrounding it. A pixelthat is very far away from any holes plays very little role inthe inpainting process. This intuition is captured with the

https://arxiv.org/pdf/1607.07539.pdf

importance weighting term, defined as follows:

• After generating , the inpainting result can be obtainedby overlaying the uncorrupted pixels from the input.However, the predicted pixels may not exactly preserve thesame intensities of the surrounding pixels, which iscorrected using Poisson blending (by keeping thegradients of to preserve image details while shiftingthe color to match the color in the input image). The finalsolution, the recovered image can be obtained by:

In this section, we shall use a pretrained DCGAN model with
tensorflow (v1), trained on celebrity faces (celebA dataset).Let us dive into python implementation, follow the next steps:1. Let us start by importing the required libraries, with thefollowing code snippet:import tensorflow.compat.v1 as tf

import numpy as npimport matplotlib.pylab as pltfrom glob import globfrom skimage.io import imreadfrom scipy.signal import convolve2d2. Read the input face images and cast to uint8.3. Generate square masks at the center of the images usingthe function gen_mask(). The default input image size is64×64 and the scale is 0.25, which determines the size ofthe mask.4. Corrupt the input images by removing the central squarepart from the image using the masks created, by usinglogical AND (&) operation as:def gen_mask(img_sz = 64, scale = 0.25): image_shape = [img_sz, img_sz] mask = np.ones(image_shape) #assert(scale <= 0.5) mask = np.ones(image_shape) l = int(img_sz*scale) u = int(img_sz*(1.0-scale)) mask[l:u, l:u] = 0.0 return maskimgfilenames = sorted(glob('images/faces' + '/*.png'))images = np.array([imread(f, pilmode='RGB').astype('float') \ for f in imgfilenames]).astype(np.uint8)masked_images = images.copy()mask = gen_mask()mask = (255*mask).astype(np.uint8)for i in range(len(images)): masked_images[i,...] = masked_images[i,...] & \ np.expand_dims(mask,2)masked_images = masked_images.astype(np.float64)mask = (mask / 255).astype(np.float64)5. Load the pretrained graph from ProtoBuf file with thefunction loadpb(). It accepts a couple of arguments:
filename (path to ProtoBuf graph definition) and
model_name (prefix to assign to loaded graph nodenames). The function returns graph and graph_def, as perTensorFlow definitions.

6. Use the function tf.get_tensor_by_name() to access thetensors corresponding to input, output and loss in the
graph object as:def loadpb(filename, model_name='dcgan'): with tf.io.gfile.GFile(filename, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) with tf.Graph().as_default() as graph: tf.import_graph_def(graph_def, input_map=None, return_elements=None, op_dict=None, producer_op_list=None, name=model_name) return graph, graph_defmodel_name = 'dcgan'gen_input, gen_output, gen_loss = 'z:0', 'Tanh:0', 'Mean_2:0'graph, graph_def = loadpb('models/dcgan-100.pb', model_name)gi = graph.get_tensor_by_name(model_name+'/' + gen_input)go = graph.get_tensor_by_name(model_name+'/' + gen_output)gl = graph.get_tensor_by_name(model_name+'/' + gen_loss)image_shape = go.shape[1:].as_list()7. The function create_weighted_mask() computes theimportance weight mask, as defined.8. The function create_3_channel_mask() creates a 3channel mask by repeating the single channel and thefunction binarize_mask computes binary mask given anon-binary one.9. The function build_restore_graph() creates theplaceholders for masks and images and builds thecomputation graph for the context/perceptual loss andgradients. Note that since eager execution is not enabled in
tensorflow v1, the execution will only happen when a
session is created.10. The function preprocess() transforms the images andthe masks prior to passing them to the model in theappropriate format.11. The function postprocess() extracts the inpainted image

from the output tensor after the execution happens as:def create_weighted_mask(mask, nsize=7): ker = np.ones((nsize,nsize), dtype=np.float32) ker = ker/np.sum(ker) wmask = mask * convolve2d(1-mask, ker, mode='same', \ boundary='symm') return wmaskdef binarize_mask(mask, dtype=np.float32): assert(np.dtype(dtype) == np.float32 or \ np.dtype(dtype) == np.uint8) bmask = np.array(mask, dtype=np.float32) bmask[bmask>0] = 1.0 bmask[bmask<=0] = 0 if dtype == np.uint8: bmask = np.array(bmask*255, dtype=np.uint8) return bmaskdef create_3_channel_mask(mask): return np.repeat(mask[:,:,np.newaxis], 3, axis=2)def build_restore_graph(graph): image_shape = go.shape[1:].as_list() with graph.as_default(): masks = tf.placeholder(tf.float32, [None] + image_shape, \ name='mask') images = tf.placeholder(tf.float32, [None] + image_shape, \ name='images') x = tf.abs(tf.multiply(masks, go) - tf.multiply(masks, images)) context_loss = tf.reduce_sum(tf.reshape(x, \ (tf.shape(x)[0], -1)), 1) perceptual_loss = gl inpaint_loss = context_loss + l*perceptual_loss inpaint_grad = tf.gradients(inpaint_loss, gi) return inpaint_loss, inpaint_grad, masks, imagesdef preprocess(images, imask, useWeightedMask=True, \ batch_size=64, nsize=15): images = images / 127.5-1 mask = create_3_channel_mask(create_weighted_mask(imask, nsize)) bin_mask = create_3_channel_mask(binarize_mask(imask, \ dtype='uint8')) masks_data = np.repeat(mask[np.newaxis, :, :, :], \ batch_size, axis=0) num_images = images.shape[0] images_data = np.repeat(images[np.newaxis, 0, :, :, :], \ batch_size, axis=0)

 ncpy = min(num_images, batch_size) images_data[:ncpy, :, :, :] = images[:ncpy, :, :, :].copy() return masks_data, images_data def postprocess(g_out, images_data, masks_data): images_out = (np.array(g_out) + 1.0) / 2.0 images_in = (np.array(images_data) + 1.0) / 2.0 images_out = np.multiply(images_out, 1-masks_data) + \ np.multiply(images_in, masks_data) return images_out12. The function backprop_to_input() is the key functionthat performs the actual execution (sess.run()) on thesession sess passed as an argument.13. The function accepts the tensorflow placeholders(images, masks) and the data (images_data,
masks_data) for the corrupted input images and masks.14. The input corrupted images and masks need to be passedto the feed_dict for the placeholders.15. The function accepts total batch_size (initialized to 64)number of random input noise vectors z, each of dimension
z_dim (100). It iteratively performs back-propagationthrough the latent manifold (runs for niter =200 bydefault) and returns the reconstructed output image
imout.16. The function restore_image() combines all using thefunctions defined: it first preprocesses the inputimage/mask batch, then builds the tf graph forcomputation, then performs back-prop to obtain the outputbatch, and finally postprocesses the output to transform itto inpainted image batch, as shown in Figure 2.21:def backprop_to_input(sess, inpaint_loss, inpaint_grad, masks, images, masks_data, images_data, z, niter=200, verbose=True): momentum, lr = 0.9, 0.01 v = 0 for i in range(niter): out_vars = [inpaint_loss, inpaint_grad, go] in_dict = {masks: masks_data, gi: z, images: images_data} loss, grad, imout = sess.run(out_vars, feed_dict=in_dict)

 v_prev = np.copy(v) v = momentum*v - lr*grad[0] z += (-momentum * v_prev + (1 + momentum) * v) z = np.clip(z, -1, 1) if verbose:
 if i % 10 == 0: print('Iteration {}: {}'.format(i, np.mean(loss))) return imoutdef restore_image(images, masks, graph, sess): masks_data, images_data = preprocess(images, masks) inpaint_loss, inpaint_grad, masks, images = \ build_restore_graph(graph) imout = backprop_to_input(sess, inpaint_loss, inpaint_grad, \ masks, images, masks_data, images_data, z) return postprocess(imout, images_data, masks_data), \ images_data, imoutbatch_size, z_dim = 64, 100z = np.random.randn(batch_size, z_dim)sess = tf.Session(graph=graph)inpaint_out, images_data, imout = restore_image(masked_images, \ mask, graph, sess)
Iteration 0: 221.28106689453125
Iteration 10: 137.1205291748047
Iteration 20: 120.86093139648438
Iteration 30: 120.55803680419922
Iteration 40: 118.15397644042969
Iteration 50: 111.87590026855469
Iteration 60: 111.30235290527344
Iteration 70: 109.60200500488281
Iteration 80: 112.72096252441406
Iteration 90: 108.38629150390625
Iteration 100: 106.88809204101562
Iteration 110: 106.95480346679688
Iteration 120: 106.71363830566406
Iteration 130: 105.97818756103516
Iteration 140: 103.75382995605469
Iteration 150: 101.30975341796875
Iteration 160: 104.94699096679688
Iteration 170: 101.54997253417969
Iteration 180: 107.21031951904297
Iteration 190: 103.7147445678711As can be seen from the preceding output, the loss has adecreasing trend with iterations, which means we will likely

find better reconstructions for the corrupted images. Plot theoriginal, masked (corrupted) input and the inpainted outputimages with the DCGAN. You should obtain a figure as shown:

Figure 2.21: Image inpainting with DCGAN

ConclusionIn this chapter, we learnt a few more advanced techniques forimage restoration, denoising, deblurring and image inpainting.Although we learned how to use a few variational methodimplementations (for example, diffusion) and a machinelearning model (kNN) for image restoration, the majority ofthe methods we learnt to implement were based on very recentdeep learning models, such as different flavors ofautoencoders (sparse, variational) and GANs (DCGAN, CGAN).By now, you should be able to solve image restorationproblems using deep learning pre-trained models and alsowrite python code train models from scratch, using both thelibraries pytorch and tensoflow/keras. In the next chapter,

we shall start with a new and a very important topic in imageprocessing, namely image segmentation.
Note: Throughout the chapter, we used the term parameters in a couple of
contexts:

• The first one is in the programming context: parameters (arguments)
to a Python function.

• The second one is in the AI/ML context: learnable parameters (for
example, weights and biases) for a machine learning model.

Key termsInpainting, anisotropic diffusion, DeblurGAN, DCGAN,conditional GAN, stacked autoencoder, sparse autoencoder,kNN regression, Navier-Stokes, Fast Marching
Questions1. A very simple Blur function: Implement a python functionget_custom_blurkernel() to simulate a custom motionmotion-blur kernel. Implement another functiongen_blurred_image() that accepts an input and an outputimage file and your custom blur function, reads the inputimage file, applies the blur kernel (by invoking the blurfunction passed as argument) to the input image and savesthe output in the output image file. Plot the input image,the generated kernel and the blurred output image.a. For example, if you want to generate your blur-kernelwith a cubic spline (for example, blurred input imagesfor DeblurGAN were created using it), you just need tocall the function gen_blurred_image() with the functionget_custom_blurkernel() which returns the desiredkernel:gen_blurred_image(path_to_input_img, path_to_save_blurred_img, \ get_custom_blurkernel)

And the output will look like the one shown in thefollowing figure:

Figure 2.22: Blurring an image with custom blur kernelb. Now, implement the motion blur kernel generationalgorithm from the paper
https://arxiv.org/pdf/1711.07064.pdf. Blur an imagewith the function you implemented and apply
DeblurGAN to obtain the sharpened version of theimage.2. In this chapter, we used available pre-trained weights

GCANet and DeblurGAN deep learning models. Now letus train the models on custom annotated images (you willneed hazy/blurred and clean version of every image in thetraining dataset) to be used for dehazing and deblurring,respectively. Note that you can train a deep neural netmodel:a. Partially (using transfer learning), by training theweights of last few layers only (preferably when youhave smaller number of annotated training images).b. Fully (from scratch), when you have a whole lot ofannotated images.In any case, or training a very deep learning model, youwill need a GPU for faster training (use Google Colab).3. Use opencv-python’s bm3d implementation(cv2.xphoto.bm3dDenoising()) for denoising (note that the

https://arxiv.org/pdf/1711.07064.pdf

algorithm is patented, you need to build OpenCV with anappropriate flag). You should obtain a figure like thefollowing one:

Figure 2.23: Image denoising with different filtering algorithms

4. Use kNN regressor to inpaint the following RGB colorimage with the given binary mask. You should obtain afigure like the following one:

Figure 2.24: Image inpainting with knn regressor

References1. https://arxiv.org/pdf/1606.08921.pdf

https://arxiv.org/pdf/1606.08921.pdf

2. https://arxiv.org/pdf/1711.07064.pdf3. https://arxiv.org/pdf/1811.08747.pdf4. https://arxiv.org/pdf/1511.06434.pdf5. https://arxiv.org/pdf/1607.07539.pdf6.
https://authors.library.caltech.edu/6498/1/PERieeetpa
mi90.pdf7. https://aip.scitation.org/doi/pdf/10.1063/1.48875638. https://github.com/cddlyf/GCANet9. https://github.com/aizvorski/video-
quality/blob/d16674a14c66d9014ac82fcb7925dbc86e
568d7e/ssim.py10. https://www.youtube.com/watch?v=XOcCXvksbTI

Join our Discord space
Join our Discord workspace for latest updates, offers, tech
happenings around the world, new releases, and sessions with
the authors:
https://discord.bpbonline.com

https://arxiv.org/pdf/1711.07064.pdf
https://arxiv.org/pdf/1811.08747.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1607.07539.pdf
https://authors.library.caltech.edu/6498/1/PERieeetpami90.pdf
https://aip.scitation.org/doi/pdf/10.1063/1.4887563
https://github.com/cddlyf/GCANet
https://github.com/aizvorski/video-quality/blob/d16674a14c66d9014ac82fcb7925dbc86e568d7e/ssim.py
https://www.youtube.com/watch?v=XOcCXvksbTI
https://discord.bpbonline.com/

CHAPTER 3
Image Segmentation

IntroductionImage segmentation is a task in image processing andcomputer vision that involves partitioning an image intomultiple segments or regions. The goal is to group togetherpixels that share similar characteristics, such as color,intensity, texture, or other visual properties. The purpose ofimage segmentation is to simplify the representation of animage or to make it more meaningful for further analysis.Mathematically, image segmentation can be defined as theprocess of assigning a label or identifier to each pixel in animage based on certain criteria. Let us denote an input imageas I, and the goal is to partition it into N segments. The tasksegmentation can be represented as a function (x, y) thatmaps each pixel in the image to a segment label:
Here, is the total number of segments, and represents the segment label assignedto the pixel . The segmentation function is typicallydetermined by analyzing the properties of the pixels in theimage, and it aims to group pixels with similar characteristicsinto the same segment.

There are various approaches to image segmentation, rangingfrom traditional methods to deep learning techniques. Somecommon and popular methods include thresholding, region-based segmentation, edge-based segmentation and, morerecently, deep learning convolutional neural networks(CNN) for semantic segmentation.These methods vary in complexity and suitability for differenttypes of images and applications. In this chapter and the nextone, we will discuss a few different algorithms forsegmentation with aforementioned approaches and learn howto use functions from Python libraries scikit-image, opencv-
python, scipy.ndimage, SimpleITK, tensorflow, keras and
pytorch.
StructureThis chapter will explore the following topics:

• Gray level and bitplane slicing
• Binarizing an image with thresholding
• Segmentation using clustering
• MeanShift segmentation with opencv-python and scikit-learn
• Watershed segmentation with opencv-python andSimpleITK
• GrabCut segmentation with opencv-python
• RandomWalk segmentation with scikit-image
• Segmentation using SLIC/NCut algorithms with scikit-image

ObjectivesBy the end of this chapter, you will learn various imagesegmentation techniques, ranging from basic to advanced

methods. You will explore fundamental approaches such asgraylevel and bitplane slicing, thresholding, and clustering-based segmentation. Additionally, you will gain hands-onexperience with advanced techniques, including MeanShift,
watershed, GrabCut, RandomWalk, and fast marchingsegmentation, using Python libraries like opencv-python,
scikit-image, and SimpleITK. You will also learn how toapply segmentation using Simple Linear Iterative
Clustering (SLIC) and NCut algorithms. These methods willequip you with the skills needed to effectively segment imagesfor diverse image processing and computer visionapplications.
Gray level and bitplane slicingThese operations apply piecewise linear transformationfunctions to an image. Gray level slicing is a technique usedin image processing where specific intensity levels or rangesof pixel values are selected and highlighted in the outputimage while the rest of the intensity levels are either ignoredor suppressed. This process is often applied to enhancecertain features or details in an image. Bitplane slicing is atechnique used to decompose an image into its bitplanecomponents.
Gray level slicingAs described earlier, this technique is used for highlighting aspecific range of intensities in an image. There can befollowing two approaches for gray level (intensity level)slicing:

• Without background: Display in one value (e.g., white)all the values in the range of interest, and in another (e.g.,black, i.e., 0) all other intensities (as shown in thefollowing figure).

• With background: Brightens or darkens the desiredrange of intensities but leaves all other intensity levels inthe image unchanged.As shown in the Figure 3.1 (for an 8-bit grayscale image wehave L = 256), the source and target image gray levels beingdenoted by and , respectively. The point transformation (gray-level slicing) is applied to obtain the target image’s graylevel

Figure 3.1: Gray level slicingLet us implement gray level slicing and import the requiredPython libraries and functions to start with:
%matplotlib inlinefrom skimage.io import imreadfrom skimage.color import rgb2grayimport numpy as npimport matplotlib.pylab as pltimport warningswarnings.filterwarnings('ignore')The function gray_level_slice() accepts an input grayscaleimage, along with a minimum and a maximum pixel value asinput arguments. It applies intensity level slicing with/withoutbackground, as described earlier, as specified by the value of

the boolean argument with_background, to be set to
True/False, respectively, with the value defaulting to False,as shown in the following code snippet. The function returnsthe gray level sliced image and the mask created by filteringout the pixels outside the pixel range (provided as input).The function plot_images() accepts a list of images (asNumPy arrays) and the corresponding titles and uses
matplotlib.pylab to plot them with those titles:def gray_level_slice(im, min_pixel, max_pixel, with_background=False): im_sliced = im.copy() im_mask = (im >= min_pixel) & (im <= max_pixel) im_sliced[im_mask] = 255 if not with_background: im_sliced[~im_mask] = 0 return im_sliced, im_mask
def plot_images(ims, titles, suptitle = None): n = len(ims) plt.figure(figsize=(15,7)) plt.gray() plt.subplots_adjust(0,0,1,0.95,0.05,0.05) for i in range(n): plt.subplot(1,n,i+1), plt.imshow(ims[i]), plt.axis('off') plt.title(titles[i], size=20) if suptitle: plt.suptitle(suptitle, size=25) plt.show()Let us first read the image coins.png. Plot the image graylevel histogram to identify the range of grey levels within thecoins, using the next lines of code:im = rgb2gray(imread('images/coins.png'))im = (255 * im / im.max()).astype(np.uint8)
plt.figure(figsize=(5,3))plt.hist(im.flatten(), bins=100), plt.grid()plt.title('hisogram of gray levels', size=20)plt.show()If you run the following code snippet, you should obtain afigure as follows. As shown in the following figure, most pixelsare between 100 and 240:

Figure 3.2: Bimodal histogram of gray levelsNow, let us find all the coins based on pixel range(min_pixel=90 and max_pixel=255), with gray level slicing,using the function gray_level_slice() implemented earlier,and set pixels inside the coin to white.For slicing with background set with_background=Truespecifically, otherwise the rest of the pixels outside the pixelrange provided are set to black:min_pixel, max_pixel = 90, 255
to improve use median filter on background to remove light gray pixels
initialise your output imagesim_sliced_without_bg, im_mask = gray_level_slice(im, min_pixel, max_pixel)im_sliced_with_bg, im_mask = gray_level_slice(im, min_pixel, max_pixel, True)
plot_images([im, im_sliced_without_bg, im_sliced_with_bg], ['original image', 'without background', 'with background'], suptitle = 'gray level slicing with and without background')If you run the following code snippet, you should obtain afigure as follows:

Figure 3.3: Gray level slicing

Increasing contrast within ROIGray level slicing is used to emphasize specific regions in animage by isolating the pixel values corresponding to thoseregions. Let us use the aforementioned implementation on the
region of interest (ROI) of the coin’s image (e.g., the coins)and increase the contrast within the coins using the followingcode snippet.The function enhance_image(), as defined in the followingcode snippet, takes the original image along with the ROImask created (using the gray level slicing) as input andenhances the image only in the ROI. It uses a non-lineartransformation on the ROI to improve the contrast of the coins(and clamps the pixel values in [0,255] with np.clip()).Finally, it sets the background (outside mask) to another graylevel (note that having a single grey level as background maynot feel right for human vision).def enhance_image(im, im_mask, min_pixel): im_enhanced = 0 * im im_enhanced[im_mask] = np.clip(np.round((im[im_mask] - min_pixel)**1.1), \ 0, 255) im_enhanced[~im_mask] = 25 # could be any value or another transform return im_enhanced im_enhanced = enhance_image(im, im_mask, min_pixel)plot_images([im, im_sliced_without_bg, im_enhanced], \ ['original image', 'gray level slicing mask', 'image enhanced'])

If you run the aforementioned code snippet, you should obtaina figure as follows:

Figure 3.4: Increasing contrast within ROI (mask)

Bitplane slicingIn digital image processing, each pixel in an image isrepresented by a binary number (composed of bits), andbitplane slicing involves extracting the bit values at a specificbit position across all pixels. For an 8-bit image, there are 8bitplanes (from the most significant bit (MSB), to the least
significant bit (LSB)), as shown in the following figure. Eachbitplane represents a different level of image detail. Instead ofhighlighting the gray level range, we could highlight thecontribution made by each bit. This method can be used in(lossy) image compression (by prioritizing and encodinghigher-order bitplanes, which contain most of the image’svisual information, while discarding or compressing lower-order planes to reduce data size).Higher-order (the most significant) bits contain the majority ofvisually significant data. Lower-order bits contain subtledetails. Often, by isolating particular bits of the pixel values inan image, we can highlight interesting aspects of that image.The following figure shows a schematic diagram for bitplanceslicing:

Figure 3.5: Bitplane slicingThe following code snippet reads a grayscale image andperforms bitplane slicing (extracts the bits from differentbitplances using the function np.unpackbits()). As shown inthe following code, the higher bitplanes contain the mostvisual information:im = (255*rgb2gray(imread('images/pattern.jpg'))).astype(np.uint8)h, w = im.shapebitplanes = np.unpackbits([im.flatten()], axis=0)
plt.figure(figsize=(15,12))plt.subplots_adjust(0,0,1,0.95,0.05,0.05)plt.gray()plt.subplot(3,3,1), plt.imshow(im), plt.axis('off')plt.title('original', size=15)for i in range(8): plt.subplot(3,3,i+2) plt.imshow(bitplanes[i,:].reshape(h,w)), plt.axis('off') plt.title('bitplane {}'.format(8-i-1))plt.show()If you run the aforementioned code snippet, you should obtaina figure as follows:

Figure 3.6: Original image and the bitplane images

Binarizing an image with thresholdingImage thresholding is a technique used in image processing toseparate objects or regions in an image by dividing it into twoparts: foreground and background. This separation is basedon a threshold value, where pixels with intensities above thethreshold are assigned to one class (often known asforeground), and those below the threshold are assigned toanother (often called background). The result is a binaryimage where pixels are either black or white.
Thresholding with scikit-imageThe library scikit-image provides a variety of thresholding

methods. Here, you will learn how to use different globalimage thresholding algorithms to binarize an image.
Global thresholdingGlobal image thresholding involves applying a single thresholdvalue to the entire image. This threshold value is determinedbased on the characteristics of the entire image, and it is usedto separate the image into two regions: one above thethreshold and one below the threshold. The result is a binaryimage with pixels classified into foreground or background.Let us start the implementation by importing the requiredlibraries, as usual, as shown:from skimage.io import imreadfrom skimage.color import rgb2grayimport matplotlib.pylab as pltfrom skimage.filters import try_all_threshold, threshold_otsu, rankThe function try_all_threshold()from skiamge.filters is auseful tool for comparing different global and localthresholding methods. It generates a visual comparison ofvarious thresholding methods, making it easier to choose anappropriate method for a specific image.The following is an overview of a few global imagethresholding algorithms that we shall use:

• ISODATA: This Iterative Self-Organizing Data Analysis(ISODATA) method calculates the threshold as the meanbetween the average of the pixels below the threshold andthe pixels above it. It continues this process untilconvergence.
• Mean: This method calculates the threshold value as themean intensity of the entire image. Pixels with intensityvalues above the mean are assigned to one class, whilethose below are assigned to another.
• Li/Yen: These are minimum cross-entropy thresholdingmethods that seek a threshold that minimizes the cross-entropy between the original and binarized images.

• Minimum: The histogram of the input image is computedand smoothed until there are only two maxima. Theminimum in between is returned as the threshold value.
• Otsu: This method finds the (optimal) threshold thatminimizes the intra-class variance (or maximizes inter-class variance) of pixel intensities in an image. Thealgorithm works well for images with bimodal histograms,where there are two distinct intensity peaks correspondingto the foreground and background.The following are the steps to apply binary segmentation onan image, using the thresholding algorithms:1. Load a sample image and convert it to a grayscale.2. Use the try_all_threshold() function to generate a visualcomparison of different global thresholding methods.3. Display the binary images produced using differentalgorithms.img = rgb2gray(imread('images/tagore.jpg'))img = (255* img / img.max()).astype(np.uint8)

Here, we specify a radius for local thresholding algorithms.
If it is not specified, only global algorithms are called.fig, ax = try_all_threshold(img, figsize=(12, 18), verbose=False)plt.show()If you run the aforementioned code snippet, you should obtaina figure as follows:

Figure 3.7: Binary thresholding with different algorithms

It seems the triangle, and the Yen methods outperform theothers for this particular input image.
Local thresholdingAs discussed earlier, global image thresholding involvesapplying a single threshold value to the entire image. Localimage thresholding, on the other hand, determines differentthreshold values for different regions of the image. Eachpixel’s threshold is computed based on the localcharacteristics of its neighborhood. This approach is usefulwhen the image exhibits variations in intensity or contrastacross different regions.To simulate local intensity variation, we shall add a smallmultiplicative (horizontal ramp) noise to the image, using the
add_mult_noise() function defined, using the following codesnippet:from skimage.morphology import disk
def add_mult_noise(img): ramp = np.clip(np.tile(np.linspace(0, 1, img.shape[1]), \ (img.shape[0],1)), 0, 255) return (img * ramp).astype(np.uint8)
noisy_img = add_mult_noise(img)Here we shall discuss how to use the local and the globalversion of Otsu’s thresholding algorithm to binarize an image.To obtain local thresholds, first, create a neighborhood disk of
radius=30 (change the radius to see the impact on the binaryoutput image) using the function disk() from
skimage.morphology and the function rank.otsu(), alongwith the input image and neighborhood disk. Use the localthresholds array to obtain the binary image local_otsu.To obtain a global threshold value (global_thresh) usingOtsu’s method use the function threshold_otsu() from
skimage.filters module and use the threshold value to createthe binary image global_otsu.

Finally display the input and output images, notice that local
otsu produces a much better binary output image, whereasthe one obtained with the global version loses muchinformation:radius = 30footprint = disk(radius)local_thresh = rank.otsu(noisy_img, footprint)local_otsu = noisy_img > local_thresh
global_thresh = threshold_otsu(noisy_img)print(global_thresh)
78global_otsu = noisy_img > global_thresh
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 12))ax = axes.ravel()ax[0].imshow(noisy_img, cmap=plt.cm.gray, aspect='auto')ax[0].set_title('input', size=20), ax[0].axis('off')ax[1].imshow(local_otsu, cmap=plt.cm.gray, aspect='auto')ax[1].set_title('local Otsu', size=20), ax[1].axis('off')ax[2].hist(noisy_img.ravel(), bins=256)ax[2].set_title('Histogram', size=20)ax[2].axvline(global_thresh, color='r')ax[3].imshow(global_otsu, cmap=plt.cm.gray, aspect='auto')ax[3].set_title('global Otsu', size=20), ax[3].axis('off')plt.tight_layout()plt.show()If you run the aforementioned code snippet, you should obtaina figure as follows:

Figure 3.8: Optimal thresholding with Otsu’s algorithm (local vs. global)

Max-entropy thresholding with
SimpleITKNow, let us see how we can use the SimpleITK library’simplementation of an entropy-based thresholding algorithm.
MaximumEntropyThresholdImageFilter in SimpleITK isan implementation of an automatic thresholding algorithmbased on maximum entropy. The goal of the algorithm is tofind a threshold that maximizes the entropy of the resultingbinary image. Entropy is a measure of uncertainty or disorder,and in the context of image thresholding, it reflects theamount of information carried by the pixel intensity values.The idea behind using maximum entropy as a criterion is tofind a threshold that maximizes the information gained when

going from a grayscale image to a binary image. The methodtends to work well when the image has a bimodal histogramwith distinct foreground and background intensities. Thealgorithm first computes the normalized intensity histogramfor the input image, then computes the cumulative
distribution function (CDF), computes the entropy of theoutput binary image for each possible threshold, and finds theoptimal threshold that maximizes the entropy.The following code snippet first reads the image with
sitk.ReadImage() function scales the intensity values in therange [0,1] using the RescaleIntensityImageFilter() andthen applies the MaximumEntropyThresholdImageFilter()to the rescaled image to obtain the output image using the
Execute() function. Next, it plots the input and outputimages.import SimpleITK as sitk
input_image = sitk.ReadImage('images/tagore.jpg', sitk.sitkFloat32)rescale = sitk.RescaleIntensityImageFilter()rescale.SetOutputMaximum(1.0)input_image = rescale.Execute(input_image)
filter = sitk.MaximumEntropyThresholdImageFilter()filter.SetOutsideValue(1)filter.SetInsideValue(0)output_image = filter.Execute(input_image)print(filter.GetThreshold())
0.6269776821136475plt.figure(figsize=(20,15))plt.gray()plt.subplot(121), plt.imshow(sitk.GetArrayFromImage(input_image))plt.axis('off'), plt.title('input', size=20)plt.subplot(122), plt.imshow(sitk.GetArrayFromImage(output_image))plt.axis('off'), plt.title('thresholded', size=20)plt.tight_layout()plt.show()If you run the aforementioned code snippet, you should obtaina figure as follows:

Figure 3.9: Grayscale to binary image conversion with max-entropy thresholding

Adaptive thresholding with opencv-
pythonAdaptive image thresholding is a specific implementation oflocal image thresholding where the threshold values adapt tolocal variations in the image. Again, the threshold for eachpixel is computed based on the local neighborhood around it.Now, let us understand how to use the function
cv2.adaptiveThreshold() from opencv-python to performadaptive thresholding. The function
cv2.adaptiveThreshold() takes an input image, a maxValue(value given to pixels exceeding the threshold), an adaptivemethod (to be used to compute the adaptive threshold),
thresholdType (type of thresholding applied), blockSize(size of the neighborhood area), and C (a constant subtractedfrom the mean or weighted mean). The adaptive methods canbe selected from the following ones:

• cv2.ADAPTIVE_THRESH_GAUSSIAN_C: specifies thatthe adaptive threshold is computed as the weighted sum ofthe neighborhood values, where weights are given by aGaussian window.
• cv2.ADAPTIVE_THRESH_MEAN_C: the method

calculates the threshold for each pixel as the mean of thepixel values in its local neighborhood.
• cv2.THRESH_BINARY: specifies that pixels with valuesabove the threshold are set to maxValue (255), andothers are set to 0.Experiment with different values for blockSize and C to seehow they affect the adaptive thresholding result based on thecharacteristics of the input image.The following code snippet implements adaptive thresholdingusing the mean and Gaussian adaptive threshold methods andplots the output binary images along with the input image:import cv2import numpy as npimport matplotlib.pylab as plt

im = cv2.imread('images/tagore.jpg', 0)
thresh1 = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 21, 10)thresh2 = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 21, 4)
plt.figure(figsize=(20,12))plt.gray()plt.subplot(131), plt.imshow(im), plt.axis('off')plt.title('input', size=20)plt.subplot(132), plt.imshow(thresh1), plt.axis('off')plt.title('adaptive thresholded (mean)', size=20)plt.subplot(133), plt.imshow(thresh2), plt.axis('off') plt.title('adaptive thresholded (gaussian)', size=20)plt.tight_layout()plt.show()If you run the aforementioned code snippet, you should obtaina figure as follows:

Figure 3.10: Adaptive thresholding with opencv-python

Segmentation using clusteringClustering is an unsupervised technique in machine learningand data analysis where data points are grouped togetherbased on similarity or some inherent structure in the data. Thegoal of clustering is to partition a dataset into groups, orclusters, such that data points within the same cluster aremore similar to each other than to those in other clusters.Mathematically, clustering can be defined as follows. Let be a set of data points in a feature space.The objective of clustering is to find a partition of into clusters , where each represents a cluster.The partition should satisfy the following criteria:
• Homogeneity within clusters: Data points within thesame cluster are more similar to each other.
• Heterogeneity between clusters: Data points fromdifferent clusters are dissimilar.Now, regarding image segmentation, clustering techniquescan be employed to group pixels with similar characteristicsinto segments. Each pixel is treated as a data point, and thefeatures extracted from the pixels (such as color, intensity,and texture) serve as dimensions in the feature space.The steps for using clustering for image segmentationincludes:

• Feature extraction: Extract relevant features from eachpixel in the image.
• Clustering: Apply a clustering algorithm (e.g., k-means)to group similar pixels based on their feature vectors.
• Segmentation: Assign each pixel to the cluster it belongsto and consider each cluster as a segment in thesegmented image.In this section, you will learn how to:
• Implement image segmentation with clustering using

scikit-learn and scipy library functions
• Cluster similar images into groups.

Clustering with Mahalanobis distance
Mahalanobis distance is a measure used to quantify thedistance between a point and a distribution. It is a generalizedform of the Euclidean distance, but it also takes into accountthe correlations between different features. This distancemetric is particularly useful when dealing with multivariatedata where the features are correlated.The Mahalanobis distance between a point and adistribution with mean and covariance matrix is calculatedas follows:
In the context of image segmentation, Mahalanobis distancecan be applied to cluster pixels based on their feature vectors.The following is a general outline of how you can useMahalanobis distance for image segmentation:

• Feature extraction: Extract relevant features from eachpixel in the image. Here, we shall use RGB colors asfeatures. Hence, the feature space will consist of 3Dvectors. Each pixel is represented as a feature vector.
• Compute mean and covariance: Compute the mean (μ)

and covariance matrix (Σ) of the feature vectors in theentire image or in predefined regions.
• Calculate Mahalanobis distance: For each pixel’sfeature vector, calculate its Mahalanobis distance from themean using the formula mentioned earlier.
• Segmentation: Assign pixels to different segments orclusters based on their Mahalanobis distances. Pixels withsmaller distances are more likely to belong to the samecluster.
• Thresholding or clustering: Apply a threshold or useclustering techniques (e.g., k-means clustering) to grouppixels into distinct segments based on their Mahalanobisdistances.Let us start the implementation by importing the requiredlibraries and modules:import numpy as npimport scipyfrom skimage.io import imreadfrom skimage.util import cropimport matplotlib.pylab as pltcdist = scipy.spatial.distance.cdistNow, let us aim to segment the RGB color pepper image intotwo regions (), for example, one containing the redvegetables and the other containing the green vegetables.This is done in the function cluster_rgb_mahalanobis()defined in the following code snippet.We need to start with two predefined sub-regions by croppingsmall subsets of pixels from the original image, each oneacting as a reference for the corresponding segment.Use skimage.util.crop() function to crop the referenceimage patches from the original image by specifying thestarting and ending indices along each axis, given by

cluster_sample_locs, passed as an argument to the function
cluster_rgb_mahalanobis().The function cluster_rgb_mahalanobis(), in turn, uses thefunction compute_mahalanobis(), which accepts the

original image I and the predefined reference image patches
S and computes the Mahalanobis distance between eachpixel and the predefined (reference patches). For a m × nimage, we need to store (mn, 2) distance values (for each ofthe mn pixels we need to store the Mahalanobis distances topredefined patches).The function compute_mahalanobis(), in turn, uses thefunction mahalanobis() to first compute for thereference patches and then compute the Mahalanobis
distance between a pixel RGB vector and the predefinedpixel subsets (clusters).Assign each pixel to its nearest cluster using the minimumof the Mahalanobis distances computed, as shown in thefollowing code block:def mahalanobis(y, x): cov_x_inv = np.linalg.inv(np.cov(x,rowvar=False)) return cdist(y, np.reshape(np.mean(x, axis=0), (1, -1)), 'mahalanobis', VI=cov_x_inv)
def compute_mahalanobis(I, S): R, G, B = I[:,:,0], I[:,:,1], I[:,:,2] #color components subset_R, subset_G, subset_B = S[:,:,0], S[:,:,1], S[:,:,2] x = np.hstack((subset_R.reshape(-1,1), subset_G.reshape(-1,1), subset_B.reshape(-1,1))) y = np.hstack((R.reshape(-1,1), G.reshape(-1,1), B.reshape(-1,1))) return mahalanobis(y, x).ravel()
def cluster_rgb_mahalanobis(im, cluster_sample_locs): mahal_dist = np.zeros((np.prod(im.shape[:2]), \ len(cluster_sample_locs))) for i in range(len(cluster_sample_locs)): im_patch = crop(im, cluster_sample_locs[i], copy=False) mahal_dist[:,i] = compute_mahalanobis(im, im_patch) ind = np.argmin(mahal_dist, axis=1) ind = ind.reshape(im.shape[:2]) mask = np.zeros(im.shape[:2]) for k in range(mahal_dist.shape[1]): mask[ind == k] = k return maskNow, let us read the pepper image from disk.Define the locations of the small red and green patches (to becropped from the original image and used for reference) as

cluster_sample_locs.Use the function cluster_rgb_mahalanobis() defined earlierto segment the image using Mahalanobis distance.The function cluster_rgb_mahalanobis() accepts the inputimage along with the predefined reference pixels for thesegments, as shown in the following code snippet. Thefunction returns the segmentation mask. Display thesegmentation mask, along with the original RGB image.im = imread('images/pepper.png')cluster_sample_locs = [((36, 150), (115, 90), (0,0)), ((127, 70), (143, 60), (0,0))]mask = cluster_rgb_mahalanobis(im, cluster_sample_locs)
plt.figure(figsize=(12,6)) plt.subplots_adjust(0,0,1,0.95,0.05,0.05)plt.subplot(121), plt.imshow(im, aspect='auto'), plt.title('RGB IMAGE')plt.axis('off')plt.subplot(122), plt.imshow(mask, cmap='jet', aspect='auto')plt.colorbar(), plt.title('CLUSTERS'), plt.axis('off')plt.show()If you run the aforementioned code snippet, you should obtaina figure as follows:

Figure 3.11: Clustering with Mahalanobis distance

Now, display the segments separately, as shown in thefollowing figure (the code is left as an exercise to the reader):

Figure 3.12: Two clusters obtained with Mahalanobis distance based clustering

K-means vs. spectral clustering
K-means clustering is a popular unsupervised machinelearning algorithm used for partitioning a dataset into Kdistinct, non-overlapping subsets (clusters). The goal of the k-means algorithm is to assign each data point to one of the Kclusters in a way that minimizes the sum of squared distanceswithin each cluster. It is widely used for clustering analysis invarious domains, including image processing, data analysis,and machine learning.A common mathematical formulation for k-means clusteringinvolves defining an objective function that quantifies thesimilarity within clusters and dissimilarity between clusters asfollows:

Here, is the mean of the data points in cluster . The

algorithm aims to minimize the objective function (i.e., thesum of squared distances within each of the K clusters).The following is a brief overview of how the k-meansclustering algorithm works:
• Initialization: Choose the number of clusters .Randomly initialize cluster centroids in the feature space(You can use better initialization methods such as

KMeans++).
• Assignment: Assign each data point to the nearestcentroid. The assignment is based on the Euclideandistance between the data point and each centroid.
• Update centroids: Recalculate the centroids of theclusters as the mean of all data points assigned to eachcluster.
• Repeat: Repeat steps 2 and 3 until convergence.Convergence occurs when the centroids no longer changesignificantly or when a predefined number of iterations isreached.The number of clusters () needs to be specified in advance,and the algorithm’s performance can be sensitive to thischoice and initialization of the clusters.Performing image segmentation using k-means clusteringinvolves applying the k-means algorithm to group pixels in animage based on their color or intensity values. Each clusterrepresents a segment in the image.Here, we shall use the scikit-learn library’s k-meansclustering implementation.Let us start by importing the required libraries as follows:from sklearn import clusterfrom skimage.io import imreadfrom skimage.color import rgb2grayfrom skimage.transform import resize as imresizefrom sklearn.utils import shufflefrom sklearn.feature_extraction import img_to_graphimport numpy as npimport matplotlib.pylab as pltimport warnings

warnings.filterwarnings('ignore')Here is a step-by-step guide to perform segmentation using k-means clustering, as shown in the following code snippet:1. Load the image using the skimage.io.imread() function,and we shall use three color channels as features.2. Reshape the 3D image array into a 2D array of pixelsusing np.reshape().3. Reduce the number of colors: To improve thealgorithm’s performance, randomly sample a subset ofpixels (e.g., 1000 pixels) from the image using the function
sklearn.utils.shuffle().4. Apply k-means clustering: Create an instance (object)of the KMeans class from scikit-learn to perform k-means clustering. Fit the model to the sampled pixelsusing the function fit().5. Predict the cluster labels for all pixels in the image usingthe function predict().6. Generate segmented image: Replace each pixel in theoriginal image with the color of its assigned clustercentroid as follows:im = imread('images/horses.png')[...,:3]
X = np.reshape(im, (-1, im.shape[-1]))X_sample = shuffle(X, random_state=0)[:1000]k = 2kmeans = cluster.KMeans(n_clusters=k, random_state=10)kmeans.fit(X_sample)y_pred = kmeans.predict(X).astype(np.uint8)labels_kmeans = np.reshape(y_pred, im.shape[:2])

Spectral Clustering is a graph-based clustering algorithmthat uses the spectral decomposition of the affinity matrix ofthe data points. It is particularly effective for clusteringdatasets that exhibit complex structures, including non-convexshapes and clusters of varying shapes and sizes.The following is an overview of how Spectral Clusteringworks, along with the concepts that we need to understand:

• Affinity matrix: Given a dataset with data points, the firststep is to construct an affinity matrix , which measures thesimilarity between data points. Common choices foraffinity include the Gaussian Radial Basis Function(RBF) kernel or the nearest neighbor’s graph.For example, with RBF, we have,
• Degree matrix: Form a diagonal matrix D, where, each element is the sum of the elements inthe corresponding row of the affinity matrix A.
• Laplacian matrix: The unnormalized Laplacian matrixcan be computed as and the normalized versionscan be computed as
• Spectral decomposition: Compute the eigenvectors andeigenvalues of the (unnormalized) Laplacian matrix. Stackthe k eigenvectors corresponding to the k smallesteigenvalues as columns of a matrix , with n as thenumber of data points and k as the number of clusters.
• Clustering: Treat each row vector of U (i.e., each datapoint’s representation in the new spectral space) as apoint in . Apply k-means (or other clustering algorithms)on these rows to group them into k clusters. This way, theoriginal data is clustered based on their low-dimensionalspectral embeddings that capture the structure of thegraph.The key idea behind spectral clustering is that theeigenvectors capture the underlying structure of the data, andclustering in the spectral space can reveal complex structuresthat may be hard to capture in the original feature space.To use spectral clustering for image segmentation, you cantreat the pixels in the image as data points and apply thespectral clustering algorithm to group them into clustersbased on their similarity.The algorithm is configured to use the nearest neighbors’

graph as the affinity measure (with a number of neighbors,
n_neighbors= 25) in the following code snippet, which usesthe SpectralClustering class from scikit-learn. The method
fit_predict() is used to fit the model and then predict thelabels of the pixels in the image.The image is reduced to a smaller size for faster executionspeed as follows:h, w, _ = im.shapeim_small = imresize(im, (h//4, w//4))X = np.reshape(im_small, (-1, im.shape[-1]))spectral = cluster.SpectralClustering(n_clusters=k, eigen_solver='arpack', affinity="nearest_neighbors", n_neighbors=25, assign_labels = 'discretize', random_state=10)y_pred = spectral.fit_predict(X).astype(np.uint8)labels_spectral = np.reshape(y_pred, im_small.shape[:2])Visualize the binary segmentation mask and segmentedoriginal image side by side for both the clustering algorithmsas follows:plt.figure(figsize=(20,12))plt.gray()plt.subplots_adjust(0,0,1,0.96,0.05,0.05)plt.subplot(221), plt.imshow(labels_kmeans)plt.title('k-means segmentation (k=2)', size=30), plt.axis('off')plt.subplot(222), plt.imshow(im.copy()), plt.axis('off')for l in range(k): plt.contour(labels_kmeans == l, colors='r', linewidths=5)plt.title('k-means contour (k=2)', size=30)plt.subplot(223), plt.imshow(labels_spectral)plt.title('spectral segmentation (k=2)', size=30), plt.axis('off')plt.subplot(224), plt.imshow(im_small.copy()), plt.axis('off')for l in range(k): plt.contour(labels_spectral == l, colors='r', linewidths=5)plt.title('spectral contour (k=2)', size=30)plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 3.13: Image segmentation with k-means vs. spectral clustering

MeanShift segmentation with opencv-
python and scikit-learn
MeanShift segmentation is a region-based imagesegmentation that involves grouping similar pixels intoregions. The basic idea behind MeanShift is to iteratively shiftdata points towards the mode (peak) of the data distribution,allowing the points to converge to local maxima. In thecontext of image segmentation, this means grouping togetherpixels with similar color or intensity values. This algorithm isused for non-parametric clustering and is particularlyeffective for situations where the number of clusters is notknown beforehand (as opposed to k-means, where we mustspecify the number of clusters beforehand). In this section, wewill learn how to implement MeanShift segmentation with
opencv-python and scikit-learn library functions.
MeanShift filtering with opencv-pythonAs explained, MeanShift algorithm can be applied to group

similar pixels into regions, effectively segmenting the image.The algorithm works by iteratively shifting each pixel towardsthe mean of the pixels within a local spatial and color rangeuntil convergence. In opencv-python this algorithm can beimplemented using MeanShift filtering function
cv2.pyrMeanShiftFiltering().The function cv2.pyrMeanShiftFiltering() operates on animage pyramid. This function is designed to perform moreefficient and multi-scale MeanShift segmentation by workingon different levels or scales of the image.The function implements the filtering stage of the algorithm,i.e., it outputs a filtered posterized image with flattened colorgradients and fine-grain texture.At each pixel of the input image, the neighborhood of thepixel in the joint space-color (sp, sr) hyperspace is considered:
Where (R,G,B) and (r,g,b) are color component vectors at(X,Y) and (x,y), respectively. The average spatial value and average color vector are computed over theneighborhood and they become the neighborhood centers onthe next iteration.When the algorithm converges, the color components of theinitial pixel are set to the final value (average color at the lastiteration):
The function cv2.pyrMeanShiftFiltering() accepts thefollowing parameters as input:

• src: The source image.
• sp: The spatial window radius (the spatial neighborhood).
• sr: The color window radius (the color neighborhood).
• maxLevel: The maximum level of the image pyramid for

the segmentation. It determines how many levels of thepyramid will be used. Higher levels represent lowerresolutions of the image. This is an optional parameterwith default value = 1. When maxLevel > 0, the Gaussian
pyramid of maxLevel +1 levels is built, and theaforementioned procedure is run on the smallest layerfirst. Next, the results are propagated to the larger layer,and the iterations are run again only on those pixels forwhich the layer colors differ by more than sr from thelower-resolution layer of the pyramid. It helps creatingcolor sharper regions boundaries.

• termcrit: Termination criteria for the iterative procedure,an optional parameter, often specified as a tuple (epsilon,
max_iterations), indicating the desired accuracy and themaximum number of iterations, respectively.The function cv2.meanShift() is often confused with the

cv2.pyrMeanShiftFiltering() function, but it is notspecifically designed for image segmentation using thetraditional MeanShift segmentation algorithm. Instead, it isoften used for object tracking.Let us demonstrate how the function
cv2.pyrMeanShiftFiltering() can be used for imagesegmentation using the following code snippet. As usual, letus start by importing the required libraries, along with
opencv-python (cv2).Load an image of flowers and perform pyramid mean shiftfiltering with cv2.pyrMeanShiftFiltering(), using and import cv2import numpy as npimport matplotlib.pylab as plt
image = cv2.imread('images/coins.jpg')original = np.copy(image)shifted = cv2.pyrMeanShiftFiltering(image, 20, 50)Convert the mean shift image to grayscale, then apply Otsu’s

thresholding with the function cv2.threshold().Find contours in the thresholded image using the function
cv2.findContours(), loop over the contours, and draw thecontours using the following code snippet:gray = cv2.cvtColor(shifted, cv2.COLOR_BGR2GRAY)mask = np.invert(cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | \ cv2.THRESH_OTSU)[1])cnts, _ = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, \ cv2.CHAIN_APPROX_SIMPLE)print("{} unique contours found".format(len(cnts)))
2 unique contours found for (i, c) in enumerate(cnts): ((x, y), _) = cv2.minEnclosingCircle(c) cv2.putText(image, "#{}".format(i + 1), (int(x) - 10, int(y)), \ cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2) cv2.drawContours(image, [c], -1, (0, 255, 0), 2)Plot the original image, MeanShift segmentation output, thebinary mask obtained, and the contours overlayed on theoriginal image, side-by-side, using the following code snippet:plt.figure(figsize=(20,15))plt.subplot(221), plt.imshow(cv2.cvtColor(original, cv2.COLOR_BGR2RGB)) plt.axis('off'), plt.title('Original image', size=20)plt.subplot(222), plt.imshow(cv2.cvtColor(shifted, cv2.COLOR_BGR2RGB)) plt.axis('off'), plt.title('With MeanShift', size=20)plt.subplot(223), plt.imshow(mask, cmap='gray'), plt.axis('off') plt.title('With MeanShift + Otsu', size=20)plt.subplot(224), plt.imshow(image), plt.axis('off') plt.title('With Contours', size=20)plt.show()If you run the preceding code snippet, you should obtain thefollowing figure:

Figure 3.14: MeanShift filtering with opencv-python

Segmentation with MeanShift
clustering in lab space with scikit-learnLet us now demonstrate how we can use scikit-learn.clustermodule’s implementation of MeanShift clustering. Last time,we used RGB color space but this time, we shall work on the
Lab color space (L: Lightness, a: Green-Red, and b: Blue-Yellow channel) for the input image.The following are the steps to be followed:1. Load the input image and flatten it, so that m × n × 3image becomes mn × 3 ndarray.2. Use the function sklearn.cluster.estimate_bandwidth()to estimate the bandwidth parameter for MeanShiftclustering. The bandwidth is a crucial parameter in theMeanShift algorithm as it determines the size of the region

for which points are considered similar during the meanshift process. The quantile parameter controls theproportion (fraction) of sample data points to be used inthe KDE (kernel density estimation): the default value is0.3, meaning that the bandwidth will be chosen to include30% of the samples, whereas the n_samples parameterindicates the number of samples to use for the estimation(if None, all samples are used)3. Given the estimated bandwidth, the MeanShift algorithmis applied (using the function
sklearn.cluster.MeanShift()) to cluster the data points(pixels). For each data point, a mean shift vector iscomputed, pointing towards the mode of the datadistribution within the specified bandwidth. The point isthen shifted in the direction of this vector, as shown in thefollowing code snippet.4. The process of computing MeanShift vectors and shiftingpoints is repeated until convergence. Convergence occurswhen the MeanShift vectors become very small or whenthe maximum number of iterations is reached.5. After convergence, the algorithm assigns each data pointto the cluster to which it converged. Points that convergeto the same mode are considered part of the same cluster.6. Finally, plot the original and the segmented image, alongwith the scatterplot with the a-b channels for the Labcolor space, to visualize how the MeanShift algorithmgroups the pixels of the same colors together, as shown inthe following code snippet:import numpy as npfrom sklearn.cluster import MeanShift, estimate_bandwidthimport matplotlib.pyplot as pltfrom skimage.io import imreadfrom skimage.color import rgb2lab, label2rgb
image = imread('images/flowers.jpg') flattened_image = np.reshape(rgb2lab(image), [-1, 3])
estimate bandwidth

bandwidth = estimate_bandwidth(flattened_image[:, 1:], quantile=.2, n_samples=5000)ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)ms.fit(flattened_image)labels = ms.labels_print(len(np.unique(labels)))
7

labels2 = np.reshape(labels, image.shape[:2])plt.figure(figsize=(15,15))plt.subplot(221), plt.imshow(image), plt.axis('off')plt.title('original image', size=20)plt.subplot(222)plt.scatter(flattened_image[:,1],flattened_image[:,2], color=np.reshape(image, [-1, 3])/255)plt.xlabel('a'), plt.ylabel('b'), plt.grid()plt.title('scattering with a-b', size=20)plt.subplot(223)plt.scatter(flattened_image[:,1],flattened_image[:,2], color=np.reshape(label2rgb(labels2, image, kind='avg'), [-1,3])/255, cmap='jet')plt.xlabel('a'), plt.ylabel('b'), plt.grid()plt.title('segmenting with a-b', size=20)plt.subplot(224), plt.imshow(label2rgb(labels2, image, kind='avg')) plt.axis('off'), plt.title('segmented image with Meanshift', size=20)plt.show()If you run the aforementioned code snippet, you should obtaina figure as follows:

Figure 3.15: MeanShift segmentation in Lab color space with scikit-learn

Watershed segmentation with opencv-
python and SimpleITKWatershed segmentation is a digital image processingtechnique used for segmentation, which is the process ofdividing an image into different regions or segments. Thewatershed algorithm is primarily considered a region-basedsegmentation algorithm. The term watershed is borrowedfrom hydrology, where it refers to the boundary lineseparating two adjacent drainage basins. In image processing,

the concept is applied to separate different objects or regionsbased on the topological features of the image.The following is a simplified explanation of how watershedsegmentation works:
• Gradient computation: The first step involves computingthe gradient of the image. The gradient represents theintensity change in the image, highlighting regions wherethe intensity varies significantly.
• Intensity marking: Local minima in the gradient imageare identified as markers. These markers serve as seedsfor the segmentation process. Each marker is associatedwith a specific region in the image.
• Label propagation: Starting from the markers, labels arepropagated outward to neighboring pixels. The goal is toflood the image with labels, simulating the filling of basinsin a topographical map.
• Catchment basins: As the labels propagate, theyeventually meet at certain points, forming boundariesbetween different catchment basins. These boundariescorrespond to the desired segmentation.
• Segmentation result: The final result of watershedsegmentation is a partitioning of the image into regionsseparated by the boundaries identified in the process.Watershed segmentation can be applied to grayscale or colorimages. It is particularly useful in scenarios where objects inan image have poorly defined boundaries or when there aresignificant intensity variations. However, watershedsegmentation can lead to over-segmentation, where smalldetails are treated as separate regions. To address this,techniques such as marker-controlled watershedsegmentation are used, allowing users to guide thesegmentation process by specifying markers for certainregions of interest.In this section you will learn how to segment an image using a

couple of different implementations of the watershedsegmentation algorithm, with libraries such as opencv-
python and SimpleITK.
Watershed with opencv-pythonYou can perform watershed segmentation using the
cv2.watershed() function from the library opencv-python.Here we shall use the algorithm to separate the foregroundobject from the background (i.e., obtain a binarysegmentation) in the coins image. Let us start theimplementation by importing the required libraries andmodules as:
import cv2
import numpy as np
import matplotlib.pyplot as pltLet us implement the function run_watershed() as shown inthe following code snippet. The function accepts the inputimage (to be segmented) as the input argument and performsthe following operations step by step:1. Converts the input image from BGR to grayscale using thefunction cv2.cvtColor() with the flag

cv2.COLOR_BGR2GRAY.2. Applies thresholding with cv2.threshold() (using Otsu’smethod cv2.THRESH_OTSU) to create a binary image.Performs morphological opening with
cv2.morphologyEx() and cv2.MORPH_OPEN (using a square structural element) to remove noise and smallobjects.3. Dilates (using the function cv2.dilate()) the binaryimage to obtain a sure background. Calculates thedistance transform in the binary image (with the function
cv2.distanceTransform()) to find the sure foreground bythresholding. The distance transform calculates thedistance from each pixel to the nearest zero

(background) pixel. This function is particularly useful forfinding the distance to the closest boundary or object in abinary image.4. Converts the binary image (with sure foregroundlocations) to an 8-bit image and finds the unknown regionsby subtracting (using cv2.subtract()) the sure foregroundfrom the sure background.5. Labels the sure foreground regions using the connected
components algorithm (using the function
cv2.connectedComponents()). Add 1 to all labels and
mark the unknown regions with 0.6. Applies the watershed algorithm with the markers,using the function cv2.watershed(), as demonstrated inthe following code snippet.7. Marks the watershed boundaries in green and uses thefunction cv2.findContours() to find contours in the binarymasks obtained through thresholding. The contours arethen drawn on the original image using
cv2.drawContours(). Note that here we are interested todraw the innermost contours, hence we have used thehierarchy information (using mode = cv2.RETR_TREE)obtained from cv2.findContours(), hence we have loopedthrough the contours and considered only those contourswhose hierarchy[contour_index][3] (parent) is not -1.The function run_watershed() returns the dist_transform,the markers and the final image with the contours drawn ontop, as demonstrated in the following code snippet. Finally,load the input coins image and segment it with watershedalgorithm using the function run_watershed().

def run_watershed(image): gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # threshold to obtain binary image ret, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV + \ cv2.THRESH_OTSU) # noise removal kernel = np.ones((3,3),np.uint8)

 opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 1) # sure background area sure_bg = cv2.dilate(opening,kernel,iterations=3) # Finding sure foreground area dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5) ret, sure_fg = cv2.threshold(dist_transform,0.0001*dist_transform.max(),\ 255,0) # Finding unknown region sure_fg = np.uint8(sure_fg) unknown = cv2.subtract(sure_bg, sure_fg)
 # Marker labelling ret, markers = cv2.connectedComponents(sure_fg) # Add one to all labels so that sure background is not 0, but 1 markers = markers+1 # Now, mark the region of unknown with zero markers[unknown==255] = 0
 markers = cv2.watershed(image,markers) image[markers == -1] = [255,0,0]
 # loop over the unique labels returned by the Watershed algorithm for label in np.unique(markers): # if the label is zero, it's 'background', so simply ignore it if label == 0: continue # otherwise, allocate memory for label region and draw it on the mask mask = np.zeros(gray.shape, dtype="uint8") mask[markers == label] = 255
 # detect contours in the mask and grab the largest one contours, hierarchy = cv2.findContours(mask.copy(), cv2.RETR_TREE, \ cv2.CHAIN_APPROX_SIMPLE) for i in range(len(contours)): # Check if the contour has a parent (not the outermost contour) if hierarchy[0][i][3] != -1: color = (0, 255, 0) # Green color cv2.drawContours(image, contours, i, color, 2, cv2.LINE_8, \ hierarchy, 0)
 return dist_transform, markers, image
Load the imageimage = cv2.imread('images/coins.jpg')original = image.copy()dist_transform, markers, image = run_watershed(image)Plot the input coins image along with the segmented imageand draw the contours of the objects with matplotlib.pylab:plt.figure(figsize=(12,8))

plt.subplot(221), plt.imshow(cv2.cvtColor(original, cv2.COLOR_BGR2RGB))plt.axis('off'), plt.title('Original image', size=20)plt.subplot(222), plt.imshow(dist_transform, cmap='Spectral') plt.axis('off')plt.title('Distance', size=20)plt.subplot(223), plt.imshow(markers, cmap='coolwarm'), plt.axis('off')plt.title('Segmentation Labels', size=20)plt.subplot(224), plt.imshow(image), plt.axis('off')plt.title('With Contours', size=20)plt.tight_layout()plt.show()If you run the aforementioned code snippet, you should obtaina figure as follows:

Figure 3.16: Watershed segmentation with opencv-python

Morphological watershed with SimpleITKThe morphological watershed algorithm is an extension ormodification of the basic watershed algorithm. It ofteninvolves combining morphological operations (imageprocessing techniques that probe and transform the structureof an image using a predefined shape called a structuring

element) with the watershed algorithm to improvesegmentation results (note that in the last section, we used afew morphological operations such as opening, dilationexplicitly and separately as preprocessing steps forwatershed segmentation). It is again based on the concept offlooding and watershed lines, like how water flows in terrainand collects in basins. In image processing, the grayscaleintensity values are considered as terrain, and the watershedalgorithm is applied to segment different regions based onintensity.Now, let us implement morphological watershed segmentationusing SimpleITK in Python:
• Import the SimpleITK library and alias it as sitk forconvenience, along with other required libraries.
• Read the input image of a whale as a grayscale image, weshall again perform a binary segmentation on this image,but this time using SimpleITK’s watershedimplementation.
• Rescale the intensity values of the input image using

RescaleIntensityImageFilter(), apply this filter tonormalize or adjust range of pixel intensities of the inputimage, to be in the range , as shown in the following codesnippet:
import SimpleITK as sitk
import numpy as np
import matplotlib.pylab as plt
img = sitk.ReadImage('images/whale.jpg', sitk.sitkFloat64)rescale = sitk.RescaleIntensityImageFilter()rescale.SetOutputMaximum(1.0)img = rescale.Execute(img)

• Compute the gradient magnitude of the input image as
feature_img, using the function GradientMagnitude().The gradient magnitude highlights regions where intensitychanges.

• Generate markers based on the gradient magnitude. In

this example, connected components are identified wherethe gradient magnitude is greater than the mean value.
• Use regional minima (with RegionalMinima()) asmarkers in subsequent watershed segmentation to definethe initial flooding points.
• Use the function ConnectedComponent() to identify andlabel individual regions connected to the detected regionalminima.
• We shall use 3 additional points as hints (plotted asmagenta pixels on top the input image), a couple of thembelong to background and the remaining one on theforeground object, let us specify the labels of thecorresponding pixels in the marker image (with values 1and 2, respectively), as shown in the following codesnippet.
• Apply morphological watershed segmentation using thegradient magnitude and markers, using the function

MorphologicalWatershedFromMarkers(), whichaccepts the gradient and the marker images as input.
• Use the function LabelToRGB() to obtain the binarysegmentation mask image.
• Overlay the mask on top of the input image using thefunction LabelOverlay() with a given opacity.feature_img = sitk.GradientMagnitude(img)min_img = sitk.RegionalMinima(feature_img, backgroundValue=0, foregroundValue=1.0, fullyConnected=False, flatIsMinima=True)marker_img = sitk.ConnectedComponent(min_img)marker_img *= 0marker_pts = {(10,10):1, (350,200):2, (500,300):1}

for pt, label in marker_pts.items(): marker_img[pt] = labelws = sitk.MorphologicalWatershedFromMarkers(feature_img, marker_img, markWatershedLine=True, fullyConnected=False)labels = sitk.LabelToRGB(ws)overlay = sitk.LabelOverlay(img, ws, opacity=0.001)labels = rescale.Execute(labels)overlay = rescale.Execute(overlay)

• Plot the images obtained. The following figure shows thesegmented output image, along with the input image.plt.figure(figsize=(20,10))plt.subplot(131), plt.imshow(sitk.GetArrayFromImage(img), cmap='gray') plt.axis('off')
for pt, label in marker_pts.items(): plt.scatter(pt[0], pt[1], c=label, s=100, cmap='Spectral')plt.title('input (with markers)', size=20)plt.subplot(132), plt.imshow(255*sitk.GetArrayFromImage(labels)) plt.axis('off'), plt.title('segmented', size=20)plt.subplot(133), plt.imshow(sitk.GetArrayFromImage(overlay))plt.axis('off'), plt.title('overlayed', size=20)plt.tight_layout()plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 3.17: Morphological watershed segmentation with SimpleITK

GrabCut segmentation with opencv-
python
GrabCut is an image segmentation algorithm that thatcombines image clustering and graph cuts to achieve imagesegmentation. It is designed to automatically segment animage into foreground and background regions. GrabCut is animprovement over basic graph cut segmentation, as itcombines both data-driven and user-provided information toachieve better segmentation results.The following is a brief overview of these segmentationtechniques:

• Graph cut segmentation: Basic graph cut

segmentation is basically an optimization technique thatformulates image segmentation as an energy-
minimization problem. It constructs a graph where pixelsare nodes, and edges represent the relationships betweenneighboring pixels. The goal is to find a cut in the graphthat minimizes the energy, separating the image intosegments. The energy function typically consists of twomain terms: the data term and the smoothness term.o The data term measures the cost or likelihood ofassigning a particular label (foreground or background)to each pixel in the image. Mathematically, the dataterm can be represented as:

Here, is the label assigned to pixel , and is thedata cost associated with assigning label to pixel o The smoothness term (pairwise term) encouragesneighboring pixels to have similar labels, promotingspatial coherence in the segmentation. It penalizesabrupt changes in labels between neighboring pixels.This term helps to smooth-out the segmentationboundaries. Mathematically, the smoothness term canbe represented as:

Here, is the smoothness cost associated withthe labels of neighboring pixels and .o The overall energy function for the imagesegmentation problem with graph cuts is a combinationof the data term and the smoothness term:
o Here is a parameter that controls the trade-off

between the data and smoothness terms. The goal ofthe optimization process is to find the labeling thatminimizes this energy function. Graph cut algorithms,such as the max-flow / min-cut algorithm, are thenapplied to efficiently find the optimal partition orlabeling that minimizes the energy.
• GrabCut segmentation: GrabCut is an interactivesegmentation algorithm that combines user input with aniterative optimization process. The user provides abounding box around the object of interest, and GrabCutiteratively refines the segmentation based on user inputand image data. It employs a graphical model with a graphstructure to represent the relationships between pixelsand incorporates user scribbles to guide the segmentation.o Initially, pixels are classified into:

฀ Definite foreground (marked by user)
฀ Definite background (marked by user)
฀ Possible foreground
฀ Possible backgroundConstraints for the definite pixels are incorporated intothe minimization problem to fix their labels, ensuringthey cannot be reassigned during optimization.o Gaussian Mixture Model (GMM) is used to model theforeground and background. Using the input scribbles(hints), GMM learns to estimate the class-conditional

distributions for the foreground and background,i.e., it estimates and, where is the color vector (e.g., RGBvalues) of a pixel.o A graph isconstructed, where:
฀ Nodes represent pixels.
฀ Additional two nodes are added, source node and

sink node. Every foreground pixel is connected to
source node and every background pixel isconnected to sink node.

฀ The data term in the energy function correspondsto the negative log-likelihood of a pixel’s colorgiven its class (foreground or background).
฀ The smoothness term corresponds to a prior thatencourages spatial coherence by favoring similarlabels for neighboring pixels with similar colors.o The weights of edges connecting pixels to source/sinknode are defined by the (posterior) probability of a pixelbeing foreground/background. The weights betweenthe pixel nodes are defined by the edge information orpixel similarity. If there is a large difference in pixelcolor, the edge between them will get a low weight.o A max-flow / min-cut (minimum cut) algorithm isused to segment the graph. It cuts the graph into twopartitions, separating source node and sink node, itfinds the cut with minimum value of the cost function.The cost function is the sum of all weights of the edgesthat are cut. After the cut, all the pixels connected to

source node become the foreground and thoseconnected to the sink node become the background.o This approach allows interactive refinement—modifying scribbles iteratively improves the accuracy ofsegmentation.Let us start with an image to segment (for example, a flowerfrom the Berkely segmentation dataset) and a rectanglearound the object of interest (rect), providing the foregroundhint. The GrabCut algorithm will then iteratively refine thesegmentation based on this user input. The resultingsegmented image is displayed using the imshow() function

from matplotlib.pylab.Now, let us demonstrate how to use cv2.grabCut() functionto implement binary segmentation using the Grabcutalgorithm. The function in opencv-python has severalarguments that control the behavior of the algorithm. Here isan overview of the main arguments:
• img: Input image (to be segmented).
• mask: A mask image used to initialize and store thesegmentation. It should be a 2D array with the sameheight and width as the input image. The mask is typicallyinitialized with zeros, and the user provides seed points(rectangles or points) to indicate the initial estimate of theforeground and background.
• rect: A rectangle, a tuple specifying the rectangle thatencloses the object of interest. The tuple format is (x, y,

width, height). This rectangle is used as an initialestimate for the foreground.
• bgdModel and fgModel: Background and foregroundmodel. These are arrays used by the algorithm internally;they are updated by the function during the iterativeoptimization process.
• iterCount: The number of iterations the GrabCutalgorithm will run to refine the segmentation. A largernumber of iterations may lead to a more accuratesegmentation (set to in the following code snippet).
• mode: An optional parameter that specifies the operationmode. It can take one of the following values:o cv2.GC_INIT_WITH_RECT: The rectangle provided(rect) is used as the initial segmentation.o cv2.GC_INIT_WITH_MASK: The mask provided(mask) is used as the initial segmentation.o If None, the function starts with an internally computedsegmentation (may not be accurate).

import numpy as np
import cv2
from matplotlib import pyplot as plt
orig = cv2.imread('images/gerbara.png')img = np.copy(orig)mask = np.zeros(img.shape[:2],np.uint8)
specify rectangle around object of interest (x, y, width, height)rect = (25,20,400,280)cv2.grabCut(img, mask, rect, None, None, 5, cv2.GC_INIT_WITH_RECT)
Modify the mask to get the binary segmentation resultmask = np.where((mask==2)|(mask==0),0,1).astype('uint8')
Apply the mask to the original imageimg = img * mask[:,:,np.newaxis]
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 7), \ sharex=True, sharey=True)cv2.rectangle(orig, (rect[0], rect[1]), (rect[2], rect[3]), (255,0,0), 2)ax1.imshow(cv2.cvtColor(orig, cv2.COLOR_BGR2RGB)), ax1.axis('off')ax1.set_title('Original Image (with Object hint rectangle)', size=15)ax2.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)), ax2.axis('off')ax2.set_title('Segmented Object with GrabCut', size=15) #,plt.colorbar()plt.tight_layout()plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 3.18: Interactive GrabCut segmentation with opencv-python

RandomWalk segmentation with scikit-
image

RandomWalk image segmentation uses the concept of arandom walk on a graph to partition an image into differentregions. In this method, each pixel in the image is treated as anode in a graph, and the intensity values or features of thepixels determine the weights of the edges between the nodes.The random walk algorithm then simulates a random walkermoving on the graph, and the segmentation is obtained basedon the probabilities of the walker reaching different regions.Now, let us demonstrate scikit-image’s implementation ofthe random walker segmentation algorithm. Start byimporting the required Python libraries, modules andfunctions as:
from skimage.segmentation import random_walker
from skimage.io import imread
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatableThe random_walker function in scikit-image is part of the
skimage.segmentation module. We shall use this functionfor random walker image segmentation. Here is an overviewof the key arguments of the function:

• data: The input image (a 2D grayscale or a 3Dmultichannel image) to be segmented.
• markers: An array of the same shape as data wheremarkers indicate the segmentation regions. It should be anarray of integers, where different integers representdifferent regions. Typically, you would set certain pixels asmarkers (e.g., background and foreground markers) toguide the segmentation.
• beta: A parameter that controls the influence of thesmoothness term. Higher values of beta result in smoothersegmentations. Adjust this parameter based on thecharacteristics of your images.
• mode: Specifies the update rule, default is ‘bf’(backward/forward) and often more stable than otherupdate rules.

• channel_axis: Specifies the channel axis for amultichannel image, i.e., -1 indicates that the lastdimension is the channel dimension.Let us use a white horse image as the input image, and weaim to segment the horse (foreground object) from thebackground:
• The horse image is annotated (scribbled), red and greenscribbles denote the background and foreground regions,respectively. The marker image is created, by startingfrom blank image and then marking the correspondingpixels by different integers (e.g., 1 and 2), as shown in thefollowing code snippet.
• Use the random_walker() function to get the labels forthe segmented image, along with the probability of

foreground and background predicted by the function,for each pixel in the image, obtained by setting theargument return_full_prob=True.img = imread('images/horse.png')[...,:3]mask = imread('images/mask_horse.png')markers = np.zeros(img.shape[:2], dtype=np.uint8)markers[(mask[...,0] >= 200)&(mask[...,1] <= 20)&(mask[...,2] <= 20)] = 1markers[(mask[...,0] <= 20)&(mask[...,1] >= 200)&(mask[...,2] <= 20)] = 2
Run random walker algorithmlabels = random_walker(img, markers, beta=1, mode='bf', channel_axis=-1)labels_prob = random_walker(img, markers, beta=9, mode='bf', \ channel_axis=-1, return_full_prob = True)

• Plot the original image, segmentation contour, binarysegmentation mask, and the probability of foregroundpixels using the following code snippet. You should obtainan output as shown in the following figure:

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(20, 15), \ sharex=True, sharey=True)ax1.imshow(mask, interpolation='nearest'), ax1.axis('off') ax1.set_title('Original Image with Markers', size=30)ax2.imshow(img, interpolation='nearest')ax2.contour(labels, linewidths=5, colors='y'), ax2.axis('off')ax2.set_title('Segmentation Contour', size=30)ax3.imshow(labels,cmap='gray',interpolation='nearest'), ax3.axis('off')
ax3.set_title('Segmentation', size=30)prob = ax4.imshow(labels_prob[1,...], cmap='Spectral', \ interpolation='nearest')ax4.axis('off'), ax4.set_title('Segmentation Probabilities', size=30)divider = make_axes_locatable(ax4)cax = divider.new_vertical(size="5%", pad=0.5, pack_start=True)fig.add_axes(cax)fig.colorbar(prob, cax=cax, orientation="horizontal")fig.tight_layout()plt.show()If you run the aforementioned code snippet, you should obtaina figure as follows:

Figure 3.19: Random walk segmentation with scikit-image

Fast marching segmentation with
SimpleITK
Fast marching image segmentation is a method thatevolves contours based on speed functions to segment objectboundaries efficiently. It is based on the Fast Marching
Method (FMM), which is a numerical technique for solvingthe Eikonal equation. The Eikonal equation describes theevolution of a front or wavefront in a way that is dependent onthe local speed at each point. Mathematically, the Eikonalequation is given by:
Where is the arrival time (the time it takes for the front toreach a certain point), is the magnitude of the gradientof and is the speed function.In the context of image segmentation using the FMM, thespeed function represents the likelihood or confidence of apixel belonging to a particular segment or region. It guidesthe evolution of the front, with regions of higher speed beingreached earlier by the front. FMM evolves a front through theimage, assigning labels to pixels based on the informationobtained from the speed function.Now, let us apply the fast-marching segmentation on animage, using SimpleITK’s implementation of the algorithm.The following are the steps you need to follow:1. Let us start by importing the required libraries anddefining the parameter values for the functions to be used,using the following code snippet:

import SimpleITK as sitk
import numpy as np
import matplotlib.pylab as plt
seed_position = (70, 170)sigma = 0.25alpha = -3.0

beta = 10.0stopping_time = 1002. Read the input grayscale image using the ReadImage()function from SimpleITK.3. Let us first apply the filter function
CurvatureAnisotropicDiffusionImageFilter() to theimage, this filter is used for image smoothing or denoising.It applies an anisotropic diffusion process that is guided bythe local image structure, helping to preserve edges andboundaries while reducing noise. This filter is particularlyuseful for enhancing the visibility of structures in images.The method Execute() applies the filter to the input imageto obtain the smoothed image smoothing_output, asshown in the following code snippet.4. Next, apply the filter function
GradientMagnitudeRecursiveGaussianImageFilter()to the smoother image. This filter calculates the gradientmagnitude of an image using a recursive Gaussian filter.This filter is commonly used to emphasize edges andhighlight transitions between different intensity levels.5. Apply SigmoidImageFilter() to the gradient magnitudeimage for contrast adjustment or to enhance specificintensity range.6. Finally, apply FastMarchingImageFilter() function tothe image. The FastMarchingImageFilter in SimpleITKis part of the toolkit’s segmentation module and isdesigned to perform image segmentation using the FMM.You need to provide the filter with the seed points (usingthe function SetTrialPoints()). These are the initial pointsfrom which the front will start to evolve. The filter will setthese points as known and then iteratively update thearrival times around them.You can set additional parameters, such as the stopping value(with the method SetStoppingValue()), determining whenthe front evolution should stop. You can subsequently apply

the BinaryThresholdImageFilter() for thresholding theoutput image to create a binary image, as shown in the figure.Display all the images using the plot_image() function, asshown in the following code snippet:
def plot_image(img, title, img_type=np.float32): im = sitk.GetArrayViewFromImage(img).astype(img_type) im = im / im.max() plt.imshow(im), plt.axis('off'), plt.title(title, size=20)
input_image = sitk.ReadImage('images/Img_03_09.png', sitk.sitkFloat32)
smoothing = sitk.CurvatureAnisotropicDiffusionImageFilter()smoothing.SetTimeStep(0.125)smoothing.SetNumberOfIterations(5)smoothing.SetConductanceParameter(9.0)smoothing_output = smoothing.Execute(input_image)
gradient_magnitude = sitk.GradientMagnitudeRecursiveGaussianImageFilter()gradient_magnitude.SetSigma(sigma)gradient_magnitude_output = gradient_magnitude.Execute(smoothing_output)rescale = sitk.RescaleIntensityImageFilter()gradient_magnitude_output = rescale.Execute(gradient_magnitude_output)
sigmoid = sitk.SigmoidImageFilter()sigmoid.SetOutputMinimum(0.0)sigmoid.SetOutputMaximum(255)sigmoid.SetAlpha(alpha)sigmoid.SetBeta(beta)sigmoid_output = sigmoid.Execute(gradient_magnitude_output)
seed_value = 0fast_marching = sitk.FastMarchingImageFilter()trialPoint = (seed_position[0], seed_position[1], seed_value)fast_marching.AddTrialPoint(trialPoint)fast_marching.SetStoppingValue(stopping_time)fast_marching_output = fast_marching.Execute(sigmoid_output)
thresholder = sitk.BinaryThresholdImageFilter()thresholder.SetLowerThreshold(0)thresholder.SetUpperThreshold(255)thresholder.SetOutsideValue(0)thresholder.SetInsideValue(1)output_image = thresholder.Execute(fast_marching_output)
plt.figure(figsize=(20,15))plt.gray()plt.subplots_adjust(0,0,1,0.95,0.05,0.05)plt.subplot(231), plot_image(input_image, 'input')plt.subplot(232), plot_image(smoothing_output, 'smoothed')

plt.subplot(233)plot_image(gradient_magnitude_output, 'gradient', np.uint8)plt.subplot(234), plot_image(sigmoid_output, 'sigmoid output')plt.subplot(235)plot_image(fast_marching_output, 'segmented (FastMarching)')plt.subplot(236), plot_image(output_image, 'segmentred (binarized)')plt.show()If you run the aforementioned code snippet, you should obtaina figure as follows:

Figure 3.20: Fast marching image segmentation with SimpleITK

Segmentation using SLIC/NCut with
scikit-imageIn this section, you will learn a few more segmentationalgorithms, e.g., superpixel-based (SLIC) and normalized
cut (NCut) based algorithms. We shall demonstrate how tosegment an image with these algorithms using
skimage.segmentation and skimage.graph modulefunctions, respectively.

SLIC segmentation
SLIC is a superpixel segmentation algorithm used incomputer vision and image processing. The goal of SLIC is togroup pixels into perceptually meaningful and spatiallycompact regions called superpixels. Superpixels areessentially sets of contiguous pixels that share similar colorand texture characteristics. SLIC is particularly useful forsegmenting images into regions with similar color and texture.It is an extension of k-means clustering applied in a spatiallylocalized manner.The following is a brief overview of how SLIC segmentationworks:

• Initialization: The algorithm starts by sampling a set ofinitial cluster centers, which are distributed regularlythroughout the image. These initial cluster centers aredetermined based on a combination of image intensity andspatial proximity.
• Assignment of pixels to super pixels: Each pixel is thenassigned to the nearest cluster center in a 5D space,consisting of color information (usually in the RGB or LABcolor space) and spatial information (x, y coordinates).This assignment is done by considering both the colorsimilarity and the spatial proximity of pixels to the clustercenters.
• Update of cluster centers: After the initial assignment,the cluster centers are updated by computing the meancolor and position of all pixels assigned to each cluster.This step helps to refine the superpixel boundaries.
• Iteration: Steps 2 and 3 are iteratively repeated untilconvergence. The process converges when the clustercenters and assignments do not change significantlybetween iterations.
• Compactness constraint: SLIC includes a compactnessconstraint to ensure that the resulting superpixels are

spatially compact. This is achieved by penalizing thedistance between pixels and their assigned cluster centersbased on the Euclidean distance in the 5D space.The algorithm’s parameters include the number of desiredsuper pixels and a weighting factor that controls the trade-offbetween color similarity and spatial proximity in theassignment step. By adjusting these parameters, users cancontrol the size and regularity of the superpixels generated bySLIC. The SLIC method is known for its efficiency andeffectiveness in producing visually meaningful superpixels.
Normalized cutImage segmentation with NCut is a technique that aims topartition an image into coherent regions based on thesimilarities between pixels. Normalized cut is a graph-basedmethod that considers both the similarities within the samesegments and the dissimilarities between the differentsegments.The objective function to be minimized in Ncut segmentationis defined to balance the desire for high similarity withinclusters and low similarity between clusters. The goal is tofind a partition of the graph (representing an image or data)that minimizes the normalized cut value.The objective function for Ncut segmentation is typicallyexpressed as follows:

Where we have:
• : The cut between clusters and , representingthe sum of weights of edges connecting nodes in tonodes in .
• : The association of cluster with all vertices ,representing the sum of weights of edges connected to

nodes in .
• : The set of all vertices in the graph.The goal is to partition the graph into non-overlappingclusters and in such a way that the cut between them isminimized while considering the sizes of the clusters. Thedivision by the association terms normalizes the cut values,making it independent of the sizes of the clusters.The overall objective is to find clusters that have high internalsimilarity and low external similarity. The segmentationalgorithm achieves this by solving an optimization problemthat minimizes the normalized cut value. In practice, this isoften achieved using spectral methods, where theeigenvectors of a certain matrix (usually the graph

Laplacian) are used to represent the clusters. The algorithmseeks to find an optimal partition that satisfies theseconstraints while minimizing the normalized cut value,resulting in a meaningful segmentation of the image. It alsopenalizes unbalanced partitions, discouraging solutions whereone segment is significantly smaller than the other.Now, let us demonstrate how an input image containingapples and oranges can be segmented using the scikit-imageimplementations of the aforementioned algorithms:
• We shall use the function segmentation.slic() to segmentthe input image using SLIC. The argument n_segments tothe function determines the approximate number ofsegments to create, whereas compactness controls thebalance between color similarity and spatial proximity inthe segmentation.
• The function graph.rag_mean_color() function is part ofthe Region Adjacency Graph (RAG) analysis for imagesegmentation. The RAG is a graph representation wherenodes correspond to image regions (superpixels orsegments), and edges connect neighboring regions. The

rag_mean_color() function specifically computes themean color of each region in the RAG. The function returns

a dictionary where keys are the region labels and valuesare the mean colors.
• Use the function graph.cut_normalized() to segment theimage using NCut algorithm.
• Let us plot the original input image along with thesegmented images, using the following code snippet:

import skimageprint(skimage.__version__)
0.21.0

from skimage import graph, segmentation, color
from skimage.io import imread
from matplotlib import pyplot as plt
img = imread('images/apples_oranges.png')[...,:3]labels_slic = segmentation.slic(img, compactness=30, n_segments=400)out_slic = color.label2rgb(labels_slic, img, kind='avg')
g = graph.rag_mean_color(img, labels_slic, mode='similarity')labels_ncut = graph.cut_normalized(labels_slic, g)out_ncut = color.label2rgb(labels_ncut, img, kind='avg')
fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True, \ figsize=(20, 15))ax[0,0].imshow(img), ax[0,0].set_title('Original image', size=20) ax[0,0].set_axis_off()ax[0,1].imshow(out_slic)ax[0,1].set_title('With SLIC superpixelation', size=20) ax[1,0].set_axis_off(), ax[1,0].imshow(out_ncut)ax[1,0].set_title('With Normalized-Cut', size=20) ax[0,1].set_axis_off(), ax[1,1].set_axis_off()plt.tight_layout()plt.show()If you run the aforementioned code snippet, you should obtaina figure as follows:

Figure 3.21: SLIC/NCut segmentation with scikit-image

RAG mergingRAG merging is a technique used in image segmentation,where the goal is to partition an image into meaningfulregions. RAG merging involves the construction of a graphrepresentation of an image, where nodes correspond to imageregions, and edges represent the adjacency relationshipsbetween regions. The merging process is then applied toiteratively combine similar regions based on certain criteria.The following is a basic outline of the steps involved in RAGmerging:
• Region growing: Start with an initial over-segmentationof the image. This can be achieved using techniques likeregion-growing or superpixel algorithms. Assign a uniquelabel to each pixel or region.
• Construct region adjacency graph: Create a graphwhere each node corresponds to a region and edgesconnect adjacent regions. The weight of the edges can bedefined based on a similarity metric between regions. Thismetric can consider color, texture, or other features.
• Iterative merging: Iterate through the edges of the RAGand merge regions that meet certain criteria. The merging

criteria can be defined based on the similarity metric and athreshold. For example, merge adjacent regions if theircolor similarity is above a certain threshold.
• Update RAG: After merging, update the RAG by removingthe edges between the merged regions and adding newedges to the merged region.
• Repeat merging: Repeat the merging process until nomore merging is possible or until a predefined condition ismet.The following code snippet uses the function

graph.cut_threshold() to combine regions separated byweight less than threshold (e.g., 50 in the following codesnippet). Given an image’s labels and its RAG, the functionoutputs new labels by combining regions whose nodes areseparated by a weight less than the given threshold, as shownin the following code snippet:img = io.imread('images/bird.png')[...,:3]
labels_slic = segmentation.slic(img, compactness=30, n_segments=400)out_slic = color.label2rgb(labels_slic, img, kind='avg')
g = graph.rag_mean_color(img, labels_slic)labels_rag = graph.cut_threshold(labels_slic, g, 50)out_rag = color.label2rgb(labels2, img, kind='avg')
fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True, \ figsize=(15, 12))fig.subplots_adjust(0,0,1,0.95,0.05,0.05)ax = ax.ravel()ax[0].imshow(img), ax[0].set_title('Original image', size=20)ax[1].imshow(segmentation.mark_boundaries(img, labels_slic,color=(0,0,0))) ax[1].set_title('With SLIC (boundaries marked)', size=20)ax[2].imshow(out_slic), ax[2].set_title('With SLIC', size=20)ax[3].imshow(segmentation.mark_boundaries(out_rag, labels_rag, \ color=(0,0,0)))ax[3].set_title('With SLIC + RAG merging', size=20)
for a in ax: a.axis('off')
plt.show()If you run the preceding code snippet, you should obtain a

figure as follows:

Figure 3.22: SLIC segmentation/RAG merging with scikit-image

ConclusionIn this chapter, we explored a wide range of imagesegmentation techniques, delving into the intricacies of imageprocessing. We have already seen edge detection algorithmssuch as Canny and LoG, these algorithms can be used foredge-based segmentation. Our primary focus was on theregion-based and machine learning-based segmentationtechniques.We understood the foundational concepts of graylevel andbitplane slicing, shedding light on the significance of intensitylevels within an image. Gray level slicing emerged as apowerful tool, particularly when applied to regions of interestfor contrast enhancement.Moving forward, we demonstrated image binarization,employing thresholding techniques with python librariesscikit-image, SimpleITK, and opencv-python. Global and localthresholding methods were explored, alongside advancedapproaches such as max-entropy and adaptive thresholding.

The chapter further covered a comprehensive exploration ofsegmentation techniques, including Mahalanobis distance-based clustering, k-means vs. spectral clustering, MeanShiftsegmentation, watershed segmentation, GrabCutsegmentation, RandomWalk segmentation, and fast marchingimage segmentation.Our journey into segmentation continued with SLIC, NCutalgorithms, and RAG merging. The diverse spectrum oftechniques covered in this chapter provides readers with acomprehensive toolkit for image segmentation andenhancement, paving the way for innovative applicationsacross various domains.In the next chapter, we will understand a few advancedapplications of deep learning models, introducing semantic /panoptic segmentation with Detectron2, backgroundmanipulation using DeeplabV3, and outlier detectionemploying autoencoder with H2O.
Key termsAutoencoder, MeanShift, watershed, active contour,thresholding, Mahalanobis distance, GMM
Questions1. Use the function threshold_local() from skimage.filtersmodule to obtain a local binary thresholded image (basedon local pixel neighborhood) using a few differentalgorithms (e.g., mean, median, niblack, etc.) with

camerman input image from skimage.data. You shouldobtain a figure like the following one (with block size 25,e.g.):

Figure 3.23: Local thresholding with scikit-imageVary the block size to see the impact on the output binaryimage obtained.2. Segmentation using active contours with SimpleITK:Active Contour Model, also known as snake, is a popularmethod for image segmentation. The basic idea is to evolvea curve within an image to find boundaries that separatedifferent regions of interest. Use the functionGeodesicActiveContourLevelSetImageFilter() fromSimpleITK to implement active contour. For example, with

the following input rose image you should obtain asegmented output like the following figure:

Figure 3.24: Segmentation with active contour

References1.
https://www.csd.uoc.gr/~tziritas/papers/segmentSprin
ger.pdf2.
https://www.iro.umontreal.ca/~mignotte/IFT6150/Arti
cles/SLIC_Superpixels.pdf3. https://dl.acm.org/doi/pdf/10.1145/1015706.10157204. https://people.eecs.berkeley.edu/~malik/papers/SM-
ncut.pdf5.
http://vision.cse.psu.edu/people/chenpingY/paper/gra
dy2006random.pdf6. https://arxiv.org/pdf/1706.05587v3.pdf7. https://www.youtube.com/watch?v=_HMyj_BIMoI8. https://www.youtube.com/watch?v=DIODZIwwTK89. https://www.youtube.com/watch?v=seJ2jFvVGis10. https://www.youtube.com/watch?v=PdAXkJObKGA

https://www.csd.uoc.gr/~tziritas/papers/segmentSpringer.pdf
https://www.iro.umontreal.ca/~mignotte/IFT6150/Articles/SLIC_Superpixels.pdf
https://dl.acm.org/doi/pdf/10.1145/1015706.1015720
https://people.eecs.berkeley.edu/~malik/papers/SM-ncut.pdf
http://vision.cse.psu.edu/people/chenpingY/paper/grady2006random.pdf
https://arxiv.org/pdf/1706.05587v3.pdf
https://www.youtube.com/watch?v=_HMyj_BIMoI
https://www.youtube.com/watch?v=DIODZIwwTK8
https://www.youtube.com/watch?v=seJ2jFvVGis
https://www.youtube.com/watch?v=PdAXkJObKGA

11. https://github.com/luiscarlosgph/grabcut

Join our Discord space
Join our Discord workspace for latest updates, offers, tech
happenings around the world, new releases, and sessions with
the authors:
https://discord.bpbonline.com

https://github.com/luiscarlosgph/grabcut
https://discord.bpbonline.com/

CHAPTER 4
More Image Segmentation

IntroductionAs discussed in Chapter 3, Image Segmentation, imagesegmentation is a fundamental task in image processing andcomputer vision that involves partitioning an image intomeaningful regions or segments, often to simplify analysis orextract specific objects of interest. The significance ofsegmentation lies in its ability to enable deeper understandingand interaction with visual data, forming the foundation fornumerous applications, ranging from medical imaging toautonomous driving. With the growing accessibility of
Machine learning (ML) and deep learning (DL) tools,image segmentation has evolved from simple rule-basedmethods to highly sophisticated, data-driven approachescapable of achieving human-like accuracy.This chapter explores a variety of image segmentationtechniques, showcasing their practical implementations usingmodern ML and DL frameworks. It begins with traditionalmethods such as binary classification for skin segmentationusing scikit-learn and connected component labeling withscikit-image, demonstrating how foundational techniques canbe applied to simpler segmentation problems. Next, it delves

into dynamic foreground-background separation in videosusing GMM with opencv-python, illustrating a probabilisticapproach to temporal segmentation.The chapter then transitions to more advanced DL-basedmethods, starting with semantic segmentation, whichassigns class labels to every pixel in an image. Two powerfulframeworks are explored: tensorflow with a pre-trained
DeepLabV3+ XCeptionNet model and opencv-python pairedwith a pre-trained caffe Efficient Neural Network (ENet)model. Building on this, panoptic segmentation—acomprehensive approach that combines semantic and instancesegmentation—is demonstrated using Facebook’s Detectron2framework.Beyond segmentation, practical applications are highlighted,such as blurring and altering backgrounds in images andvideos using DeepLabV3+ models, and outlier detection foridentifying anomalous images using autoencoders with H2O.Each section is designed to guide readers throughimplementation while emphasizing the practical trade-offs anduse cases of the presented methods.
StructureThis chapter covers the following topics:

• Human skin segmentation with binary classifiers withscikit-learn
• Segmentation by labelling connected components withscikit-image
• Foreground-background separation in a video using GMMwith opencv-python
• Semantic segmentation with DeepLabV3+ and ENet
• Panoptic segmentation with the deep learning modelDetectron2
• Blurring and changing background in image and video

using DeepLabV3
• Outlier detection using autoencoder with H2O

ObjectivesBy the end of this chapter, the reader will have a deeperunderstanding of both traditional machine learning and deeplearning-based segmentation techniques and be equipped withthe knowledge to tackle diverse segmentation challenges inreal-world scenarios. You will learn to implement imagesegmentation using binary classifier with scikit-learn, bylabeling connected components with scikit-image, andseparate foreground/background with opencv-python. Thereader will also learn semantic/panoptic segmentation usingthe pre-trained deep learning models with tensorflow/caffewith opencv-python, background modification in images, andanomalous image detection using the library H2O.
Human skin segmentation with binary
classifiers with scikit-learnIn this section, our goal will be to segment human skins asforeground objects from an image, using a supervised
machine learning model, namely, a binary classifier, whichis trained to distinguish between two categories (classes):
skin and non-skin. This could be useful in variousapplications, such as identifying skin diseases, detectinganomalies, evaluating the effectiveness of skincare products,or assisting in content moderation tasks like pornographydetection. Here are the steps that you need to follow to build askin-detector classifier:1. Prepare training dataset: Start with a skinsegmentation dataset from the UCI Machine Learning

Repository

(https://archive.ics.uci.edu/dataset/229/skin+segmen
tation). The dataset contains positive and negativeexamples (that is, a set of RGB pixel values and their labelsindicating whether they correspond to human skin or
not).2. This dataset is collected by randomly sampling R, G, andB values from images of the faces of different age groups(young, middle-aged, old), regions, and genders. Thisdataset has the dimensions of 245057 x 4, the first threecolumns are B, G, R values (corresponding to the variablesx1, x2, and x3, respectively) and the fourth column is theclass label (decision variable y, where y = 1 is a positive,that is, a skin example, and y = 2 is a nonskin example).The following Table 4.1 shows the size of the samples inthe dataset:

Total learning sample size Skin sample size Non-skin sample size

245057 50859 194198
Table 4.1: Size of samples in the dataset3. We shall use the YCbCr color space instead of RGB, sinceit separates the luminance (brightness) from

chrominance (color information) in RGB values using alinear transform (thereby reducing the impact of lightingvariations). Then, we will train a few binary classifiers onthe given dataset, but only using the chrominancechannels.4. Let us start by importing the required libraries and thepython classes corresponding to binary classifier modelsfrom the library scikit-learn. Next, load the dataset andconvert it from RGB to YCbCr color space. We shall onlyuse Cb and Cr channels as features to predict the label
skin; hence, drop all other columns, as shown in thefollowing code snippet. This dataset will act as trainingdataset for the classifier models to be trained:
import numpy as np

https://archive.ics.uci.edu/dataset/229/skin+segmentation

import matplotlib.pyplot as plt
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier
from skimage.io import imread
from skimage.color import rgb2ycbcr, gray2rgbdf = pd.read_csv('images/Skin_NonSkin.txt', header=None, \ delim_whitespace=True)df.columns = ['B', 'G', 'R', 'skin']df.skin[df.skin == 2] = 0df['Cb'] = np.round(128 -.168736*df.R -.331364*df.G + .5*df.B) \ .astype(int)df['Cr'] = np.round(128 +.5*df.R - .418688*df.G -.081312*df.B) \ .astype(int)df.drop(['B','G','R'], axis=1, inplace=True)df.drop_duplicates(inplace=True)df.head()Refer to the following figure, showing first few pixel values(after RGB-YCbCr color-space transformation)corresponding to skin:

Figure 4.1: Skin color pixels in YCbCr color space5. We shall use the following supervised machine learningmodels as binary classifiers. Here is a brief description ofthe models:a. Gradient boosting: An ensemble learning modelthat combines the predictions of several weak learners(typically decision trees) to create a strong learner. Itbuilds trees sequentially, with each tree correcting theerrors of the previous one.b. Decision tree: A type of supervised machine learning

model used for both classification and regression tasks.It works by recursively splitting the dataset based onfeatures, creating a tree-like structure. Each internalnode represents a decision based on a feature, and eachleaf node represents the output or class label. Decisiontrees are interpretable and can handle both numericaland categorical data.c. Gaussian Naive Bayes: A probabilistic (generative)classification model based on Bayes’ theorem. It(naively) assumes that the features are conditionally
independent given the class label and that thedistribution of each feature is Gaussian (normal).Despite its simplicity and the naive assumption, it oftenperforms well in practice, especially with continuousdata.d. k-nearest neighbors (kNN): a simple and intuitive
instance-based learning model used for classificationand regression. In kNN, an object is classified by themajority class of its k nearest neighbors, where is auser-defined parameter. It works on the principle thatsimilar instances in the feature space should havesimilar output values. The choice of affects the trade-
off between bias and variance in the model.6. Use scikit-learn’s implementation of the binary classifiermodels. Instantiate the objects corresponding to each ofthe model classes and train each model on the trainingdataset using the fit() method, as shown in the followingcode snippet:Xy = df.valuesX = Xy[:, 1:]y = Xy[:, 0]

models = (GradientBoostingClassifier(n_estimators=1000, \ max_leaf_nodes=4, max_depth=None, random_state=2, min_samples_split=5), DecisionTreeClassifier(random_state=0), GaussianNB(), KNeighborsClassifier(5))

models = [clf.fit(X, y) for clf in models]7. Once trained, our models are ready to be used forprediction. To predict whether a pixel from an image is askin pixel or a non-skin pixel, for each of theaforementioned models:a. We need to convert pixel RGB value to YCbCr.b. Pass the YCbCr value of the pixel as input to the model.c. The model will predict the class label (using themethod predict(), as invoked from the function
plot_contours() in the next code snippet).8. Create a meshgrid of values for Cb, Cr and scatterplotthe predicted value of a pixel with the given values of Cb,Cr as skin or non-skin, for each pixel. Scatterplot thetraining datapoints on top. As can be seen from Figure 4.2,the small red region indicates the pixels predicted as skin,also observe that the prediction by different classifierdisagree at many pixels.

def make_meshgrid(x, y, h=.02): x_min, x_max = x.min() - 1, x.max() + 1 y_min, y_max = y.min() - 1, y.max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) return xx, yy
def plot_contours(ax, clf, xx, yy, **params): Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) out = ax.contourf(xx, yy, Z, **params) return out
Set-up 2x2 grid for plotting.fig, sub = plt.subplots(2, 2, figsize=(20,20))plt.subplots_adjust(left=0, right=1, bottom=0, top=0.9, \ wspace=0.05, hspace=0.08)
X0, X1 = X[:, 0], X[:, 1]xx, yy = make_meshgrid(X0, X1, h=1)
title for the plotstitles = ('GradientBoosting', 'DecisionTree', 'Gaussian Naive Bayes', 'kNearestNeighbor')

for clf, title, ax in zip(models, titles, sub.flatten()): ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=5 plot_contours(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xlabel('Cb', size=20) ax.set_ylabel('Cr', size=20) ax.set_xticks(()) ax.set_yticks(()) ax.set_title(title, size=20)
plt.suptitle('Decision Boundaries with different Classifiers', \ size=30)plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 4.2: Visualizing the decision boundaries for the binary classifiers to predict
skin/non-skin pixels9. Next, load the input image that you want to segment(containing human faces/skins), convert it to the YCbCrcolor space, and predict the label of the pixel as skin (1)

or non-skin (0).10. Mask out the pixels where the prediction is nonskin,and obtain the final segmentation result, for each of thebinary classifiers, as demonstrated in the following codesnippet:image = imread('images/players.png')[...,:3]proc_image = np.reshape(rgb2ycbcr(image), (-1, 3))
fig, sub = plt.subplots(2, 2, figsize=(20,15))plt.subplots_adjust(left=0, right=1, bottom=0, top=0.95, \ wspace=0.05, hspace=0.08)
for clf, title, ax in zip(models, titles, sub.flatten()): print(title)
 # GradientBoosting/DecisionTree/GaussianNB/kNearestNeighbor skin = clf.predict(proc_image[...,1:]) skin = skin.reshape(image.shape[0], image.shape[1]) result = np.bitwise_and(gray2rgb(255*skin).astype(np.uint8), \ image) ax.imshow(result), ax.axis('off') ax.set_title('Skin Detected and Segmented with ' + title, \ size=20) plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 4.3: Human skin detection in image with binary classifiers

Segmentation by labelling connected
components with scikit-imageIn this section, we will learn how to segment an image byfinding the connected components in the thresholdedbinary image. A connected component is a set of connectedpixels with the same label or intensity value. Variousalgorithms can be used for connected component labeling,such as:

• Two-pass algorithm: In the first pass, assign temporarylabels to connected components. In the second pass,resolve label equivalences and assign final labels.
• Union-Find algorithm: Also known as disjoint-set datastructure, it efficiently keeps track of connectedcomponents and merges equivalent labels.Let us segment an image with connected component labelingalgorithm with scikit-image.measure module’s label()function. Start by importing the required libraries andfunctions. Here are the steps to be followed:1. Read a land image (from satellite) as input and convert itto grayscale using skimage.color.rgb2gray() function.2. Apply Otsu thresholding to obtain the binary image. Use

morphological closing operation (using the function
skimage.morphology.closing()) to close small holes orgaps in regions, smooth the boundaries of objects, andconnect nearby regions that have small separations, if any.It is particularly useful for preprocessing binary imagesand improving the segmentation of objects.3. Remove artifacts connected to image border with thefunction clear_border().4. Label image regions with the function
skimage.measure.label(), which is specifically designedfor connected component labeling in binary images. Itassigns a unique label to each connected component in the

input binary image. The label() function takes a binaryimage as input, where pixels are classified as either
foreground (1) or background (0). The connectivityparameter defines which pixel neighbors should beconsidered (for example, use the value 2 for 8-
connectivity and the value 1 for 4-connectivity).5. As can be seen from the following code snippet, it finds1482 regions. Plot the input image, overlay the labels ontop of the image using the function
skimage.color.label2rgb().6. Use skimage.measure.regionprops() function to loopthrough the regions found and draw a rectangle aroundlarge enough regions (for example., with region.area >=
100).
from skimage.filters import threshold_otsu
from skimage.segmentation import clear_border
from skimage.measure import label, regionprops
from skimage.morphology import closing, square
from skimage.color import label2rgb, rgb2gray
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
image = (255*rgb2gray(imread('images/land.png')[...,:3])) \ .astype(np.uint8)
thresh = threshold_otsu(image)bw = closing(image > thresh, square(3))cleared = clear_border(bw)
label_image = label(cleared, connectivity=2)image_label_overlay = label2rgb(label_image, image=image)print(np.max(label_image))
1482

fig, ax = plt.subplots(figsize=(20, 10))ax.imshow(image_label_overlay, cmap='jet')
for region in regionprops(label_image): # take regions with large enough areas if region.area >= 100: # and region.area <= 80000: # draw rectangle around segmented regions minr, minc, maxr, maxc = region.bbox

 rect = mpatches.Rectangle((minc, minr), maxc-minc, maxr-minr, fill=False, edgecolor='yellow', linewidth=2) ax.add_patch(rect)
ax.set_axis_off()plt.tight_layout()plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 4.4: Segmentation by labeling connected components7. By default, 0-valued pixels in the binary image areconsidered as background pixels by the
skimage.measure.label() function. You can override thisdefault behavior by passing a value in the backgroundargument (for example, background=1 will consider the1-valued pixels as background).8. Use the input image of the school building and obtaindifferent segmentation results by varying the thresholdfor binarization, background value and color map (cmap)for matplotlib.pylab.imshow(). You should obtain afigure as the following one:

Figure 4.5: Coloring the segmented regions obtained by labelling with connected
components

Foreground-background separation in a
video using GMM with opencv-python
Background subtraction is a technique used in computervision to separate the foreground (moving objects) from the
background in a video stream or sequence of images.
OpenCV provides several algorithms for backgroundsubtraction, and one commonly used method is the function
createBackgroundSubtractorMOG2(), which implements aGaussian Mixture based background/foreground segmentationalgorithm. GMM is a probabilistic model used forrepresenting a mixture of multiple Gaussian distributions.

In this section we shall demonstrate background subtractionin video frames, using the opencv-python function
createBackgroundSubtractorMOG2(). Here are the stepsto be followed:1. Let us start the implementation by importing the requiredlibraries.2. Read the input video stream (here, we shall use a video ofstudents walking in the corridor towards the camera)using cv2.VideoCapture().3. Instantiate a GMM background subtractor object with thefunction cv2.createBackgroundSubtractorMOG2(). Thefunction accepts the following arguments:a. history: The number of previous frames used to buildthe background model. A higher value gives thealgorithm an extended memory but it may be slower toadapt to changes. Default is 500.b. varThreshold: A threshold on the squared

Mahalanobis distance between the pixel and the modelto decide whether a pixel is well-described by thebackground model. A lower value makes the algorithmmore sensitive to changes. Default is 16 (the followingcode snippet uses the value 32, and experiments withdifferent values of this parameter).c. detectShadows: If True, the algorithm detectsshadows and marks them in the foreground mask.Default value is True.4. The background subtractor maintains an internal model ofthe background, and for each incoming frame, it comparesthe pixel values with this model. Pixels that deviatesignificantly from the background model are considered asforeground. The detectShadows parameter helpsdistinguish shadows from actual foreground objects.5. Process each frame or image in a loop, applying the GMMbackground subtractor (with the method apply()), to

obtain the foreground mask. Figure 4.6 shows theforeground mask computed for a few different frames fromthe video. Refer to the following code snippet:
import numpy as np
import cv2
import matplotlib.pylab as plt
cap = cv2.VideoCapture('images/Vid_03_01.mp4') foreground_background = cv2.createBackgroundSubtractorMOG2(history=500, varThreshold=32, detectShadows=False)count = 1
while True: _, frame = cap.read() if frame is None: break frame = frame.astype(np.uint8) foreground_mask = foreground_background.apply(frame)\ .astype(np.uint8) if count in [50, 100, 170]: plt.subplot(121) plt.imshow(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) plt.axis('off'), plt.title('Original image', size=20) plt.subplot(122), plt.imshow(foreground_mask), plt.axis('off')
 plt.title('Motion-based Segmentation with MOG Background' 'Subtraction', size=20) plt.suptitle('Frame: ' + str(count), size=30) plt.tight_layout() plt.show() count += 1
cap.release()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 4.6: Foreground-background separation in video with opencv-python

Semantic segmentation with
DeepLabV3+ and ENetSemantic segmentation is a computer vision task that aims toclassify each pixel in an image into predefined classes, suchas road, person, car, and so on. It is called semanticbecause it assigns meaning (i.e., class labels) to every pixelbased on what object it represents. Unlike object detection,which detects and localizes objects in an image, semantic

segmentation provides a more detailed understanding of thescene by assigning a class label to every pixel. In this section,you will learn how to use a couple of popular pre-trainedneural net models (namely XCepionNet and ENet) toperform semantic segmentation of an image.
Using pretrained DeepLabV3+
XCeptionNet model with TensorFlow
DeepLabV3+ with XceptionNet is a semantic segmentationmodel that combines the DeepLabV3+ architecture with theXceptionNet backbone. This model is designed for pixel-levelsegmentation tasks, where the goal is to classify each pixel inan image into specific object classes. DeepLabV3+ is anextension of the DeepLabV3 model, and the incorporation ofthe XceptionNet backbone enhances its performance.Here is a breakdown of the key components:

• DeepLabV3+ architecture: DeepLabV3+ is an evolutionof the DeepLab architecture developed by Google forsemantic segmentation tasks. It incorporates several keyfeatures, including atrous (dilated) convolutions, Atrous
Spatial Pyramid Pooling (ASPP), and decoder modules.These features help capture multi-scale contextualinformation and improve the model’s ability to segmentobjects in images.

• XceptionNet backbone: XCeptionNet is a deep neuralnetwork architecture based on depth-wise separableconvolutions. It is known for its efficiency and has beenused as a backbone in various computer vision tasks. Inthe context of DeepLabV3+, XceptionNet serves as thefeature extractor to capture hierarchical features from theinput image.
• Atrous convolution and ASPP: Atrous convolutions, alsoknown as dilated convolutions, are used in DeepLabV3+ tocapture multi-scale information without down-sampling the

spatial resolution. The ASPP module further enhances thiscapability by using multiple atrous convolution rates inparallel to capture information at different spatial scales.
• Decoder module: The decoder module in DeepLabV3+ isresponsible for refining the segmentation output. It up-samples the features to the original image resolution andcombines them with features from earlier layers toimprove localization accuracy.

XceptionNet, short for Extreme Inception, is a deep neuralnetwork architecture that was proposed by the creator of the
Keras deep learning library. XceptionNet is a deep
convolutional neural network (CNN) architecture that isoften used for computer vision and image processing tasks,including semantic segmentation. The following figure showsthe schematic diagram (taken from the corresponding paper)for the architecture of XCeptionNet:

Figure 4.7: XceptionNet architecture
Source: https://arxiv.org/pdf/1610.02357.pdf

As can be seen in Figure 4.7, here are the key components ofthe XceptionNet architecture:
• Entry flow: The network begins with a standardconvolutional layer followed by a series of convolutionalblocks. Each block consists of a depth-wise separable

convolution, batch normalization, and a Rectified
Linear Unit (ReLU) activation. The entry flow isresponsible for capturing low-level features.

• Middle flow: The middle flow is composed of severalidentical residual blocks. Each residual block consists ofthree separable convolutional layers. The middle flowhelps the network capture more complex features bystacking these residual blocks.

https://arxiv.org/pdf/1610.02357.pdf

• Exit flow: The exit flow is responsible for producing thefinal output of the network. It consists of a combination ofseparable convolutional layers, global average pooling,fully connected layers, and a softmax activation forclassification, in case of image classification tasks. Theglobal average pooling is used to reduce spatialdimensions and create a fixed-size representationregardless of the input size.
• Depthwise separable convolutions: The core buildingblock of XceptionNet is the depth-wise separableconvolution. Unlike traditional convolutions that operateon all input channels at once, depth-wise separableconvolutions perform spatial convolutions independentlyfor each input channel, followed by a 1x1 pointwiseconvolution to mix information between channels. Thisfactorization reduces the number of parameters andcomputations, making the network more efficient.
• Skip connections: XceptionNet uses skip connections(residual connections) in both entry flow and middle flow.These connections help mitigate the vanishing gradientproblem (which occurs when gradients become too smallduring backpropagation, causing neural networks tolearn very slowly or stop learning altogether), allowing foreasier training of very deep networks.The XceptionNet architecture is known for its efficiency andstrong performance on various computer vision tasks. It hasfewer parameters compared to traditional architectures suchas InceptionV3 while achieving competitive or even superiorresults. The depthwise separable convolutions contribute tothe model’s ability to capture hierarchical features efficiently,making it well-suited for tasks such as image classification,object detection, and semantic segmentation.Here we shall use a pretrained DeepLabV3+ model with

XceptionNet backbone (already trained on the cityscapesdataset) to perform semantic segmentation of an input

image of a road with traffics.
Cityscapes is a widely used dataset for semanticunderstanding of urban street scenes. It is specificallydesigned for training and evaluating computer vision models,especially those aimed at tasks like semantic segmentationand object detection in urban environments.Here are key details about the Cityscapes dataset:

• Content: The dataset consists of high-quality imagescaptured in various cities, and each image is denselyannotated for pixel-level semantic segmentation. Thismeans that each pixel in an image is labeled with a specificclass, indicating whether it belongs to a road, sidewalk,building, person, car, and so on.
• Labels: Cityscapes provides fine-grained annotations with20-30 different classes, covering a wide range of urbanscene elements. Some of the classes include road,

sidewalk, building, person, car, bus, traffic light, and
vegetation, among others. Each pixel in the images isassigned one of these class labels.

• Image types: The dataset includes a variety of imagetypes, such as high-resolution images, stereo images, andimages captured in different weather conditions (forexample, sunny, rainy). This diversity is valuable fortraining models that can generalize well to different urbanscenarios.
• Usage for training: Researchers and practitioners usethe Cityscapes dataset to train and evaluate semanticsegmentation models. Training involves feeding the imagesand corresponding pixel-level annotations into a deeplearning model (such as ENet, U-Net, or DeepLab) tolearn the mapping between pixels and semantic classes.The trained model can then be used to predict semanticsegmentation masks for new images.
• Benchmarking: Cityscapes is also commonly used as a

benchmark for evaluating the performance of differentcomputer vision models. Researchers can compare theaccuracy of their models on the Cityscapes test set, whichconsists of images not seen during training.Let us now learn how to apply semantic segmentation to animage, using a pretrained model. Here are the steps you needto follow:1. Load all the required libraries along with tensorflow.Note that we need tensorflow version 1 here (even thoughwe have version 2 installed). Hence, use tf.compat.v1 tomaintain compatibility.2. Define the functions label_to_color_image() to convert a
label to a color using a colormap, and
visualize_segmentation() to display an input image,along with the segmentation map passed as arguments, asshown in the following code snippet. Define the
label_names corresponding to the labels output (map thelabel ids to class names) by the semantic segmentationmodel.
from PIL import Image
import cv2
import numpy as np
import matplotlib.pylab as plt
from matplotlib import gridspec
import tensorflow
tensorflow.__version__
2.13.0
import tensorflow.compat.v1 as tf
from tensorflow.io.gfile import GFile
def label_to_color_image(label): if label.ndim != 2: raise ValueError('Expected 2-D input label')
 colormap = np.array([[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153], [153, 153, 153],

 [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152], [70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32], [0, 0, 0]], dtype=np.uint8)
 if np.max(label) >= len(colormap): raise ValueError('label value too large.')
 return colormap[label]
label_names = np.asarray(['road', 'sidewalk', 'building', 'wall', 'fence', 'pole', 'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle', 'void'])
full_label_map = np.arange(len(label_names))\ .reshape(len(label_names), 1)full_color_map = label_to_color_image(full_label_map)
def visualize_segmentation(image, seg_map): plt.figure(figsize=(20, 15)) plt.subplots_adjust(left=0, right=1, bottom=0, top=0.95, \ wspace=0.05, hspace=0.05) plt.subplot(221), plt.imshow(image), plt.axis('off') plt.title('input image', size=20) plt.subplot(222) seg_image = label_to_color_image(seg_map).astype(np.uint8) plt.imshow(seg_image), plt.axis('off') plt.title('segmentation map', size=20) plt.subplot(223), plt.imshow(image) plt.imshow(seg_image, alpha=0.7) plt.axis('off'), plt.title('segmentation overlay', size=20) unique_labels = np.unique(seg_map) ax = plt.subplot(224) plt.imshow(full_color_map[unique_labels].astype(np.uint8), \ interpolation='nearest') ax.yaxis.tick_right() plt.yticks(range(len(unique_labels)), label_names[unique_labels]) plt.xticks([], [])

 ax.tick_params(width=0.0, labelsize=20), plt.grid('off') plt.show()3. Load the pretrained XceptionNet model: Load pre-trained XceptionNet model (trained on the cityscapesdataset). You can download the compressed model fromthe link
http://download.tensorflow.org/models/deeplabv3_city
scapes_train_2018_02_06.tar.gz. Unzip the compressedfile and place the file frozen_inference_graph.pb insidethe models folder.4. Define a function run_semantic_segmentation() thattakes two parameters: image (input image) and
model_path (path to a pre-trained model). This functionwill perform semantic segmentation on an input imageusing the pre-trained model (it accepts model_path as anargument, which will be the path to the frozen inference
graph).5. Load the tensorflow graph: Create a new tensorflowgraph and load the pre-trained model into the graph usingthe provided model_path. The model file is assumed to bein a binary format, and its content is read into graph_def.Check if the graph was successfully loaded. If not, raise a
RuntimeError() indicating that the inference graph couldnot be found in the provided tar archive.6. Import graph into a tensorflow session and set this graphas the default graph within the context, i.e., Create atensorflow session (with tf.Session()) using the loadedgraph.7. Obtain the width and height of the input image. Resize theimage to the specified target_size (2049, 1025) using thenearest-neighbor interpolation.8. Run semantic segmentation inference on thepreprocessed image. The output is stored in
batch_seg_map. The output tensor name is assumed to be

http://download.tensorflow.org/models/deeplabv3_cityscapes_train_2018_02_06.tar.gz

SemanticPredictions:0, and the input tensor name is
ImageTensor:0.9. Post-process segmentation map: Extract thesegmentation map from the batch output. If thesegmentation map has only two dimensions, add an extradimension for later resizing. Resize the segmentation mapback to the original image size using the nearest-neighborinterpolation. Return the final segmentation map, asdemonstrated in the following code snippet.10. Visualize the segmentation map along with the overlayedsegmentation, using the function
visualize_segmentation(). It also displays the labels as
legend. If you run the next code snippet, you will obtain afigure like the one shown in Figure 4.8:
def run_semantic_segmentation(image, model_path): graph = tf.Graph() graph_def = None with GFile(model_path, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) if graph_def is None: raise RuntimeError('Cannot find inference graph.') with graph.as_default(): tf.import_graph_def(graph_def, name='') sess = tf.Session(graph=graph) width, height = image.size target_size = (2049,1025) # size of Cityscapes images resized_image = image.convert('RGB').resize(target_size, \ Image.ANTIALIAS) batch_seg_map = sess.run('SemanticPredictions:0', feed_dict={'ImageTensor:0': [np.asarray(resized_image)]}) seg_map = batch_seg_map[0] # expected batch size = 1 if len(seg_map.shape) == 2: seg_map = np.expand_dims(seg_map,-1) # extra dim for resize seg_map = cv2.resize(seg_map, (width,height), \ interpolation=cv2.INTER_NEAREST) return seg_map
model = 'models/frozen_inference_graph.pb'image = 'images/road.png'image = Image.open(image)seg_map = run_semantic_segmentation(image, model)

visualize_segmentation(image, seg_map)If you run the preceding code snippet, you should obtain afigure as follows:

Figure 4.8: Semantic segmentation with DeepLabV3+/XceptionNet

With opencv-python and pretrained
Caffe ENet modelThe Efficient Neural Network (ENet) model is a lightweightand efficient neural network architecture designed forsemantic segmentation. ENet was developed with a focus onachieving real-time performance with high accuracy, makingit suitable for applications such as autonomous vehicles,robotics, and augmented reality. Here are some key featuresand aspects of ENet:

• Architecture: ENet is a CNN architecture that utilizes acombination of different layers, including convolutionallayers, pooling layers, and skip connections. It has asymmetric encoder-decoder structure.
• Efficiency: One of the main goals of ENet is to becomputationally efficient while maintaining good

segmentation performance. It achieves this throughvarious design choices, such as factorized convolutions,which decompose standard convolutions into a series ofsmaller convolutions to reduce computational complexity.The model is known for its speed and effectiveness insemantic segmentation tasks while having a relativelysmall number of parameters compared to some other deepneural networks.
• Skip connections: ENet employs skip connectionsbetween the encoder and decoder parts of the network.These connections help preserve spatial information andenable the network to capture both local and globalcontext.
• PReLU activation: Parametric Rectified Linear Unit(PReLU) activations are used in ENet, which can help themodel learn better representations by allowing negativevalues during training.
• Spatial dropout: ENet uses a spatial dropout technique,which involves randomly dropping entire channels offeature maps during training. This helps preventoverfitting and improves the robustness of the model.
• Multi-scale processing: ENet processes the input atmultiple scales, capturing both fine and coarse details inthe image. This is achieved through parallel processing atdifferent resolutions.Once trained, ENet can be used for real-time semantic

segmentation of images or video frames, providing a pixel-wise classification of the visual content. Refer to the followingfigure:

Figure 4.9: ENet architecture
Source: https://sh-tsang.medium.com/reading-enet-real-time-semantic-

segmentation-semantic-segmentation-41f26b85468To use a pretrained ENet model (trained on the cityscapesdataset) for semantic segmentation using opencv-python,follow these steps:1. As usual, start by importing the necessarylibraries/packages.2. Download the pretrained ENet model (enet-model.net),cityscape class names (enet-classes.txt) and the RGBcolor values for the classes (enet-colors.txt) from thefollowing link: https://github.com/simogasp/opencv-
semantic-segmentation/tree/master/enet-cityscapesand save them in the models folder.3. Load the class label names and label colors as follows:
import the necessary packages
import numpy as np
import imutils
import time
import cv2
import matplotlib.pylab as pltclasses = open('images/enet-classes.txt').read().strip().split("\n")

https://sh-tsang.medium.com/reading-enet-real-time-semantic-segmentation-semantic-segmentation-41f26b85468
https://github.com/simogasp/opencv-semantic-segmentation/tree/master/enet-cityscapes

colors = open('images/enet-colors.txt').read().strip().split("\n")colors = [np.array(c.split(",")).astype("int") for c in colors]colors = np.array(colors, dtype="uint8")4. Initialize the legend visualization. Loop over the classnames and colors, draw the class name + color on thelegend, using the following code snippet:legend = np.zeros(((len(classes) * 25) + 25, 300, 3), dtype="uint8")
for (i, (className, color)) in enumerate(zip(classes, colors)): color = [int(c) for c in color] cv2.putText(legend, className, (5, (i * 25) + 17), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cv2.rectangle(legend, (100, (i * 25)), (300, (i * 25) + 25), tuple(color), -1)5. Load the serialized model from disk, with the function
cv2.dnn.readNet().6. Load the input image, resize it, and construct a blob fromit, using the function cv2.dnn.blobFromImage(). Thisfunction will be used to preprocess an image beforefeeding it into a deep neural network (DNN) for runningsemantic segmentation. The function takes the input imageand performs necessary transformations to create a 4-dimensional blob that can be used as input to the neuralnetwork.a. The function cv2.dnn.blobFromImage() accepts thefollowing arguments:i. The input image to be segmented.ii. The scalefactor, used to scale the pixel values. Herewe have used 1/255 to have pixel values in the range[0,1].iii. The spatial size to which the input image should beresized (keep in mind that the original input imagedimensions ENet was trained on was 1024x512, andthat is why we need to resize the input image.)iv. swapRB: OpenCV loads images in BGR order.While many pre-trained neural networks expect input

images in RGB order, we need to set swapRB=Trueto automatically swap the channels.v. crop indicates whether to crop the image afterresizing.7. Set the image as input to the model and perform a
forward pass on the ENet neural network model, usingthe function net.forward() and obtain the output.8. Infer the total number of classes along with the spatialdimensions of the mask image via the shape of the outputarray.9. Our output class ID map will be num_classes x height x
width in size. So, let us use the argmax() function to findthe class label with the largest probability for each andevery (x,y)-coordinate in the image.10. Given the class ID map, let us map each of the class IDsto its corresponding color.11. Resize the mask and class map such that its dimensionsmatch the original size of the input image.12. Compute a weighted combination of the input imagewith the segmentation mask to obtain an overlay image, asshown in the following code snippet:net = cv2.dnn.readNet('models/enet-model.net')image = cv2.imread('images/traffic.jpg')image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)image = imutils.resize(image, width=500)blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (1024, 512), 0, \ swapRB=True, crop=False)
net.setInput(blob)start = time.time()output = net.forward()end = time.time()
(numClasses, height, width) = output.shape[1:4]classMap = np.argmax(output[0], axis=0)mask = colors[classMap]
mask = cv2.resize(mask, (image.shape[1], image.shape[0]), \ interpolation=cv2.INTER_NEAREST)classMap = cv2.resize(classMap, (image.shape[1], image.shape[0]), \

 interpolation=cv2.INTER_NEAREST)output = ((0.4 * image) + (0.6 * mask)).astype("uint8")13. Finally, visualize the overlayed image along with thesegmentation mask output and the input image. Displaythe class names as legends, as shown in the followingcode snippet. You should obtain a figure as shown in
Figure 4.10.plt.figure(figsize=(20,25))plt.subplot(311), plt.imshow(image), plt.axis('off')plt.title('Original Image', size=20)plt.subplot(312), plt.imshow(output), plt.axis('off')plt.title('Segmented Image', size=20)plt.subplot(313), plt.imshow(legend), plt.axis('off')plt.title('legends', size=20)plt.tight_layout()plt.show()If you run the preceding code snippet, you should obtain afigure like the next one:

Figure 4.10: Semantic segmentation with pretrained ENet model (Caffe)

Panoptic segmentation with the deep
learning model Detectron2
Panoptic segmentation is an image processing/computervision task that combines instance segmentation and semanticsegmentation. In panoptic segmentation, the goal is to assigna unique label to each pixel in an image, differentiatingbetween stuff (such as, roads, sky) and things (for example,objects, people). This task unifies the outputs of semantic andinstance segmentation, providing a comprehensiveunderstanding of the scene. Let us first try to understand thedifferences between different types of deep-learning-basedsegmentation models we can have:

• Semantic segmentation: The goal of semanticsegmentation is to classify each pixel in an image intopredefined classes or categories without distinguishingbetween different instances of the same class. The outputis a pixel-wise labeling map, where each pixel is assigned aclass label (for example, road, car, person).
• Instance segmentation: The goal of instancesegmentation is to identify and distinguish individual

instances of objects within the same class. It involves notonly classifying pixels but also assigning a unique
identifier to each instance of an object. The outputincludes both the pixel-wise class labels and instance-specific masks, which differentiate between differentinstances of the same class.

• Panoptic segmentation: As mentioned previously,panoptic segmentation is a combination of semantic and
instance segmentation. It aims to provide a unifiedunderstanding of an image by assigning a unique label toeach pixel, differentiating between stuff (for example,background, roads) and things (such as, objects, people).The output consists of both semantic segmentation masksfor stuff classes as well as instance segmentation masks

for things classes. It unifies the outputs of semantic andinstance segmentation into a single map.In this problem, you will learn how to implement panopticsegmentation using the library detectron2, which is apopular open-source deep learning library developed by
Facebook AI Research (FAIR) for object detection andinstance segmentation tasks. While Detectron2 is primarilydesigned for instance segmentation (and you will use thepretrained models for instance segmentation in the exercise),you can use it for panoptic segmentation by combining itsinstance segmentation outputs with a separate semanticsegmentation model.Let us demonstrate how the library can be used to performpanoptic segmentation. We will install the library (refer to thefollowing link:
https://github.com/facebookresearch/detectron2/blob/m
ain/INSTALL.md). Run the following code snippets with aGPU / TPU (for example, on Google Colab) for fasterexecution:
must be run in colab with runtime type GPU / TPU!python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'Import the library detectron2, along with the modules andfunctions needed, using the following code snippet:
Setup detectron2 logger
import detectron2
from detectron2.utils.logger import setup_loggersetup_logger()
import torch
TORCH_VERSION = ".".join(torch.__version__.split(".")[:2])CUDA_VERSION = torch.__version__.split("+")[-1]
print("torch: ", TORCH_VERSION, "; cuda: ", CUDA_VERSION)
torch: 2.6; cuda: cu124

import some common libraries
import numpy as np
import matplotlib.pylab as plt
import os, json, cv2, random

https://github.com/facebookresearch/detectron2/blob/main/INSTALL.md

import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalogInitialize the configuration, load the model weights for thepretrained model and instantiate the predictor(DefaultPredictor), with the next few lines of code:cfg = get_cfg()cfg.merge_from_file(model_zoo.get_config_file("COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml"))cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml")predictor = DefaultPredictor(cfg)Read the input image (of cats and dogs), run inference byinvoking the function predictor() and use the Visualizer tooverlay the segmentation labels using the following codesnippet and plot the results obtained:im = cv2.imread(cats_dogs.jpg')panoptic_seg, segments_info = predictor(im)["panoptic_seg"]v = Visualizer(im[:, :,::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),\ scale=0.9)out = v.draw_panoptic_seg_predictions(panoptic_seg.to("cpu"), \ segments_info)
im = im[:, :, ::-1]out = out.get_image()[:, :, ::-1]plt.figure(figsize=(20,10))plt.subplot(121), plt.imshow(im), plt.axis('off')plt.title('input image', size=20)plt.subplot(122), plt.imshow(out), plt.axis('off')plt.title('Panoptic Segmented + overlayed', size=20)plt.tight_layout()plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 4.11: Panoptic segmentation with Detectron2

Blurring and changing background in
image and video using DeepLabV3DeepLabV3 is a deep learning model designed for semanticimage segmentation. In this section, we shall use this model toimplement background-blurring in an image (or video).Background-blurring in video calls, such as Zoom meetings,enhances privacy and reduces distractions by keeping thefocus on the speaker. Here is a general outline of how you canapproach this task:

• Object segmentation: Use DeepLabV3 to performsemantic segmentation on each frame of the video. Thiswill give you a mask indicating the different objectspresent in the scene.
• Identify background and foreground: Once you havethe segmentation masks, identify the regionscorresponding to the background and foreground. You mayneed to set a threshold or use some post-processingtechniques to refine the masks.
• Apply blurring: Apply a blur effect to the backgroundwhile keeping the foreground (person or main subject)sharp. You can use traditional image processingtechniques or other deep learning models designed forimage manipulation.
• Combine frames: Combine the modified frames to createthe final video with the blurred background.

Let us now implement the preceding steps, import therequired libraries and modules to start with. Here we shalluse the library pytorch to load and predict using a pretrained
DeepLabV3 model.
import cv2
import numpy as np
import matplotlib.pyplot as plt
import torch
import torchvisionNow follow the next steps, as shown in the following codesnippet:1. The function load_model() can be used to load thepretrained DeepLabV3 model with a ResNet101backbone (download it in your local machine from the

pytorch model hub for the first time, using the function
torch.hub.load()).2. The function get_pred() can be used to obtain thesemantically segmented output image, using the followingsteps:a. First check if the GPU is available

torch.cuda.is_available(). If yes, use it for much fasterexecution.b. Apply the standard preprocessing transforms (using thefunction torchvision.transforms.Normalize()) thatneed to be done before running inference.c. Run the model with the preprocessed input image toobtain the segmentation labels and return the labels.
def load_model(): device = "cuda" if torch.cuda.is_available() else "cpu" model = torch.hub.load('pytorch/vision:v0.6.0', \ 'deeplabv3_resnet101', pretrained=True) model.to(device).eval() return model
def get_pred(img, model): device = "cuda" if torch.cuda.is_available() else "cpu" imagenet_stats = [[0.485,0.456,0.406], [0.485,0.456,0.406]] preprocess = torchvision.transforms.Compose(\

 [torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean = imagenet_stats[0], std = imagenet_stats[1])]) input_tensor = preprocess(img).unsqueeze(0) input_tensor = input_tensor.to(device) with torch.no_grad(): output = model(input_tensor)["out"][0] output = output.argmax(0)
 return output.cpu().numpy()Now let us follow the steps listed, as shown in the next codesnippet:1. Load the pretrained DeepLabV3 model to memory usingthe function load_model().2. Read (with cv2.imread()) the original input and the newbackground image (to replace original image’sbackground). Use cv2.cvtColor() function to convert fromBGR to RGB mode. If you want to apply the backgroundblur to a video, first extract the frames from the video andfor each frame image apply the following operations.3. Obtain the segmented input image using the function
get_pred(). The specific labels and their meanings in thesegmented image depend on the dataset that the modelwas trained on. In the case of DeepLabV3, it is oftentrained and evaluated on datasets such as PASCAL VOCor COCO, which have predefined class labels.4. The PASCAL VOC dataset has 20 categories, in which ourcategories of interest are:a. 0: Backgroundb. 15: PersonHence, wherever the class person is predicted, the labelreturned will be 15.5. Create a binary mask for the background pixels and selectthe background with the mask.6. Define a kernel size (for example, 15×15, as shown in thenext code snippet) for opencv-python’s Gaussian blur

(using the function cv2.GaussianBlur()).7. Apply the Gaussian blur to the background pixels andobtain the image with the blurred background.Subsequently repeat the mask across RGB channels.8. In order to change the background, crate a binary maskagain, select all the pixels from the input except the onesidentified as person (that is, has label 15). Resize the newbackground image to the input image (frame) size.Replace the background pixels from the input image withthe corresponding ones from the background image, usingthe mask, as shown in the next code snippet.9. Plot the input image, segmentation mask, thebackground-blurred image and the image with thebackground replaced, using the next code snippet:model = load_model()
orig = cv2.cvtColor(cv2.imread('images/me.png'), \ cv2.COLOR_BGR2RGB)frame = orig.copy()width, height, channels = frame.shape
bg_image = cv2.imread('images/beach.jpg')bg_image = cv2.cvtColor(bg_image, cv2.COLOR_BGR2RGB)
labels = get_pred(frame, model)
mask = labels == 0 # backgroundmask = np.repeat(mask[:, :, np.newaxis], channels, axis = 2)blur_value = (51, 51)

blur = cv2.GaussianBlur(frame, blur_value, 0)frame[mask] = blur[mask]
mask = labels == 15 # personmask = np.repeat(mask[:, :, np.newaxis], 3, axis = 2)bg = cv2.resize(bg_image, (height, width))bg[mask] = frame[mask]out_frame = bg
plt.figure(figsize=(15,15))plt.subplots_adjust(0,0,1,0.95,0.05,0.05)plt.subplot(221), plt.imshow(orig), plt.axis('off')plt.title('original', size=20)plt.subplot(223), plt.imshow(frame), plt.axis('off')

plt.title('blurred background', size=20)plt.subplot(222), plt.imshow(labels, cmap='gray'), plt.axis('off') plt.title('mask (from DeepLabV3)', size=20)plt.subplot(224), plt.imshow(out_frame), plt.axis('off')plt.title('changed background', size=20)plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 4.12: Automatically changing background with DeepLabV3+

Outlier detection using autoencoder
with H2O

As we have seen in the earlier chapters, autoencoder is atype of artificial neural network used for unsupervisedlearning. It is often designed to encode the input data into alower-dimensional representation and then reconstruct theinput data from this representation. The network is dividedinto an encoder and a decoder:
• Encoder: This part of the network compresses the inputdata into a lower-dimensional representation, oftenreferred to as the encoding or latent space.
• Decoder: This part of the network reconstructs the inputdata from the encoded representation. The goal is togenerate an output that closely matches the input.
• The autoencoder is trained to minimize the differencebetween the input and the reconstructed output.
• Anomalous image detection using autoencoders involvestraining the neural network to learn a compressedrepresentation of the normal images and then using it toreconstruct new data. The intuition is that the autoencoderis effective at reconstructing normal patterns but willstruggle to accurately reconstruct anomalous patterns.Therefore, anomalies will have higher reconstruction

errors. Anomalies can be detected by measuring thedifference between the input and the reconstructedoutput.In this problem, we shall use the Python library H2O, which isalso an open-source machine learning platform. It supportsautoencoders for anomaly detection. Here is a general outlineof how you can perform anomalous image detection usingautoencoders with H2O:1. Make sure you have H2O installed in your Pythonenvironment (if not, install it with pip).2. Import h2o, along with the other required packages. Startan H2O cluster by running the following code (with
h2o.init()):

pip install h2o
import numpy as np
import matplotlib.pylab as plt
import h2o
from h2o.estimators.deeplearning import H2OAutoEncoderEstimator
h2o.init()
Checking whether there is an H2O instance running at
http://localhost:54321 not found.
Attempting to start a local H2O server...3. Load the handwritten images (MNIST dataset) imagedata (train and test partitions) into H2O (with
h2o.import_file() as shown in the next code snippet).Each row in the dataset contains a 28x28 digit imageflattened to 784 dimensions. Get rid of the labels header(with pop()) since we shall go unsupervised.resp = 784train = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/bigdata/laptop/mnist/train.csv.gz")test = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/bigdata/laptop/mnist/test.csv.gz")train.pop(resp)test.pop(resp)4. Define and train an autoencoder model using H2O(instantiate a H2OAutoEncoderEstimator object).Specify the encoding layer to have fewer neurons than theinput layer, forcing the model to learn a compressedrepresentation (for example, our model has the followingdimensions: 784 64 32 64 784, with the bottleneck layerhaving dimensions). With the hidden parameter, you canadjust the number of neurons.5. Use the train() function to train the model on the trainingimages, for 25 epochs, for example, using the next codesnippet. Print the model MSE (Mean Squared Error forimage reconstruction, which measures the averagesquared difference between original and reconstructedimage pixels, it is computed as shown:

Where are image dimensions.ae_model = H2OAutoEncoderEstimator(activation="Tanh", hidden=[64,32,64], model_id="ae_model", epochs=25, ignore_const_cols=False, reproducible=True, seed=1234)ae_model.train(list(range(resp)), training_frame=train)ae_model.mse()
0.0162116540872789056. Use the trained autoencoder ae_model to reconstruct thetest images (using the predict() method) and measure thereconstruction error. Sort the images in descending orderof reconstruction error since anomalies will have higherreconstruction errors.pred = ae_model.predict(test)test_rec_error = ae_model.anomaly(test)test_rec_error = test_rec_error.as_data_frame().valuestest_rec_error = test_rec_error.ravel()indices = np.argsort(test_rec_error)[::-1]7. Finally, visualize top k (for example, k = 8) outliers, plotthe original images and their reconstructions to gaininsights into detected anomalies using the following codesnippet:
Top k outliersk = 8 #100test_images = test.as_data_frame().valuespred_images = pred.as_data_frame().values
for i in range(k): idx = indices[i] k += 1 plt.figure(figsize=(10,7)) plt.gray() plt.subplot(121), plt.imshow(test_images[idx].reshape(28,28)) plt.axis('off'), plt.title('original', size=10) plt.subplot(122), plt.imshow(pred_images[idx].reshape(28,28)) plt.axis('off') plt.title('reconstructed, loss:{:.03f}' \ .format(test_rec_error[idx]), size=10) plt.tight_layout() plt.show()You will get a figure as shown in the following Figure 4.13

displaying the top outliers:

Figure 4.13: Top outliers detected with the autoencoder (with high reconstruction
errors)You can also visualize the images that are reconstructedproperly (have low outlier scores) as shown in Figure 4.14:

Figure 4.14: Images with less reconstruction error (low outlier scores) with the
autoencoder

ConclusionThis chapter provided a comprehensive overview of imagesegmentation techniques, showcasing the application of bothtraditional machine learning and advanced deep learningapproaches. Starting with fundamental methods, binaryclassification with scikit-learn was used for human skinsegmentation, followed by connected component labeling withscikit-image for isolating regions in images. Foreground-background separation in videos was demonstrated usingGMM with opencv-python, highlighting temporalsegmentation.Transitioning to deep learning, semantic segmentation was

explored using two powerful frameworks: TensorFlow with apretrained DeepLabV3+ XCeptionNet model and OpenCV-python paired with a pretrained Caffe ENet model. Advancedpanoptic segmentation, which combines semantic andinstance segmentation, was implemented using theDetectron2 framework. Practical applications were alsodiscussed, including blurring and changing backgrounds inimages and videos with DeepLabV3, and outlier detection (asa preprocessing step in any image processing task) usingautoencoders with H2O.By combining theoretical insights with practicalimplementations, this chapter equipped readers with the toolsand techniques to apply both traditional and deep learning-based segmentation methods to a variety of real-worldscenarios.
Key termsSemantic segmentation, panoptic segmentation, outlierdetection, autoencoder, U-Net, XCeptionNet, DeepLabV3,GMM
Questions1. Use k-means clustering to group face images from

Labeled Faces in the Wild (LFW) face dataset (fromscikit-learn datasets). If the face dataset contains faces of7 people, use k = 7 clusters for k-means. This time, youneed to treat each image as a vector and cluster thembased on their feature representations. The following
Figure 4.15 shows a few face samples from the facedataset:

Figure 4.15: Few face samples from the LFW datasetUse different algorithms to initialize the centroids for k-means (for example, set init argument of the functionsklearn.KMeans() to random, k-means++,pca.components_ and so on) and observe how the metricsevaluating the cluster-quality varies. You should obtain abenchmarking result as shown in the following figure:

Figure 4.16: Benchmarking resultsFinally, use a dimension reduction technique (for example,
PCA) to visualize the clusters in 2D. You should obtain afigure like Figure 4.17 (for example, plot the images at thelocation given by the 2D coordinates corresponding totheir low dimensional representation):

Figure 4.17: Visualizing clusters obtained with k-means in 2D with PCACompare the (unsupervised) cluster labels with theground-truths. How can we improve the quality of theclusters?2. Use SLIC and NCut algorithms to segment the sameapples and oranges image. However, this time, vary theinput parameters to the functionskimage.segmentation.slic() and observe the impact on thesegmented image. What values of the parameters willproduce the following segmented images? Refer to thefollowing figure:

Figure 4.18: Segmentation with SLIC/NCut

3. Use scipy.ndimage to segment an image with connectedcomponent labeling (hint: use the function label()).Compute the area of the regions (for example, use thefunction np.bincount()). Plot the regions obtained. For thegiven original input image (as shown in the next figure),you should obtain a figure as follows:

Figure 4.19: Segmentation with connected component labelling with
scipy.ndimageNow, use opencv-python’s implementation for the samealgorithm (for example, use the functioncv2.connectedComponentsWithStats()). Compare theresults obtained from a different library’simplementations.4. Training a U-Net model on self-driving cars dataset:The U-Net architecture is a CNN designed for semanticsegmentation tasks in computer vision. It is characterizedby its U-shaped structure, which consists of a contractingpath (encoder) followed by an expansive path (decoder).Build a U-Net architecture unet_model (hint: understandthe building blocks and use the following code), by reusingconv_block and upsampling_block components, define withkeras functional API.

def unet_model(input_size=(96, 128, 3), n_filters=32, \ n_classes=23): inputs = Input(input_size) #contracting path

 cblock1 = conv_block(inputs, n_filters) cblock2 = conv_block(cblock1[0], 2*n_filters) cblock3 = conv_block(cblock2[0], 4*n_filters) cblock4 = conv_block(cblock3[0], 8*n_filters, \ dropout_prob=0.3) cblock5 = conv_block(cblock4[0],16*n_filters, \ dropout_prob=0.3, max_pooling=None) #expanding path ublock6 = upsampling_block(cblock5[0], cblock4[1], \ 8 * n_filters) ublock7 = upsampling_block(ublock6, cblock3[1], n_filters*4) ublock8 = upsampling_block(ublock7,cblock2[1] , n_filters*2) ublock9 = upsampling_block(ublock8,cblock1[1], n_filters) conv9 = Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(ublock9) conv10 = Conv2D(n_classes, kernel_size=1, \ padding='same')(conv9) model = tf.keras.Model(inputs=inputs, outputs=conv10)
 return model
def conv_block(inputs=None, n_filters=32, dropout_prob=0, \ max_pooling=True): conv = Conv2D(n_filters, kernel_size = 3, activation='relu', padding='same', kernel_initializer = \ tf.keras.initializers.HeNormal())(inputs) conv = Conv2D(n_filters, kernel_size = 3, activation='relu', padding='same', \ kernel_initializer = \ tf.keras.initializers.HeNormal())(conv) if dropout_prob > 0: conv = Dropout(dropout_prob)(conv) if max_pooling: next_layer = MaxPooling2D(pool_size=(2,2))(conv) else: next_layer = conv skip_connection = conv

 return next_layer, skip_connection
def upsampling_block(expansive_input, contractive_input, \ n_filters=32): up = Conv2DTranspose(n_filters, kernel_size = 3, strides=(2,2), padding='same')(expansive_input) merge = concatenate([up, contractive_input], axis=3) conv = Conv2D(n_filters, kernel_size = 3, activation='relu', padding='same', \ kernel_initializer = \ tf.keras.initializers.HeNormal())(merge) conv = Conv2D(n_filters, kernel_size = 3, activation='relu', padding='same', \ kernel_initializer = \ tf.keras.initializers.HeNormal())(conv) return convUse the CameraRGB dataset from lyft-udacity-
challenge (self-driving cars dataset) to train the U-Netmodel (which contains training images along withannotated ground-truth segmentation labels). Finally, runinference on the model to segment the test images. Youshould obtain better quality segmentation with higherepochs, as shown for a few sample test images. Refer tothe following figure:

Figure 4.20: Semantic segmentation with U-Net5. Use the Detectron2 pre-trained model to run instancesegmentation and compare instance vs. panopticsegmentation using the input image used earlier. Youshould obtain a figure like the following one:

Figure 4.21: Instance segmentation with Detectron2Now, train the model on a custom dataset and runinference to obtain segmented output.6. torch.hub is a centralized repository where you can findand download pre-trained models without having to searchand download from various external sources. Use
DeepLabV3 ResNet50 pretrained model from torch.hub(use the function torch.hub.load()) to perform semanticsegmentation for the same image to get the outputsegmented image like Figure 4.21:

Figure 4.22: Semantic segmentation with DeepLabV3/ResNet50 from torch.hub

Use Mask R-CNN ResNet50 pretrained model (usetorch.hub.load()) to perform instance segmentation for thefollowing image to get the output segmented image likethe following one:

Figure 4.23: Instance segmentation with DeepLabV3/ResNet50 from torchhub

References1.
https://openaccess.thecvf.com/content_cvpr_2017/pap
ers/Chollet_Xception_Deep_Learning_CVPR_2017_pap
er.pdf2. https://arxiv.org/pdf/1706.05587v3.pdf3. https://arxiv.org/pdf/1610.02357.pdf4. https://arxiv.org/abs/1606.021475. https://github.com/simogasp/opencv-semantic-
segmentation/tree/master/enet-cityscapes

Join our Discord space

https://openaccess.thecvf.com/content_cvpr_2017/papers/Chollet_Xception_Deep_Learning_CVPR_2017_paper.pdf
https://arxiv.org/pdf/1706.05587v3.pdf
https://arxiv.org/pdf/1610.02357.pdf
https://arxiv.org/abs/1606.02147
https://github.com/simogasp/opencv-semantic-segmentation/tree/master/enet-cityscapes

Join our Discord workspace for latest updates, offers, tech
happenings around the world, new releases, and sessions with
the authors:
https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 5
Image Feature Extraction and

Its Applications: Image
Registration

IntroductionFeature detection in image processing and computer vision involvesidentifying key structures, such as points, edges, or regions, withinan image to extract relevant information for further analysis. Thisprocess simplifies the image by reducing its high-dimensional, oftenredundant, pixel data into a compact set of features, making it easierfor algorithms to process efficiently.Feature detection is a foundational step in a variety of tasks,including object recognition, 3D reconstruction, image registration,and machine learning, where the extracted features are help improveaccuracy and reduce computational complexity. It plays a critical rolein many applications, such as robotics, autonomous navigation,medical imaging, and scene understanding, by focusing on the mostimportant details within the visual data.Feature extraction refers to the process of converting the inputimage into a structured set of feature vectors. By carefully selectingthe right features, the goal is to capture the most relevantinformation from the image needed for a specific task, such as imagematching, alignment, and registration—without relying on the fullimage content. This reduced representation enables faster, morerobust, and scalable processing.

StructureThis chapter will cover the following topics:
• Different types of feature detectors and descriptors
• Corner detectors with opencv-python
• Image alignment/matching: Image registration
• Image color channel alignment using image registration withpystackreg
• Deformable image registration with pyelastix
• Image registration with SimpleITK
• Deep deformable image registration with VoxelMorph withtensorflow/keras

ObjectivesIn this chapter and the next one, we will explore how to extract themost relevant features from images, specifically key points of interestthat carry significant visual information. Feature detection involvesidentifying these keypoints, and once detected, a descriptor iscomputed for each one of them. A local descriptor provides acompact representation of the area surrounding a keypoint, focusingon its shape and appearance in that specific region. Unlike globaldescriptors, which provide feature representations that describe anentire content of an image (as a single, unified vector or set ofvalues), the local descriptors are better suited for tasks like matchingdue to their focus on localized details. We will learn how to computeboth feature detectors and descriptors, and explore the differentapplications of these techniques in image processing. Additionally,we will cover widely used feature detectors, including Harris
Corner, Scale-Invariant Feature Transform (SIFT), Histogram
of Oriented Gradients (HOG), and HAAR, and apply them to keytasks like image matching, alignment, and object detection using
scikit-image and opencv-python (cv2) libraries in Python. Again,taking a problem-oriented approach, the focus will be onunderstanding the core concepts, algorithms, and their real-worldapplications.

Different types of feature detectors and
descriptorsBefore diving deeper, let us clarify the distinction between feature
detectors and feature descriptors, two foundational concepts thatwill be referenced throughout this chapter:

• Feature detectors: Feature detection is the process ofidentifying distinctive points or regions in an image that exhibitunique characteristics. These points, often referred to as
keypoints, are selected based on their uniqueness and stabilityunder transformations like rotation, scaling, and changes inviewpoint. A few popular feature detection methods includecorner detectors (for example, Harris Corner detector) and blobdetectors (such as, Difference of Gaussians (DoG)). The outputof feature detection is a set of keypoints that represent salientpoints in the image.

• Feature descriptors: Feature description involves computing acompact and distinctive representation for each detected
keypoint, typically based on the local image region surroundingthe keypoint. These descriptors encode information such astexture, intensity, or gradient patterns, and are designed to bedistinctive, robust to variations in scale, orientation, and lighting.A few popular feature description methods include Oriented
FAST and Rotated BRIEF (ORB), Binary Robust
Independent Elementary Features (BRIEF), Speeded-Up
Robust Features (SURF) and SIFT. The output of featuredescription is a set of feature vectors or matrices correspondingto the keypoints, capturing their local context.In summary, feature detection is the process of finding keypoints inan image, while feature description involves computing featurevectors for these keypoints. Together, feature detection anddescription enable robust and efficient extraction of meaningfulinformation from images, which can be used for tasks such as imagematching, object recognition, and a wide range of other computervision applications.Feature detectors and descriptors can be broadly be categorized intotwo types, namely:

• Local feature detectors and descriptors: These methods focus

on extracting features from specific, distinctive regions of animage. They are designed to be robust to geometrictransformations (e.g., rotation, scale, and changes in viewpoint).They are often designed to find keypoints, such as corners orblobs, where local image structures exhibit significant variations.Examples include Harris Corner detector, Features from
Accelerated Segment Test (FAST), ORB and SURF. Once thesekeypoints are located, local descriptors encode the surroundingimage information into compact, distinctive representations, oftenusing gradient or intensity-based statistics. Local features areespecially useful in scenarios involving partial occlusion, varyingviewpoints, change in illumination or non-uniform lighting—making them ideal for applications like object tracking, matching,and image registration.

• Global feature descriptors: These descriptors aim to captureinformation about the entire image, providing a holisticrepresentation of its contents. They consider the entire image andencode information such as color histograms, texture statistics, ordeep feature embeddings. Examples include color histograms,
Generalized Search Trees (GiST), Bag of Visual Words(BoVW), and global deep features extracted from pre-trainedneural networks. Global features are beneficial when the overallcontent or scene context is more important than specific localdetails. They are suitable for tasks such as image categorization,scene recognition, and large-scale image retrieval.In this chapter, we will focus primarily on local feature detectors

and descriptors, as they offer finer control and greater robustnessfor many real-world image processing tasks, particularly thoseinvolving image registration and matching. The following tableprovides a comparative overview of the key local feature detectorsand descriptors discussed in this chapter, highlighting theiradvantages, limitations, and typical use cases to guide the selectionof appropriate methods for various image processing and computervision applications:
Feature
method Type Invariance Advantages Disadvantages Typical

usageHarrisCorner Detector Not scale orrotationinvariant
Simple andfast; good fordetectingcorners in well-

Sensitive torotation andscale changes;not ideal for
Basic cornerdetection,subpixelrefinement

Feature
method Type Invariance Advantages Disadvantages Typical

usagedefinedstructures complex scenes
Features
from
Accelerated
Segment
Test (FAST)

Detector Not scale oraffineinvariant
Very fast; well-suited for real-timeapplications

May detect toomany corners;not rotation orscale invariant
Real-timecornerdetection,SLAM(SimultaneousLocalizationand Mapping)

Scale-
Invariant
Feature
Transform(SIFT)

Detector+Descriptor
Invariant toscale,rotation, andpartiallyaffinetransforms

Robust andhighlydistinctive;good matchingperformance
Computationallyexpensive; patentrestrictions (nowexpired)

Imagematching,panoramastitching, 3Dreconstruction
Speeded Up
Robust
Features(SURF)

Detector+Descriptor
Invariant toscale androtation

Faster thanSIFT; robust tonoise andtransformations
Still relativelyslow; lessdistinctive thanSIFT

Objectrecognition,imageregistration
Oriented
FAST and
Rotated
BRIEF(ORB)

Detector+Descriptor
Invariant torotation;partially toscale

Very fast; open-source;combines FAST+ BRIEF
Not as robust asSIFT/SURF forwide baselinematching

Real-timeapplications,mobile visionsystems
Binary
Robust
Independent
Elementary
Features(BRIEF)

Descriptor Not scale orrotationinvariant
Compact binarydescriptor; fastmatching

Requiresrotation-invariantdetector; notrobust toscale/rotation
Descriptorcomponent inORB andothers

Histogram
of Oriented
Gradients(HOG)

Descriptor Partialinvariance (tosmalldeformationsandillumination)

Excellent fordetectingobjects likepedestrians
Not rotation orscale invariant;not a keypointdetector

Objectdetection,especiallyhumans
HAARfeatures Descriptor(used withcascades)

Not invarianttoscale/rotation
Fast detectionusing cascades;good for faces

Requiresextensivetraining; notgeneral-purpose
Facedetection(e.g., Viola-Jonesalgorithm)

Table 5.1: Comparative overview of the key local feature detectors
and descriptors

Corner detectors with opencv-pythonIn this section, you will learn how to detect corner features using twoclassical algorithms, namely Harris Corner detector and Shi-
Tomasi Corner detector. These methods are foundational incomputer vision and widely used in applications such as imageregistration, motion tracking, and object recognition.
Note: Both Harris and Shi-Tomasi corner detectors are not invariant to scale or
rotation. They perform best on images without significant scaling or rotation
transformations.

Harris Corner detectorThe Harris Corner detector identifies regions in an image wherethe intensity changes significantly in multiple directions. Thisbehavior is characteristic of corners, as opposed to edges or flatregions where intensity change is unidirectional or minimal.The algorithm examines how the intensity of pixel values changeswithin a small window as it shifts across different locations in animage. While edges exhibit sharp intensity changes in just onedirection, corners experience significant changes in intensity inmultiple directions. The algorithm calculates the intensity variationfor small shifts in different directions (denoted as and). This isexpressed as:

Where we have:
• : Image intensity at point (x, y)
• : A window function (e.g., Gaussian) giving more weight tocentral pixels
• : Window shifts in x- and y-directionsAt edges, this function increases significantly in only one direction.At corners, increases in all directions, hence shifting thewindow in any direction leads to a large intensity change, which is a

key characteristic exploited by the Harris Corner detector foridentifying corners with good localization with high precision.Applying first order Taylor expansion, to the preceding equation and with a few algebraic steps, we obtainthe following:

Where the structure tensor matrix

Here, and represent the partial derivatives of the image in the x-and y-directions, respectively, and you can compute them with thefunction cv2.Sobel()).To determine the likelihood of a corner (i.e., whether a windowcontains a Corner), compute the Harris response (a score R) as:
Where we have:

•
•
• and are eigenvalues of the matrix M
• is a tunable sensitivity parameter, typically

Interpretation:The eigenvalue magnitudes are used as follows to determine whethera region is a corner, an edge, or flat:
• If both and are small, then is small, and the region is flat.
• If one eigenvalue is large and the other small, e.g., if or, then , and the region is edge.
• If both and are large and , then is large, and theregion is a corner (as shown in Figure 5.1):

Figure 5.1: Harris Corner detection using eigenvalues of MThe Harris Corner detection algorithm outputs a grayscale imagewith the corner scores for each pixel. In order to obtain the cornersin the image, we need to apply thresholding on the output with asuitable threshold value on the output scores.Now, it is time for implementation. Let us start by importing therequired libraries:
import numpy as np
import cv2
import matplotlib.pylab as plt
With opencv-python (cv2), the Harris Corner points can be detectedusing the cornerHarris() function, demonstrated in the next codesnippet. This function is a practical implementation of the Harriscorner detection algorithm and is used to identify points in an imagewhere the pixel intensity exhibits significant changes in multipledirections—a characteristic trait of corners. The function accepts thefollowing arguments:

• img: Input image. It should be grayscale and float32 data type.This format is essential because the algorithm involvesdifferentiation and matrix operations that require floating-pointprecision.
• blockSize: It is the size of neighborhood (or window) aroundeach pixel that is considered for computing the covariance matrix

M (refer to the aforementioned equations). A typical value mightbe 2 or 3. It determines how many surrounding pixels are used tocompute the gradient structure tensor. n.
• ksize: Aperture parameter of the Sobel operator, which is used tocompute the image gradients and (the partial derivatives of

the image). A larger ksize results in a smoother gradient estimatebut may reduce sensitivity to fine details.
• k: This is the empirical constant used in the Harris responseequation.The function returns a corner response image where each pixelcontains the corresponding corner score R.To detect corners, a threshold is applied to this response image toselect the most prominent corners. For example, in the followingcode snippet, img[dst > 0.075 * dst.max()] = [0, 255, 0]highlights strong corners—those with a Harris response above 7.5%of the maximum—by coloring them green in the original image:orig_img = cv2.imread('images/cube.png')img = orig_img.copy()gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)gray = np.float32(gray)dst = cv2.cornerHarris(gray,2,3,0.04)

dilate to mark the cornersdst = cv2.dilate(dst,None)
Threshold for an optimal value, it may vary depending on the image.img[dst>0.075*dst.max()]=[0,255,0]plt.figure(figsize=(10,8))plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)), plt.axis('off')plt.show()If you run the preceding code snippet, you should obtain a figure asfollows:

Figure 5.2: Corners detected with Harris Corner detector

Corner with subpixel accuracyThe cv2.cornerSubPix() function refines detected corners toachieve subpixel accuracy. Here is how it works in the following codeexample:1. First, we detect corners using the Harris method. Then, thecentroids of these corners are passed to the cornerSubPix()

function for further refinement. In the output, the original HarrisCorners are shown in red, while the refined, more accuratecorners are displayed in green.2. To use this function, we must define criteria for stopping theiteration: either after a specified number of iterations or when thedesired level of accuracy is reached. Additionally, the size of theneighbourhood (for example, a 5x5 area) around each cornermust be specified, where the search for more accurate cornerpositions will be conducted, as shown in the following codesnippet:
find Harris Cornersorig_img = cv2.imread('images/rcube_cropped.png')img = orig_img.copy()gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)dst = cv2.cornerHarris(gray,2,3,0.04)dst = cv2.dilate(dst, None)ret, dst = cv2.threshold(dst,0.01*dst.max(),255,0)dst = np.uint8(dst)
find centroidsret, labels, stats, centroids = \ cv2.connectedComponentsWithStats(dst)
define the criteria to stop and refine the cornerscriteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, \ 100, 0.001)corners = cv2.cornerSubPix(gray,np.float32(centroids), (5,5), \ (-1,-1), criteria)
Now draw themres = np.hstack((centroids,corners))res = np.int0(res)img[res[:,1],res[:,0]]=[0,0,255]img[np.minimum(res[:,3], img.shape[0]-1), np.minimum(res[:,2], \ img.shape[1]-1)] = [0,255,0]plt.figure(figsize=(10,8))plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)), plt.axis('off')plt.show()If you run the preceding code snippet, you should obtain a figure asfollows:

Figure 5.3: Harris Corner detection with subpixel accuracy

Shi-Tomasi Corner detector
Shi and Tomasi introduced an improvement to the Harris Corner

detector in their paper Good Features to Track. Instead of using theHarris Corner scoring function, they proposed a simpler criterion(the minimum eigenvalue of the structure tensor matrix M):
If R exceeds a given threshold, the point is classified as a corner. Inthis method, a point is considered a corner only if both eigenvalues (and) are above a minimum threshold , as shown in the greenregion of the plot in space in the following figure:

Figure 5.4: Shi-Tomasi Corner detection with eigenvalue thresholding

This method tends to exclude edge points more effectively andyields better feature quality for tracking. The OpenCV function
cv2.goodFeaturesToTrack() is used to detect the strongest Ncorners in an image using either the Shi-Tomasi or Harris method(specified by the Boolean flag useHarrisDetector). The input imagemust be in grayscale.Key parameters for this function include:

• Number of corners (maxCorners): Specifies how many cornersyou want to detect (for example, 25).
• Quality level (qualityLevel): A value between 0 and 1 that setsthe minimum quality for a point to be considered a corner.
• Minimum distance (minDistance): The minimum Euclideandistance between detected corners.The function first filters out corners that fall below the specifiedquality level. The remaining corners are then sorted in descendingorder based on their quality. Starting with the strongest corner, thefunction eliminates any nearby corners within the specified minimumdistance. Finally, it selects and returns the top maxCorners

strongest corners.The next code snippet shows how to find best corners, both using
Shi-Tomasi and Harris Corner detectors:plt.figure(figsize=(10,8))
for useHarrisDetector in [True, False]: img = orig_img.copy() corners = cv2.goodFeaturesToTrack(gray,25,0.01,10, \ useHarrisDetector = useHarrisDetector) corners = np.int0(corners) for i in corners: x,y = i.ravel() cv2.circle(img,(x,y),3,(0,0,255),-1) plt.subplot(1,2,useHarrisDetector+1) plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)), plt.axis('off') plt.title(f'useHarrisDetector={useHarrisDetector}', size=20)
plt.tight_layout()plt.show()If you run the preceding code snippet, you should obtain a figure asfollows:

Figure 5.5: Shi-Tomasi vs. Harris Corner detection output with opencv-python

Image alignment/matching: Image
registrationThe goal of image registration in image processing is to align a targetimage with a source image by determining the spatial transformationthat maps points in one image to their corresponding points in theother. This process, commonly referred to as alignment, involvesestimating the transformation, while applying this transformation towarp the image is known as registration. There are three mainapproaches to image alignment:

• Intensity based: Directly compares pixel values between images,such as using mutual information.
• Segmentation based: Registers the binary segmentation ofobjects within the images.

• Landmark (or feature) based: Identifies key points in bothimages and computes a transformation that aligns correspondinglandmarks.The transformations that we will estimate (to register the images)may be any of the following types:
• Rigid (rotate, translate)
• Affine (rigid + scale and shear/skew)
• Deformable (free-form = affine + vector field)Many other types of transformations are also possible.In this section, we shall concentrate on intensity and feature-basedimage registration techniques and their applications.

Feature or landmark based image
alignmentWe shall now explore how to extract features using a few popularfeature detection (and descriptor extraction) algorithms, such as
Oriented FAST and Rotated BRIEF (ORB), Speeded-Up Robust
Features (SURF), and DIScrete Keypoints (DISK), and use themto align one image with another. A key advantage of the detectorslike ORB, Binary Robust Invariant Scalable Keypoints (BRISK),
SURF, and SIFT (Scale-Invariant Feature Transform) is their
invariance to scale and rotation, meaning they can reliably detectand match features even when the object appears at different sizes ororientations across images. This robustness is crucial in real-worldcomputer vision applications such as Simultaneous Localization andMapping (SLAM), 3D reconstruction, and augmented reality.
With ORB features with opencv-pythonORB is a fusion of two efficient algorithms:• FAST is used as the keypoint locator, identifying stable andrepeatable points in the image.• BRIEF is used as the descriptor, providing a binary string thatcharacterizes the neighborhood around each keypoint. ORBenhances BRIEF by adding orientation compensation and using alearning-based approach to improve performance, making it both

fast and rotation-invariant.In ORB, these two components work together as follows:

Component Role in ORB

Locator Uses FAST to detect keypoints based on corner-like patterns, whichare robust under translation, rotation, and minor scale variations.
Descriptor Uses an orientation-adjusted BRIEF descriptor (BRISK variant) tocapture the visual context of the keypoint as a binary vector.

Table 5.2: Working of locator and descriptorHere we shall demonstrate how to align a couple of (moving) imageswith a reference (fixed) image of Tom & Jerry (using ORB features).Let us start with the original image (as fixed reference image) andcreate (simulate) a couple of moving images by applying perspectiveand affine transformations, with the functions
cv2.warpPerspective() and cv2.warpAffine() respectively (alongwith appropriate transformation matrices), to the fixed image andsubsequently saving them to disk, using the next code snippet. Thesetransformed images will later be aligned back to the reference imageusing ORB features.im1 = plt.imread('images/tom_jerry.jpg')
slope of the perspective transformh, w, _ = im.shapeslope = np.tan(np.radians(30))perspective_matrix = np.linalg.inv(np.array([[1, 0, 0], \ [-slope/3, 1, slope * h / 3], \ [-slope/w, 0, 1 + slope/2]]))
im2 = cv2.warpPerspective(im, perspective_matrix, (w,h))plt.imsave('images/tom_jerry_persp.jpg', im2)
rot = np.array([[np.cos(0.5), -np.sin(0.5), 0],\ [np.sin(0.5), np.cos(0.5), 0], \ [0,0,1]])tr = np.array([[1,0, 50],[0, 1, -50], [0,0,1]])sc = np.array([[1.1,0, 0],[0, 1.1, 0], [0,0,1]])
affine_mat = np.linalg.inv(rot @ tr @ sc)im3 = cv2.warpAffine(im, affine_mat[:2,:], (w,h))plt.imsave('images/tom_jerry_affine.jpg', im3)
plt.figure(figsize=(15,7))plt.imshow(np.hstack((im1, im2, im3))), plt.axis('off')plt.title('original (fixed) and moving images (created with perspective & affine transformation respectively)', size=20)plt.tight_layout()plt.show()If you run the preceding code snippet, you should obtain a figure asfollows:

Figure 5.6: Applying perspective and affine transformation to an image with opencv-python

The preceding figure (Figure 5.6) shows the original (fixed) and themoving images created from it, the ones that are to be aligned withfixed image using ORB features.To align two images using feature-based methods, we follow a seriesof systematic steps that involve detecting and matching distinctivekeypoints. Here, we demonstrate this process using the ORBalgorithm from opencv-python.The steps in feature-based image alignment are as follows:1. Load and preprocess images: Read the reference image (alsocalled the fixed or the template image) and the images we wantto align (also called the moving images) to this template. Convertthe images to grayscale, as feature detectors typically operate onsingle-channel images.2. Feature detection and description: Instantiate the ORBdetector using cv2.ORB_create() with a maximum number offeatures (for example., MAX_FEATURES = 500). Then use
detectAndCompute() to find keypoints and compute descriptorsin both images.3. Feature matching: Find the matching features (keypoints) inbetween the images. First instantiate a matcher object using thefunction cv2.DescriptorMatcher_create() with
BRUTEFORCE_HAMMING metric. That is, use a brute-forcematcher with the hamming distance as a measure of similaritybetween two feature descriptors. Then use the match() methodto compare the descriptors from moving and fixed images, to findthe best matches.4. Filter matches: Subsequently sort the matches (keypoints) bygoodness of match and retain only a top percentage of the bestmatches (for example, GOOD_MATCH_PERCENT). This helpsreduce false matches and improves the robustness of alignment.5. Visualize matches: Draw and display the good matches on theimages, using the function cv2.drawMatches(). The matched

features are shown in Figure 5.7 by drawing lines connectingthem, which visually confirms whether correct correspondenceswere found.6. Compute alignment using homography: Define the function
compute_alignment() to align a moving image to a fixed image,using matched keypoints between them.a. It first extracts matched keypoint coordinates from bothimages and uses them to estimate the homography matrix with

cv2.findHomography()(with cv2.RANSAC to make theestimation robust to outliers).b. Then it applies the transformation (warp) to the moving imagewith the function cv2.warpPerspective().Invoke this function to align the simulated images with the original(fixed) image, as shown in the next code snippet:MAX_FEATURES = 500GOOD_MATCH_PERCENT = 0.15
reference imageim_ref = cv2.imread('images/tom_jerry .jpg')
images to be alignedim1 = cv2.imread('images/ tom_jerry_persp.jpg') im2 = cv2.imread('images/ tom_jerry_affine.jpg')
Convert images to grayscaleim_ref_g = cv2.cvtColor(im_ref, cv2.COLOR_RGB2GRAY)im1_g, im2_g = cv2.cvtColor(im1, cv2.COLOR_RGB2GRAY), \ cv2.cvtColor(im2, cv2.COLOR_RGB2GRAY)
Detect ORB features and compute descriptors.orb = cv2.ORB_create(MAX_FEATURES)keypoints1, descriptors1 = orb.detectAndCompute(im1_g, None)keypoints2, descriptors2 = orb.detectAndCompute(im2_g, None)keypoints_ref, descriptors_ref = orb.detectAndCompute(im_ref_g, None)
Match features.matcher = cv2.DescriptorMatcher_create(\ cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING)matches1 = matcher.match(descriptors1, descriptors_ref, None)matches2 = matcher.match(descriptors2, descriptors_ref, None)
Sort matches by scorematches1.sort(key=lambda x: x.distance, reverse=False)matches2.sort(key=lambda x: x.distance, reverse=False)
Remove not so good matchesnum_good_matches = int(len(matches1) * GOOD_MATCH_PERCENT)matches1 = matches1[:num_good_matches]num_good_matches = int(len(matches2) * GOOD_MATCH_PERCENT)matches2 = matches2[:num_good_matches]
Draw top matches

plt.figure(figsize=(20,15))im_matches = cv2.drawMatches(im1, keypoints1, im_ref, keypoints_ref, \ matches1, None)plt.subplot(211)plt.imshow(cv2.cvtColor(im_matches,cv2.COLOR_BGR2RGB)), plt.axis('off')plt.title('Original vs. Perspective-Transformed Image', size=20)im_matches = cv2.drawMatches(im2, keypoints2, im_ref, keypoints_ref, \ matches2, None)plt.subplot(212)plt.imshow(cv2.cvtColor(im_matches,cv2.COLOR_BGR2RGB)), plt.axis('off')plt.title('Original vs. Affine-Transformed Image', size=20)plt.show()
def compute_alignment(matches, im, keypoints, keypoints_ref): # Extract location of good matches points = np.zeros((len(matches), 2), dtype=np.float32) points_ref = np.zeros((len(matches), 2), dtype=np.float32) for i, match in enumerate(matches): points[i, :] = keypoints[match.queryIdx].pt points_ref[i, :] = keypoints_ref[match.trainIdx].pt # Find homography h, mask = cv2.findHomography(points, points_ref, cv2.RANSAC) # Use homography height, width, channels = im.shape im_ref_reg = cv2.warpPerspective(im, h, (width, height)) # Print estimated homography print("\n Estimated homography : \n", h) return im_ref_reg
im1_reg = compute_alignment(matches1, im1, keypoints1, keypoints_ref)
Estimated homography:
[[8.21788026e-01 1.61971819e-03 -2.40068712e+00]
[-1.34251105e-01 8.00578888e-01 2.75024081e+01]
[-1.52078398e-03 1.31085142e-05 1.00000000e+00]]

im2_reg = compute_alignment(matches2, im2, keypoints2, keypoints_ref)
Estimated homography:
[[9.83624364e-01 -5.34196484e-01 6.76430982e+01]
[5.43767499e-01 9.74305147e-01 -2.11468782e+01]
[1.15192040e-04 -3.90720842e-05 1.00000000e+00]]

plt.figure(figsize=(30,15))plt.subplot(231), plt.imshow(cv2.cvtColor(im_ref, cv2.COLOR_BGR2RGB)) plt.axis('off'), plt.title('Original Image', size=20)plt.subplot(232), plt.imshow(cv2.cvtColor(im1, cv2.COLOR_BGR2RGB))plt.axis('off'), plt.title('Image to be aligned', size=20)plt.subplot(233), plt.imshow(cv2.cvtColor(im1_reg, cv2.COLOR_BGR2RGB))plt.axis('off'), plt.title('Aligned Image', size=20)plt.subplot(234), plt.imshow(cv2.cvtColor(im_ref, cv2.COLOR_BGR2RGB))plt.axis('off'), plt.title('Original Image', size=20)plt.subplot(235), plt.imshow(cv2.cvtColor(im2, cv2.COLOR_BGR2RGB))plt.axis('off'), plt.title('Image to be aligned', size=20)plt.subplot(236), plt.imshow(cv2.cvtColor(im2_reg, cv2.COLOR_BGR2RGB))plt.axis('off'), plt.title('Aligned Image', size=20)plt.show()If you run the preceding code snippet, you should obtain a figure as

follows:

Figure 5.7: Aligning images with ORB feature matching with opencv-pythonThe preceding figure shows how the simulated moving images arealigned with a fixed image (of Tom & Jerry). It shows the fixed andmoving images, along with the matched ORB keypoints, and thealigned output images obtained by applying the transformations withthe estimated homography matrices.

Note: We may have many incorrect matches (false positives) and hence we need to
use a robust method to calculate homography, for example, using the famous
algorithm Random Sample Consensus (RANSAC), it identifies inliers among
matched feature points by iteratively selecting random subsets and computing the
best-fitting transformation while rejecting outliers.

With ORB features using scikit-imageNow let us demonstrate image matching using the ORB featuresagain, but this time the detection and binary descriptor computationalgorithm comes from the feature module’s functions from thelibrary scikit-image (for example, the method
detect_and_extract() from the class ORB and the function
match_descriptors(), as shown in the next code snippet, most ofwhich is self-explanatory). Compared to BRIEF features, ORB offersbetter scale and rotation invariance and uses the Hamming distancefor efficient matching, making it a more suitable choice for real-timeapplications.
import numpy as np
import matplotlib.pyplot as plt
from skimage.feature import (match_descriptors, ORB, plot_matches)
from skimage.io import imread, imsave
from skimage.color import rgb2gray
im1 = imread('images/ tom_jerry .jpg')im2 = imread('images/ tom_jerry_persp.jpg') im3 = imread('images/ tom_jerry_affine.jpg')
im1_g, im2_g, im3_g = rgb2gray(im1), rgb2gray(im2), rgb2gray(im3)descriptor_extractor = ORB(n_keypoints=100)descriptor_extractor.detect_and_extract(im1_g)keypoints1, descriptors1 = descriptor_extractor.keypoints, \ descriptor_extractor.descriptorsdescriptor_extractor.detect_and_extract(im2_g)keypoints2, descriptors2 = descriptor_extractor.keypoints, \ descriptor_extractor.descriptorsmatches12 = match_descriptors(descriptors1, descriptors2, \ cross_check=True)descriptor_extractor.detect_and_extract(im3_g)keypoints3, descriptors3 = descriptor_extractor.keypoints, \ descriptor_extractor.descriptorsmatches13 = match_descriptors(descriptors1, descriptors3, \ cross_check=True)
fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(20,10))plt.gray()plot_matches(axes[0], im1, im2, keypoints1, keypoints2, matches12)axes[0].axis('off')axes[0].set_title("Image matching with ORB features: Original Image vs. " "Perspective-Transformed Image", size=20)

plot_matches(axes[1], im1, im3, keypoints1, keypoints2, matches13)axes[1].axis('off')axes[1].set_title("Image matching with ORB features: Original Image vs. " "Affine-Transformed Image", size=20)plt.show()If you run the preceding code snippet, you should obtain a figure asfollows:

Figure 5.8: Aligning images with ORB feature matching with scikit-image

With SURF features with opencv-pythonThe SURF algorithm is a widely used method for detecting anddescribing local features in images. It is particularly effective due toits scale and rotation invariance, making it suitable for robustmatching across different viewpoints. In OpenCV, the SURF featurescan be extracted using the function
cv2.xfeatures2d.SURF_create(), which requires OpenCV versionsprior to 3.4.2.17 or a custom-built version, as the algorithm ispatented and excluded from later versions.The SURF_create() includes several configurable parameters thatcontrol the behavior and sensitivity of the detector:

• hessianThreshold: This threshold determines the minimumvalue for the Hessian matrix at each keypoint location. A highervalue results in fewer keypoints being detected. Typical valuesvary between 300 and 500 (depends on image contrast). In thisexample, the threshold value used is 400.
• nOctaves: Specifies the number of octaves in the Gaussian

pyramid, controlling the scale of detected features. Increasingthis value detects larger scale features, while decreasing it

focuses on smaller ones (finer details). The default value is 4.
• nOctaveLayers: Determines how many intermediate images aregenerated per octave in the pyramid. By default, it is set to 2.
• extended: A boolean that specifies whether to compute the basic(64-element) or extended (128-element) descriptors. The defaultis 0 (basic).
• upright: Another Boolean that decides whether to compute theorientation of each feature. Setting this to 1 disables orientationcomputation, which speeds up processing significantly, especiallyfor stereo matching or image stitching where similar orientationscan be assumed.

Keypoint detection and matchingThe function detectAndCompute() can be used to locate keypointsand generate their descriptors from a grayscale input image. Oncethe descriptors are obtained, matching between feature sets can beperformed using cv2.BFMatcher(), which is a brute-force matcherthat compares the descriptors and finds the closest match for eachone. For improved accuracy, especially in filtering ambiguousmatches, knnMatch() retrieves the k-best matches, ordered byincreasing distance. This process enables the alignment of imagesthrough homography estimation and transformation warping, just aswith other feature detection methods like ORB or SIFT.The subsequent code demonstrates aligning two images of the
Konark Temple using SURF keypoints and descriptors. The nextcode snippet illustrates the practical application of SURF in imageregistration tasks, especially when handling scale and rotationvariations:
import numpy as np
pip install opencv-python==3.4.2.17 opencv-contrib-python==3.4.2.17
import cv2print(cv2.__version__)
3.4.2

from matplotlib import pyplot as plt
img1 = cv2.imread('images/konark_big.jpg') # queryImageimg2 = cv2.imread('images/konark_small.jpg') # trainImage

img1_gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)img2_gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
Create a SURF detector objectsurf = cv2.xfeatures2d.SURF_create(400)

find the keypoints and descriptors with SURFkp1, des1 = surf.detectAndCompute(img1_gray,None)kp2, des2 = surf.detectAndCompute(img2_gray,None)
BFMatcher with default paramsbf = cv2.BFMatcher()matches = bf.knnMatch(des1,des2, k=2)
Apply ratio testgood = []
for m,n in matches: if m.distance < 0.75*n.distance: good.append([m])
cv2.drawMatchesKnn expects list of lists as matches.img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=2)
plt.figure(figsize=(20,10))plt.imshow(cv2.cvtColor(img3, cv2.COLOR_BGR2RGB)), plt.axis('off')plt.title('Image matching with SURF features', size=20)plt.show()If you run the preceding code snippet, you should obtain a figure asfollows:

Figure 5.9: Aligning images with SURF feature matching

With DISK features with kornia
DISK (DIScrete Keypoints) is a learned local feature extractionmethod that jointly detects keypoints and computes descriptors usinga deep neural network, trained with a reinforcement learningapproach based on policy gradients. Unlike handcrafted methodssuch as SIFT or ORB, DISK is trained end-to-end to maximizedownstream matching performance, making it highly effective androbust across a variety of tasks such as image matching andlocalization. The DISK pipeline operates as follows:

• Keypoint detection and description: A neural network predictskeypoints and corresponding descriptors jointly from inputimages. The keypoints are selected discretely through a learned

sampling policy, and descriptors are extracted from local patches.
• Reinforcement learning training: The network is trained usingpolicy gradients to directly optimize a reward based on successfulmatching outcomes, rather than heuristics or surrogate losses.
• Robust matching: The descriptors and keypoints are optimizedfor robustness and discriminative power, making them suitablefor challenging real-world image alignment scenarios.In this section, we shall use the library kornia for DISK featureextraction and matching. Let us first install korina with pip, if notalready installed. Import all the libraries required, including korinaand opencv-python. Run the following code on a GPU (for example,Google Colab), for faster execution:

run in colab
install libraries if not already installed by uncommenting the next two lines
!pip install kornia
!pip install kornia_moons --no-deps
import cv2
import kornia as K
import kornia.feature as KF
import matplotlib.pyplot as plt
import numpy as np
import torch
from kornia.feature.adalam import AdalamFilter
from kornia_moons.viz import *
device = K.utils.get_cuda_or_mps_device_if_available()print(device)
cuda:0Now, let us understand the following step-by-step pythonimplementation:1. First load the images to be matched using

kornia.io.load_image() function.2. Load a pretrained model (trained end-to-end with depth-mapsupervision) using the function KF.DISK.from_pretrained().3. Concatenate the input images and extract the DISK features, byrunning a forward pass on the model (here we have used
num_features=2048 to detect a maximum of 2048 features).4. Use the function laf_from_center_scale_ori() to create kornia
local affine frame (LAF) from keypoint center, scale andorientations. An LAF represents a local coordinate systemassociated with an image region, particularly used for localfeature extraction and matching and it is defined by a center, a

scale, and an orientation. It provides a geometric description of alocal image patch, allowing for robust feature matching acrossdifferent images, scales, and orientations.5. Finally, use the kornia.feature.match_adalam() function tocompute descriptor matching, and then apply Adaptive Locally-
Affine Matching (AdaLAM) filtering. The AdaLAM algorithm isan outlier rejection approach for local feature matching, designedto efficiently filter out outliers in matches obtained fromdescriptors. The parameters the function accepts are:a. desc1 and desc2: Tensors, the image descriptorsb. lafs1 and lafs2: Tensors, corresponding LAFsc. config (optional): Dictionary with AdaLAM config, defaultsto Noned. dm (optional): Holds the distances between each descriptorin desc1 and every descriptor in desc2. If a distance matrix(dm) is not supplied, the torch.cdist() function is used tocalculate it.6. The function returns the distance between the matchingdescriptors, along with the indices (here it finds tentativematches, as shown in the next code snippet):img1 = K.io.load_image("images/tom_jerry.jpg", \ K.io.ImageLoadType.RGB32, device=device)[None, ...]img2 = K.io.load_image("images/tom_jerry_affine.jpg", \ K.io.ImageLoadType.RGB32, device=device)[None, ...]
disk = KF.DISK.from_pretrained("depth").to(device)
hw1 = torch.tensor(img1.shape[2:], device=device)hw2 = torch.tensor(img2.shape[2:], device=device)
adalam_config = KF.adalam.get_adalam_default_config()adalam_config["force_seed_mnn"] = Falseadalam_config["search_expansion"] = 16adalam_config["ransac_iters"] = 256
num_features = 2048
with torch.inference_mode(): inp = torch.cat([img1, img2], dim=0) features1, features2 = disk(inp, num_features, \ pad_if_not_divisible=True) kps1, descs1 = features1.keypoints, features1.descriptors kps2, descs2 = features2.keypoints, features2.descriptors lafs1 = KF.laf_from_center_scale_ori(kps1[None], \ 96 * torch.ones(1, len(kps1), 1, 1, device=device))

 lafs2 = KF.laf_from_center_scale_ori(kps2[None], \ 96 * torch.ones(1, len(kps2), 1, 1, device=device)) dists, idxs = KF.match_adalam(descs1, descs2, lafs1, lafs2, hw1 = hw1, hw2 = hw2, config = adalam_config)
print(f"{idxs.shape[0]} tentative matches with DISK AdaLAM")
198 tentative matches with DISK AdaLAM7. Use the function get_matching_keypoints() to extract thematched keypoints using the indices returned.8. Use the function cv2.findFundamentalMat() to find the inliersfrom the matching points. It also computes the fundamental
matrix (which represents the intrinsic relationship betweencorresponding points in two stereo images, encoding the
epipolar geometry that governs their correspondence) fromcorresponding points in two images. The function takes severalinput parameters, here are the important ones:a. points1: Numpy array of points in the first image.b. points2: Numpy array of corresponding points in the secondimage.c. method: algorithm used to compute the fundamental matrix,available algorithms are:i. cv2.FM_8POINT: Uses 8-point algorithm. This methodrequires at least 8 corresponding points.ii. cv2.FM_RANSAC: Uses RANSAC algorithm. This methodis more robust to outliers.iii. cv2.USAC_MAGSAC: Uses M-estimator Randomized

Sample Consensus (MAGSAC) algorithm, an extension ofRANSAC that incorporates M-estimators, which are robustestimators of the error distribution of the data. M-estimators, in general, provide more robustness againstoutliers than simple least squares methods.d. ransacReprojThreshold: Reprojection threshold used inRANSAC. This is the maximum allowed reprojection error totreat a point-pair as inlier during the RANSAC algorithm.Typical values: 0.5 to 3.0 (here we have used the value ,change the value to see the impact on the matches obtained).e. confidence: (Optional) Confidence level, between 0 and 1, forthe RANSAC algorithm (Default: 0.99 or 0.999). It is the

probability that the algorithm produces a useful result.The function returns:• F: The Fundamental matrix (3×3).• Mask: The inlier mask, where 1 = inlier, 0 = outlier.The inlier matches can be identified using the binary mask thatthe function returns, with 1 indicating an inlier, and 0 otherwise(outlier). As can be seen from the next code snippet, out of the198 tentaive matches, only 71 were considered to be inliers.Now, refer to the next code snippet:
def get_matching_keypoints(kp1, kp2, idxs): mkpts1 = kp1[idxs[:, 0]] mkpts2 = kp2[idxs[:, 1]] return mkpts1, mkpts2
mkpts1, mkpts2 = get_matching_keypoints(kps1, kps2, idxs)
Fm, inliers = cv2.findFundamentalMat(\ mkpts1.detach().cpu().numpy(), mkpts2.detach().cpu().numpy(), \ cv2.USAC_MAGSAC, 0.5, 0.999, 100000) # 1.0inliers = inliers > 0print(f"{inliers.sum()} inliers with DISK")
71 inliers with DISK9. Finally, draw the matches between the keypoints detected, usingthe function draw_LAF_matches(), as shown in the next codesnippet:draw_LAF_matches(KF.laf_from_center_scale_ori(kps1[None].cpu()), KF.laf_from_center_scale_ori(kps2[None].cpu()), idxs.cpu(), K.tensor_to_image(img1.cpu()), K.tensor_to_image(img2.cpu()), inliers, draw_dict={"inlier_color": (0.2, 1, 0.2), "tentative_color": (1, 1, 0.2, 0.3), "feature_color": None, "vertical": False},)If you run the preceding code snippet, you should obtain a figure asfollows:

Figure 5.10: Aligning images with DISK features with kornia

Image color channel alignment using image
registration with pystackregIn this section, we shall explore how to align misaligned colorchannel images using image registration, leveraging the library
pystackreg. As input, we shall use images from Prokudin-Gorskiicollection, where the red, green, and blue channels were capturedseparately and often exhibit noticeable misalignment. Here thelibrary pystackreg will be used to align (register) green and bluecolor channels of an RGB image to a common reference channel -typically the red channel - using rigid (translational) transformations.Here are the steps for color-channel alignment:1. Install pystackreg, if not already installed with pip. Import therequired libraries and modules.2. Read the RGB image of birds (with misaligned color channels)using the function skimage.io.imread(). Split the RGB imageinto its individual channels.3. Assuming that the color channels are misaligned due totranslation only, let us use translational transformation(instantiate a StackReg object with translation type

StackReg.TRANSLATION, to apply translational alignment).4. Use the method register_transform() to align the colorchannels. The first argument to be passed to it is thefixed/reference image (here, the red channel) and the secondargument is the moving image (here, the green and bluechannels, respectively).5. Merge the aligned (registered) green and blue channel with the

reference red channel to obtain the color-channel-aligned image,crop the image (with skimage.util.crop() function, whichaccepts a tuple argument representing how many pixels to cropfrom the left and right sides for each axis of the input numpy
ndarray) to get rid of unpleasant borders (remove alignmentartifacts).Refer to the following python code snippet:

from pystackreg import StackReg
from skimage import io
from skimage.util import crop
im = io.imread('images/birds.jpg')r, g, b = im[...,0], im[...,1], im[...,2]
load reference and "moved" image
Translational transformationsr = StackReg(StackReg.TRANSLATION)g_ = sr.register_transform(r, g)b_ = sr.register_transform(r, b)
im_rec = im.copy()im_rec[...,1], im_rec[...,2] = g_, b_
im_rec = crop(im_rec, ((50, 50), (20, 20), (0,0)), copy=False)plt.figure(figsize=(18,7))plt.gray()plt.imshow(np.hstack((r, g, g_, b, b_))), plt.axis('off')plt.show()plt.figure(figsize=(15,8))plt.subplots_adjust(0,0,1,0.95,0.02,0.02)plt.subplot(121), plt.imshow(im, aspect='auto'), plt.axis('off') plt.title('original image', size=20)plt.subplot(122), plt.imshow(im_rec, aspect='auto'), plt.axis('off')plt.title('color-corrected image', size=20)plt.show()If you run the preceding code snippet, you should obtain a figure asfollows:

Figure 5.11: Correcting an RGB image by aligning the color channels

The preceding Figure 5.11 shows the original image with color-channel misalignment, the aligned green and blue channels, and thecropped color- channel-aligned (color-corrected) output image. Ascan be seen, the color channels are much better aligned now, and theoutput image looks much less blurry that the original input.
Deformable image registration with
pyelastix
PyElastix is a Python wrapper (interface) for the Elastix non-rigidimage registration toolkit. It requires the Elastix command line to beinstalled and accessible in your system’s environment, for properfunctionality. You can download Elastix from the following link:
https://github.com/SuperElastix/elastix/releases/tag/5.1.0.(Choose the correct ZIP file, based on your operating system andunzip it. Then, add the path to the executable to the environmentvariable PATH by appending the path string os.environ["PATH"].Next, install pyelastix with pip, if not already installed. In thisexample, we shall use two palm images (one as the fixed/referenceimage and the other as the moving image) and align the movingimage with the fixed one using nonrigid (deformable) image

https://github.com/SuperElastix/elastix/releases/tag/5.1.0

registration. Here are the steps:1. Read the fixed (reference) and moving input images (with thefunction imageio.imread()) and convert them to grayscaleimages.2. Use the function pyelastix.register() which accepts movingimage and fixed image as arguments, along with the argument
parameters. We shall use the default registration parametersobtained using pyelastix.get_default_params() and set the
NumberOfResolutions to 3 (to control multi-resolutionregistration levels). The function returns the registered movingimage to fixed image, along with the displacement fields (in the xand y directions).3. Plot the input fixed and moving images (overlayed), outputregistered image and displacement fields, as shown in thefollowing code snippet:
! pip install pyelastix
import pyelastix
import os
from skimage.color import rgb2gray
import imageio
import numpy as np
import matplotlib.pylab as plt
os.environ["PATH"] += os.pathsep + 'elastix-5.1.0-win64'
im_fixed = imageio.imread('images/hands1.jpg')im_moving = imageio.imread('images/hands2.jpg')
im_fixed, im_moving = rgb2gray(im_fixed), rgb2gray(im_moving)
Get default params and adjustparams = pyelastix.get_default_params()params.NumberOfResolutions = 3print(params)
<10 parameters>
Metric: 'AdvancedMattesMutualInformation'
NumberOfHistogramBins: 32
ImageSampler: 'RandomCoordinate'
NumberOfSpatialSamples: 2048
NewSamplesEveryIteration: True
NumberOfResolutions: 3
Transform: 'BSplineTransform'
FinalGridSpacingInPhysicalUnits: 16
Optimizer: #'AdaptiveStochasticGradientDescent'
MaximumNumberOfIterations: 500
Found elastix version: 4.900 in 'elastix.exe'
Register!im_reg, field = pyelastix.register(im_moving, im_fixed, params, \ verbose=0)

Visualize the resultfig = plt.figure(figsize=(15,8));plt.gray()plt.clf()plt.subplot(231); plt.imshow(im_fixed), plt.axis('off')plt.title('fixed image', size=20)plt.subplot(232); plt.imshow(im_moving), plt.axis('off') plt.title('moving image', size=20)plt.subplot(233); plt.imshow(im_reg), plt.axis('off')plt.title('registered image', size=20)plt.subplot(234)plt.imshow(np.dstack((im_fixed, im_moving, im_reg)))plt.axis('off'), plt.title('comparing fixed, moving, reg', size=20)plt.subplot(235); plt.imshow(field[0]), plt.axis('off') plt.title('field-X', size=20)plt.subplot(236); plt.imshow(field[1]), plt.axis('off')plt.title('field-Y', size=20)plt.tight_layout()plt.show()If you run the preceding code snippet, you should obtain a figure asfollows:

Figure 5.12: Deformable image registration with pyelastix

Note: The function pyelastix.get_default_params() provides a dictionary of default
parameters tailored for nonrigid image registration using B-spline
transformations. These parameters are designed to offer a robust starting point
for general deformable registration tasks. We can customize various aspects of
the registration process, such as the optimizer, similarity metric, and
interpolation method, by modifying the returned dictionary. This flexibility allows
adaptation to specific registration needs, including applications involving
anatomical variability, such as aligning medical scans, or scenarios requiring
nonrigid alignment due to local deformations.

Image registration with SimpleITKIn this section, we shall use the library SimpleITK to perform non-

rigid registration. SimpleITK provides two flavors of non-rigidregistration:
• ITKv4-based registration framework: Supports free-formdeformation, B-Spline based, and Demons algorithms.
• Standalone Demons filters: A set of Demons filters that areindependent of the registration framework (includes

DemonsRegistrationFilter,
DiffeomorphicDemonsRegistrationFilter,
FastSymmetricForcesDemonsRegistrationFilter and
SymmetricForcesDemonsRegistrationFilter).We shall demonstrate how to implement nonrigid registrationmethods, one from each flavor.

With B-SplinesB-Splines are popular for modeling local deformations in medical andnatural images. However, they involve a large number of parameters,making the optimization of the deformation more complex and time-consuming. To address this, a multi-resolution B-Spline approachis employed, which starts the registration process at a lowerresolution with fewer parameters.At the initial stage, the transformation uses a coarser grid, and as theregistration progresses, the B-Spline control points are resampled atprogressively higher resolutions. This adaptive strategy, combinedwith the multi-level feature of the image registration process, allowsfor efficient solving of a wide range of registration problems.The multi-level registration technique enables adjustments to variousparameters at each level, including shrink factors, smoothing sigmas,sampling percentages, and the B-Spline resolution itself. The processbegins with a low-resolution B-Spline transform, and the resolutionincreases at each level, typically doubling with each step. Forinstance, if the final resolution level is set to 5, the resolution scalingfactors for each level might progress from 1 to 2, 4, and so on.It is crucial to monitor the transformation at every stage of theregistration. When the inPlace=True option in
SetInitialTransformAsBSpline() is activated, the transformation isupdated continuously during the registration process, making itpossible to observe the current transform and apply it in eventcommands if needed.

Using consistent pixel types for all images in the process ensurescompatibility when applying filters like the compose filter, which isoften required when combining images or performing multi-stagetransformations.This adaptive B-Spline method helps efficiently manage compleximage deformation tasks, making the registration process morescalable and flexible.The next code snippet uses BSplineTransform from SimpleITK forimage registration. The floor division operator (//) needs to be usedto ensure that all the three images have the same pixel type, asrequired by the compose filter (sitk.Compose()).
import SimpleITK as sitk
import sys, os
fixed = sitk.ReadImage('images/hands1.jpg', sitk.sitkFloat32)moving = sitk.ReadImage('images/hands2.jpg', sitk.sitkFloat32)
transform_domain_mesh_size = [2] * fixed.GetDimension()tx = sitk.BSplineTransformInitializer(fixed, transform_domain_mesh_size)
print(f"Initial Number of Parameters: {tx.GetNumberOfParameters()}")
Initial Number of Parameters: 50

registration_method = sitk.ImageRegistrationMethod()registration_method.SetMetricAsJointHistogramMutualInformation()registration_method.SetOptimizerAsGradientDescentLineSearch(5.0, 100, \ convergenceMinimumValue=1e-4, convergenceWindowSize=5)registration_method.SetInterpolator(sitk.sitkLinear)registration_method.SetInitialTransformAsBSpline(tx, inPlace=True, \ scaleFactors=[1, 2, 5])registration_method.SetShrinkFactorsPerLevel([4, 2, 1])registration_method.SetSmoothingSigmasPerLevel([4, 2, 1])
outTx = registration_method.Execute(fixed, moving)
resampler = sitk.ResampleImageFilter()resampler.SetReferenceImage(fixed)resampler.SetInterpolator(sitk.sitkLinear)resampler.SetDefaultPixelValue(100)resampler.SetTransform(outTx)
out = resampler.Execute(moving)
simg1 = sitk.Cast(sitk.RescaleIntensity(fixed), sitk.sitkUInt8)simg2 = sitk.Cast(sitk.RescaleIntensity(moving), sitk.sitkUInt8)simg3 = sitk.Cast(sitk.RescaleIntensity(out), sitk.sitkUInt8)
Visualize the resultfig = plt.figure(figsize=(15,6))plt.gray()plt.clf()

plt.subplot(131)plt.imshow(sitk.GetArrayFromImage(sitk.Compose(simg1, simg2, \ simg1 // 2.0 + simg2 // 2.0)))plt.axis('off'), plt.title('fixed and moving image', size=20)plt.subplot(132); plt.imshow(sitk.GetArrayFromImage(out)), plt.axis('off')plt.title('registered image', size=20)plt.subplot(133)plt.imshow(sitk.GetArrayFromImage(sitk.Compose(simg1, simg3, \ simg1 // 2.0 + simg3 // 2.0))) plt.axis('off'), plt.title('fixed and registered image', size=20)plt.suptitle('Image Regsitration with SimpleItk BSpline', size=22)plt.tight_layout()plt.show()If you run the preceding code snippet, you should obtain a figure asfollows:

Figure 5.13: Image registration using B-Spline with SimpleITKThe preceding figure shows the moving image overlayed on the fixedimage before and after registration – observe the alignment of theregistered image is way better than the initial moving image.
With DemonsIn this section, we will explore how to apply the Fast SymmetricForces Demons algorithm for deformable image registration using
FastSymmetricForcesDemonsRegistrationFilter() from
SimpleITK. Unlike traditional algorithms, this method usessymmetric forces, instead of asymmetric displacement assumptions.The algorithm’s key parameters include the number of iterations,configured using the SetNumberOfIterations() method, and theGaussian smoothing standard deviations for the total displacementfield, set with SetStandardDeviations(). Additional controls allowfor fine-tuning regularization, as well as smoothing the total field forthe elastic model or the update field for the viscous model.The core assumption of the Demons algorithm is that its intensities atcorresponding points in the images are equal. To address this

assumption, histogram matching(HistogramMatchingImageFilter()) is applied to make the imagesmore comparable before registration. This approach is particularlyuseful when the intensity similarity assumption does not hold.Furthermore, the command design pattern can be employed to trackthe progress of the registration process.The fixed image input used in the next code snippet is the Lenaimage and the moving image is a distorted version of the image. Usethe demons algorithm to register the moving image with the fixedimage. Display the registered image, along with the fixed and movingimages.Now let us dive into the implementation, using the following codesnippet:
import SimpleITK as sitk
import sys, os
fixed = sitk.ReadImage('images/lenag2.png', sitk.sitkFloat32)moving = sitk.ReadImage('images/lenag1.png', sitk.sitkFloat32)
matcher = sitk.HistogramMatchingImageFilter()matcher.SetNumberOfHistogramLevels(1024)matcher.SetNumberOfMatchPoints(7)matcher.ThresholdAtMeanIntensityOn()moving = matcher.Execute(moving, fixed)
transformDomainMeshSize = [2] * fixed.GetDimension()tx = sitk.BSplineTransformInitializer(fixed, transformDomainMeshSize)
print(f"Initial Number of Parameters: {tx.GetNumberOfParameters()}")
Initial Number of Parameters: 50

The basic Demons Registration Filter
Note there is a family of Demons Registration algorithms in
SimpleITKdemons = sitk.FastSymmetricForcesDemonsRegistrationFilter()demons.SetNumberOfIterations(200)
Standard deviation for Gaussian smoothing of displacement fielddemons.SetStandardDeviations(1.0)
displacement_field = demons.Execute(fixed, moving)
print(f"Number Of Iterations: {demons.GetElapsedIterations()}")print(f" RMS: {demons.GetRMSChange()}")
Number Of Iterations: 200
RMS: 0.2871094570605489

outTx = sitk.displacement_fieldTransform(displacement_field)
resampler = sitk.ResampleImageFilter()resampler.SetReferenceImage(fixed)resampler.SetInterpolator(sitk.sitkLinear)

resampler.SetDefaultPixelValue(100)resampler.SetTransform(outTx)
out = resampler.Execute(moving)simg1 = sitk.Cast(sitk.RescaleIntensity(fixed), sitk.sitkUInt8)simg2 = sitk.Cast(sitk.RescaleIntensity(moving), sitk.sitkUInt8)simg3 = sitk.Cast(sitk.RescaleIntensity(out), sitk.sitkUInt8)
Visualize the resultfig = plt.figure(figsize=(15,9))plt.gray()plt.clf()plt.subplot(231); plt.imshow(sitk.GetArrayFromImage(fixed))plt.axis('off')plt.title('fixed image', size=20)plt.subplot(232); plt.imshow(sitk.GetArrayFromImage(moving)) plt.axis('off'), plt.title('moving image', size=20)plt.subplot(233) plt.imshow(sitk.GetArrayFromImage(sitk.Compose(simg1, simg2, \ simg1 // 2.0 + simg2 // 2.0)))plt.axis('off'), plt.title('fixed and moving image', size=20)plt.subplot(234); plt.imshow(sitk.GetArrayFromImage(out)), plt.axis('off')plt.title('registered image', size=20)plt.subplot(235)plt.imshow(sitk.GetArrayFromImage(sitk.Compose(simg1, simg3, \ simg1 // 2.0 + simg3 // 2.0))) plt.axis('off'), plt.title('fixed and registered image', size=20)plt.suptitle('Image Regsitration with SimpleItk Demon', size=22)plt.tight_layout()plt.show()If you run the preceding code snippet, you should obtain a figure asfollows:

Figure 5.14: Image registration with SimpleITK Demon

Deep deformable image registration with
VoxelMorph with tensorflow/kerasImage registration involves aligning different datasets into a commoncoordinate system. These alignments can range from simple rigidtransformations, such as translations and rotations, to more complextransformations, such as affine (shear) or homography transforms,and even deformable models. The goal of deformable registration isto compute a pixel-wise displacement field between a source imageand a target image. When applied to the source image, thisdisplacement field ensures that the source and target images matchas closely as possible, as shown in the following figure:

Figure 5.15: Schematic for deformable registrationIn this section, we shall explore a state-of-the-art technique fordeformable image registration using deep learning. The followingfigure illustrates a schematic of the training process for a deeplearning-based pipeline designed for deformable image registration:

Figure 5.16: Training VoxelMorph on MNIST
Source: https://www.sicara.fr/blog-technique/deformable-image-registration

Training a CNN for registrationLet us first understand of how to train a deep CNN to perform imageregistration:1. To perform image registration, a pair of images—a source(moving image) and a target (fixed image)—are provided as inputto a registration network, typically a convolutional neural
network (CNN) such as a U-Net. This network processes theinput pair and generates a Displacement Field, which is atensor mapping each pixel from source image to , adisplacement vector.2. Using the displacement field, the source image can betransformed by computing new pixel coordinates, for each pixel. The source image is thensampled at these new coordinates to produce the warped image.This transformation is performed in the warping layer (shown in
Figure 5.16).3. To evaluate the quality of the registration and provide anoptimization objective for the network, a loss function isemployed. Two common loss functions used for image registrationare as follows (also shown in Figure 5.16):

https://www.sicara.fr/blog-technique/deformable-image-registration

a. The mean squared error (MSE) is a pixel-wise loss metricthat metric compares two images pixel by pixel, and quantifiesthe average of the squares of the differences betweencorresponding pixel intensities of two images. A perfect matchresults in an MSE of 0.b. The normalized cross correlation (NCC) is a similaritymeasure that evaluates how well two image patches or signalsalign as one is shifted over the other as a function of theirrelative displacement, similar to the concept of convolutionbetween two functions.4. These loss functions guide the network during training toimprove the alignment of the source and target images, byupdating the weights of the CNN with backpropagation.5. To train the deformable image registration network, loop overthe training dataset and execute steps 1-4 for each source, targetimage pair.
Prediction with the trained CNNGiven a pair of (moving, fixed) test images, the trained networkpredicts the registered (output) image and the displacement field.Let us instantiate VoxelMorph, which is a CNN (convolution neuralnetwork) for deep deformable image registration, using the library
voxelmorph (install it with pip, if not already installed). Follow thenext steps to run training and inference on the network:1. We need tensorflow 2.0 (or later) for the implementation.Handwritten digits dataset MNIST (with each digit image havingsize 28×28) will be used as input dataset. We shall use a subset(for example, use only the images with label , as shown in thenext code snippet) to train the network.2. The next code snippet creates the training/test splits from thedataset and pads the images to have the size of the nearest powerof 2, that is, 32×32:

install voxelmorph, it will install dependencies: neurite and pystrum
!pip install voxelmorph
import os, sys
third party imports
import numpy as np
import tensorflow as tf

assert tf.__version__.startswith('2.'), 'We need Tensorflow 2.0+'
local imports
import voxelmorph as vxm
import neurite as ne
from tensorflow.keras.datasets import mnist
load MNIST data.
Split the data into train and test.(x_train_load, y_train_load), (x_test_load, y_test_load) = \ mnist.load_data()
x_train_load = x_train_load / x_train_load.max()x_test_load = x_test_load / x_test_load.max()
digit_sel = 8
extract only instances of the digit 8x_train = x_train_load[y_train_load==digit_sel, ...]y_train = y_train_load[y_train_load==digit_sel]x_test = x_test_load[y_test_load==digit_sel, ...]y_test = y_test_load[y_test_load==digit_sel]
let's get some shapes to understand what we loaded.print('shape of x_train: {}, y_train: {}'.format(x_train.shape, \ y_train.shape))
shape of x_train: (5851, 28, 28), y_train: (5851,)

nb_val = 1000 # keep 1,000 subjects for validationx_val = x_train[-nb_val:, ...] # this indexing means "the last nb_val
 # entries" of the zeroth axisy_val = y_train[-nb_val:]x_train = x_train[:-nb_val, ...]y_train = y_train[:-nb_val]
pad_amount = ((0, 0), (2,2), (2,2))
fix datax_train = np.pad(x_train, pad_amount, 'constant')x_val = np.pad(x_val, pad_amount, 'constant')x_test = np.pad(x_test, pad_amount, 'constant')
verifyprint('shape of training data', x_train.shape)
shape of training data (4851, 32, 32)3. Let us create a U-Net framework (using the function
voxelmorph.networks.VxmDense() with the input shape and
nbfeatures specifying the layers in the encoder and decodernetworks).4. The loss functions to be used are voxelmorph.losses.MSE()along with voxelmorph.losses.Grad('l2'), to compute the loss,and the optimizer to be used is Adam.

5. Let us plot the network architecture using
tf.keras.utils.plot_model() function, using the next codesnippet:
configure unet input shape (concatenation of moving and fixed images)ndim = 2unet_input_features = 2inshape = (*x_train.shape[1:], unet_input_features)
configure unet featuresnb_features = [[32, 32, 32, 32], # encoder features [32, 32, 32, 32, 32, 16] # decoder features]
build model using VxmDenseinshape = x_train.shape[1:]vxm_model = vxm.networks.VxmDense(inshape, nb_features, int_steps=0)
voxelmorph has a variety of custom loss classeslosses = [vxm.losses.MSE().loss, vxm.losses.Grad('l2').loss]
usually, we have to balance the two losses by a hyper-parameterlambda_param = 0.05loss_weights = [1, lambda_param]
vxm_model.compile(optimizer='Adam', loss=losses, \ loss_weights=loss_weights)
tf.keras.utils.plot_model(vxm_model, to_file='model.png', \ show_shapes=True)Refer to the following figure, for the architecture of the deep neuralnet (U-Net) framework:

Figure 5.17: U-Net architecture

6. The function plot_history() shown in the next code block can beused to visualize the loss decreasing over epochs (traininghistory).

7. The function vxm_data_generator() is a python generator (thatyields values lazily using the yield keyword, allowing efficientmemory usage by producing values one at a time instead ofstoring them all in memory), it will be used to generate train data(inputs and outputs for the CNN) now and validation data later.It takes in data of size [N,H,W], and yields data for our custom
voxelmorph model. Note that we need to provide numpy datafor each input, and each output.8. The function yields the tuple (inputs, outputs) where:a. The variable inputs is assigned the tuple (moving, fixed)images of sizes [batch_size, H, W, 1] and [batch_size, H, W,

1]), respectively. It acts as input pair of images for the CNN(here H = W = 32 and batch_size=32 by default).b. The variable outputs is assigned the tuple (moved image,zero-gradient displacement field) of sizes [batch_size, H, W,
1] and [batch_size, H, W, 2] respectively, to be used as thecorresponding output pair of images for the CNN.9. The output of the U-Net will be (fixed, ϕ), where ϕ is the

displacement field (in x and y directions). The first term in theoutput tuple refers to the registered image and we want it to beclose to the fixed image.10. The displacement field is initialized with zero. Plot the moving(to be aligned), fixed (the reference), target (registered/aligned)ground-truth images and the displacement field (for example, inthe x direction), using the function ne.plot.slices(), prior to thestart of the training process.
def plot_history(hist, loss_name='loss'): plt.figure() plt.plot(hist.epoch, hist.history[loss_name], '.-') plt.ylabel('loss', size=20) plt.xlabel('epoch', size=20) plt.grid() plt.show()
def vxm_data_generator(x_data, batch_size=32):
 # preliminary sizing vol_shape = x_data.shape[1:] # extract data shape ndims = len(vol_shape)
 # prepare a zero array the size of the deformation zero_phi = np.zeros([batch_size, *vol_shape, ndims])

 while True: #prepare inputs: images need to be of sz [batch_size, H, W, 1] idx1 = np.random.randint(0, x_data.shape[0], size=batch_size) moving_images = x_data[idx1, ..., np.newaxis] idx2 = np.random.randint(0, x_data.shape[0], size=batch_size) fixed_images = x_data[idx2, ..., np.newaxis] inputs = [moving_images, fixed_images]
 # prepare outputs (the 'true' moved image): # of course, we don't have this, but we know we want to compare
 # the resulting moved image with the fixed image. # we also wish to penalize the deformation field. outputs = [fixed_images, zero_phi]
 yield (inputs, outputs)
let's test ittrain_generator = vxm_data_generator(x_train)in_sample, out_sample = next(train_generator)
print(len(in_sample), in_sample[0].shape)
2 (32, 32, 32, 1)

visualizeimages = [img[0, :, :, 0] for img in in_sample + out_sample]titles = ['moving', 'fixed', 'moved ground-truth (fixed)', 'zeros']ne.plot.slices(images, titles=titles, cmaps=['gray'], \ do_colorbars=True);If you run the preceding code snippet, you should obtain a figure asfollows:

Figure 5.18: Deep image registration with U-NetNow, let us train the model for 10 epochs (by invoking the model’s
fit() method), using the following code snippet:nb_epochs = 10steps_per_epoch = 100hist = vxm_model.fit(train_generator, epochs=nb_epochs, \ steps_per_epoch=steps_per_epoch, verbose=2)
Epoch 1/10
1/1 [==============================] - 0s 321ms/step
100/100 - 19s - loss: 0.0530 - vxm_dense_transformer_loss: 0.0506 -
vxm_dense_flow_loss: 0.0481 - 19s/epoch - 194ms/step
Epoch 2/10
1/1 [==============================] - 0s 31ms/step

100/100 - 14s - loss: 0.0234 - vxm_dense_transformer_loss: 0.0187 -
vxm_dense_flow_loss: 0.0954 - 14s/epoch - 137ms/step
Epoch 3/10
1/1 [==============================] - 0s 29ms/step
100/100 - 14s - loss: 0.0191 - vxm_dense_transformer_loss: 0.0144 -
vxm_dense_flow_loss: 0.0941 - 14s/epoch - 135ms/step
Epoch 4/10
1/1 [==============================] - 0s 29ms/step
100/100 - 13s - loss: 0.0175 - vxm_dense_transformer_loss: 0.0128 -
vxm_dense_flow_loss: 0.0940 - 13s/epoch - 128ms/step
Epoch 5/10
1/1 [==============================] - 0s 32ms/step
100/100 - 14s - loss: 0.0159 - vxm_dense_transformer_loss: 0.0113 -
vxm_dense_flow_loss: 0.0924 - 14s/epoch - 137ms/step
Epoch 6/10
1/1 [==============================] - 0s 31ms/step
100/100 - 14s - loss: 0.0151 - vxm_dense_transformer_loss: 0.0105 -
vxm_dense_flow_loss: 0.0922 - 14s/epoch - 139ms/step
Epoch 7/10
1/1 [==============================] - 0s 32ms/step
100/100 - 13s - loss: 0.0145 - vxm_dense_transformer_loss: 0.0099 -
vxm_dense_flow_loss: 0.0924 - 13s/epoch - 129ms/step
Epoch 8/10
1/1 [==============================] - 0s 29ms/step
100/100 - 14s - loss: 0.0137 - vxm_dense_transformer_loss: 0.0092 -
vxm_dense_flow_loss: 0.0907 - 14s/epoch - 142ms/step
Epoch 9/10
1/1 [==============================] - 0s 87ms/step
100/100 - 14s - loss: 0.0135 - vxm_dense_transformer_loss: 0.0089 -
vxm_dense_flow_loss: 0.0912 - 14s/epoch - 139ms/step
Epoch 10/10
1/1 [==============================] - 0s 50ms/step
100/100 - 13s - loss: 0.0131 - vxm_dense_transformer_loss: 0.0086 -
vxm_dense_flow_loss: 0.0913 - 13s/epoch - 127ms/stepOnce the network is trained, it is time to register/align images with
prediction. We shall use images from the validation dataset for thispurpose (ideally you should use the held-out test dataset, try it onyour own). Generate (moving, fixed) image pairs from the validationdata, to be input to the network, and run a forward pass on thenetwork (using the predict() method), predicting the registeredimage (i.e., the moving image aligned to the fixed image) and thedisplacement fields.Plot all the images, using the next code snippet, to visualize thealignment, along with the flow. Moreover, plot the loss with trainingepoch, to see how the loss function decreases over epochs duringtraining phase.val_generator = vxm_data_generator(x_val, batch_size = 1)val_input, _ = next(val_generator)val_pred = vxm_model.predict(val_input)
visualizeimages = [img[0, :, :, 0] for img in val_input + val_pred] + \

 [np.dstack((val_input[0][0,:,:,0], val_input[1][0,:,:,0], \ val_input[0][0,:,:,0]/2 + val_input[1][0,:,:,0]/2))] + \ [np.dstack((val_input[1][0,:,:,0], val_pred[0][0,:,:,0], \ val_input[1][0,:,:,0]/2 + val_pred[0][0,:,:,0]/2))]titles = ['moving', 'fixed', 'moved', 'flow', 'before reg', \ 'after reg']ne.plot.slices(images, titles=titles, cmaps=['gray'], \ do_colorbars=True, show=False)ne.plot.flow([val_pred[1].squeeze()], width=5, show=False);If you run the preceding code snippet, you should obtain a figure asfollows:

Figure 5.19: Image registration with VoxelMorph

ConclusionIn this chapter, we discussed about various feature extractiontechniques and application of them in important image processingand computer vision problems such as image registration. You learnthow to implement extraction of features like SURF, BRISK, BRIEFwith python libraries such as scikit-image, SimpleITK, cv2.This chapter provided a detailed exploration of image featureextraction and its applications, with a focus on image registration. Itbegan by introducing different types of feature detectors anddescriptors, laying the groundwork for effective image alignment.Feature detection techniques were highlighted, including the HarrisCorner detector and Shi-Tomasi Corner detector, implemented withOpenCV to extract prominent features in images.

The discussion then shifted to image registration, showcasingpractical implementations using both classical and advancedtechniques. Registration with ORB features was demonstrated usingOpenCV and Scikit-image, while SURF features with OpenCV andDISK features with kornia illustrated additional robust methods forfeature-based matching. The chapter also covered color channelalignment using the pystackreg library for precise registration ofmisaligned image channels.Advanced registration techniques included deformable imageregistration with PyElastix, enabling flexible transformations for non-rigid alignment. The chapter further explored registration withSimpleITK, detailing methods using B-Splines for smooth, flexibletransformations and Demons for intensity-based approaches. Finally,cutting-edge deep deformable image registration was introducedwith VoxelMorph, leveraging TensorFlow/Keras to achieve state-of-the-art results in medical and other complex image registration tasks.By integrating traditional methods with deep learning approaches,this chapter provided readers with a comprehensive understanding offeature extraction and its applications, equipping them to tackle avariety of image registration challenges in research and practicalsettings.
Key termsHarris Corner, Shi-Tomasi, ORB, SURF, DISK, B-Splines, Demons,VoxelMorph.
Questions1. Rotation invariance of ORB: Show that the ORB is rotationinvariant. For example, take the following image of the Victoria

Memorial Hall and its rotated version as input images. Choose asingle ORB feature (for example, the one on its fairy) detected inthe original image (mark it red), show that the same feature isdetected from the rotated image too. You should obtain a figureas follows:

Figure 5.20: Rotation invariance of ORB features

Similarly, show that the ORB is scale- invariant too.2. Finding near-duplicate images (up to rotation/scaling): UseORB features to find near-duplicate images, for example from thefollowing images of the Victoria Memorial Hall and Taj Mahal.Notice that there are 2 unique images and all the other imagesare obtained by applying rotation/scaling/changing background.

Figure 5.21: Input images for near-duplicate image detectionExtract ORB feature descriptors (for example, 50 features) andconcatenate the features to obtain a single vector from eachimage. Now, use a nearest-neighbor algorithm (for example,ball_tree from sklearn.neighbors.NearestNeighbors) to find thenearest descriptors from the images and display the top 4 (forexample, k = 4) near-duplicate images found, as shown in thefollowing figure. As can be seen, querying with a Victoria image(descriptor vector) fetches all the images obtained withrotation/scaling/changing the background of the original image

(also report the NN-distances obtained).

Figure 5.22: Finding near-duplicate images with ORB features

References1. https://stackoverflow.com/questions/41692063/what-is-the-
difference-between-image-registration-and-image-
alignment2. https://cs.brown.edu/courses/cs129/2012/asgn/proj1/3. https://www.loc.gov/pictures/search/?
q=Prokudin+negative&sp=3&st=grid4. https://github.com/SuperElastix/elastix/releases/tag/5.1.05.
https://in.mathworks.com/help/images/ref/imregdemons.ht
ml6.
https://www.cs.cmu.edu/~galeotti/methods_course/ITK_Regi
stration.pdf7.
https://openaccess.thecvf.com/content_CVPR_2019/papers/B
arath_MAGSAC_Marginalizing_Sample_Consensus_CVPR_20
19_paper.pdf8.
https://stackoverflow.com/questions/37039224/attributeerro

https://stackoverflow.com/questions/41692063/what-is-the-difference-between-image-registration-and-image-alignment
https://cs.brown.edu/courses/cs129/2012/asgn/proj1/
https://www.loc.gov/pictures/search/?q=Prokudin+negative&sp=3&st=grid
https://github.com/SuperElastix/elastix/releases/tag/5.1.0
https://in.mathworks.com/help/images/ref/imregdemons.html
https://www.cs.cmu.edu/~galeotti/methods_course/ITK_Registration.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Barath_MAGSAC_Marginalizing_Sample_Consensus_CVPR_2019_paper.pdf
https://stackoverflow.com/questions/37039224/attributeerror-module-object-has-no-attribute-xfeatures2d-python-opencv-2

r-module-object-has-no-attribute-xfeatures2d-python-
opencv-29. https://dl.acm.org/doi/pdf/10.5555/3495724.3496919

Join our Discord space
Join our Discord workspace for latest updates, offers, tech happenings
around the world, new releases, and sessions with the authors:
https://discord.bpbonline.com

https://stackoverflow.com/questions/37039224/attributeerror-module-object-has-no-attribute-xfeatures2d-python-opencv-2
https://dl.acm.org/doi/pdf/10.5555/3495724.3496919
https://discord.bpbonline.com/

CHAPTER 6
Applications of Image

Feature Extraction

IntroductionAs discussed in Chapter 5, Image Feature Extraction and Its
Applications: Image Registration, image feature extractioninvolves identifying and encoding important elements of animage (edges, corners, blobs, textures, etc.) to create asimplified, informative representation. It plays a pivotal role ina wide range of computer vision applications, enabling thedetection, recognition, and analysis of objects in both staticand dynamic scenes. By isolating key visual attributes fromimages, feature extraction serves as the foundation for taskssuch as stitching, recognition, and detection. This chapterdelves into various practical applications of feature extractiontechniques, highlighting their effectiveness in solving real-world problems across domains like multimedia, security, andsurveillance.
StructureThis chapter covers the following topics:

• Panorama with opencv-python
• NMF for extracting face features with Nimfa
• Face recognition using LBPH with opencv-python
• Face feature extraction and recognition using Gabor filterbanks
• Pedestrian detection with HOG vs HAAR-Cascade featureswith opencv-python

ObjectivesThis chapter explores diverse applications of image featureextraction techniques, focusing on their implementation andpractical utility. Key topics include the creation of panoramasthrough image and video stitching using opencv-python,leveraging non-negative matrix factorization (NMF) forfacial feature extraction, and implementing Local Binary
Patterns Histogram (LBPH)-based face recognition withopencv-pthon. Advanced methods, such as facial featureextraction and recognition using Gabor filter banks, and acomparative analysis of HOG and HAAR Cascade features forpedestrian detection, are also covered. By the end of thechapter, you will gain hands-on experience and insights intoapplying these techniques effectively in various imageprocessing and computer vision tasks.
Panorama with opencv-python
Image stitching (also called image mosaicing) refers to theimage processing task of combining multiple overlappingimages to create a (segmented) panorama image(alternatively called an image mosaic). There are three majorcomponents of image stitching:

• Register images so that corresponding features alignaccurately

• Determine overlap between adjacent images
• Blend the overlapping regions to create a coherent,artifact-free compositeIn this section, we shall use the stitching module pipelinefrom opencv-python to perform image stitching, asillustrated in the following Figure 6.1. Using the Stitcherclass, it is possible to configure and remove some steps, thatis, adjust the stitching pipeline according to the particularneeds. All building blocks from the pipeline are available inthe detail namespace, and one can combine and use themseparately.

Figure 6.1: Image stitching pipeline

Image stitchingThe following code demonstrates image stitching, here westitch eleven images together to obtain a panorama image,using opencv-python’s Stitcher.stitch() method. Here arethe steps involved:1. Create the stitcher object: Use cv2.createStitcher() ifyou are using OpenCV 3.x or cv2.Stitcher_create() for
OpenCV 4.x, to instantiate a Stitcher object. You canoptionally pass the boolean parameter try_use_gpu=Trueif you have a GPU available, which can significantlyaccelerate the stitching process.2. Stitch the images: Call the stitch() method on the
Stitcher object, passing a list of input images. Thismethod will attempt to align and combine the images intoa single panoramic view and return the resultingpanorama.3. Check the stitching status: The stitch() methodreturns two values: a status code and the resultingpanorama image. The status code indicates the success orfailure of the stitching process. The possible status codesfrom the OpenCV documentation are:a. OK = 0: Stitching was successful.b. ERR_NEED_MORE_IMGS = 1: Not enough keypointswere detected in the images, requiring additional inputimages.c. ERR_HOMOGRAPHY_EST_FAIL = 2: The RANSACalgorithm for homography estimation (which robustlyfinds the best transformation between images byiteratively selecting point correspondences andrejecting outliers) failed, likely due to insufficient orpoorly matched keypoints between the input images.

d. ERR_CAMERA_PARAMS_ADJUST_FAIL = 3: Failedto estimate camera parameters from the input images.In such cases, providing more images might improvekeypoint detection and estimation.4. Handling black borders in the panorama: Even aftersuccessful stitching, the output panorama image often hasblack borders caused by the perspective warpingnecessary to align the images. To remove these borders,you can use the trim() method from the wand library’s
Image class. Pass the parameters
color=Color('rgb(0,0,0)') and
percent_background=0.0, to trim the panorama imageto its minimal bounding box, removing the black regions,as shown in the next code snippet.By following these steps, you can successfully stitch imagesinto a panorama and clean up any unnecessary backgroundartifacts that may result from the stitching process. First letus load the images to be stitched and display them with

matplotlib.pylab, using the following code snippet:
import numpy as np
import glob
import matplotlib.pylab as plt
import cv2print(cv2.__version__)
3.4.2
from wand.image import Image
from wand.color import Color
grab the paths to the input images and initialize our images listimages = [cv2.imread(img) for img in glob.glob('images/Imgp_*')]print('Number of images to stitch: {}'.format(len(images)))
Number of images to stitch: 11fig = plt.figure(figsize=(20, 15))
for i in range(len(images)): plt.subplot(3,4,i+1) plt.imshow(images[i]) plt.axis('off') fig.subplots_adjust(left=0, right=1, bottom=0, top=0.95, \ hspace=0.05, wspace=0.05) plt.suptitle('Images to stich', size=25)plt.show()

If you run the preceding code snippet, you should obtain afigure like the next one, displaying all the images to bestitched as subplots:

Figure 6.2: 11 input images to stitch

Now, run the image stitching with the stitcher.stitch()method, as explained, using the following code snippet:
initialize OpenCV's image sticher object & perform image stitchingstitcher = cv2.createStitcher()(status, stitched) = stitcher.stitch(images)
if status is 0, then image stitching is successful
if status == 0: plt.figure(figsize=(20,10)) plt.imshow(cv2.cvtColor(stitched, cv2.COLOR_BGR2RGB)) plt.axis('off'), plt.title('Stitched output image', size=20) plt.tight_layout() plt.show() stitched = Image.from_array(stitched) stitched.trim(color=Color('rgb(0,0,0)'), \ percent_background=0.0, fuzz=0) stitched = np.array(stitched) # write the output stitched image to disk cv2.imwrite('images/output_panorama.jpg', stitched) plt.figure(figsize=(20,10)) plt.imshow(cv2.cvtColor(stitched, cv2.COLOR_BGR2RGB)) plt.axis('off') plt.title('Stitched output image (after trimming with wand)', \

 size=20) plt.tight_layout() plt.show()
else: # stitching failed, not enough keypoints detected print("image stitching failed ({})".format(status))If you run the preceding code snippet, you should obtain afigure, displaying the panorama images (with and withoutborder artifacts) as follows:

Figure 6.3: Creating panorama image with opencv-python

Video stitchingA straightforward approach to video stitching is to stitchcorresponding frames from the input videos sequentially. Thisapproach assumes that the input videos:• Have the same number of Frames Per Second (FPS).• Have identical durations, i.e., the same number of frames.Stitching two videos can be simply done by stitching individualframes from the videos, in a synchronized manner, with theassumption that the videos have the same FPS and length. Thenext code snippet demonstrates a basic video stitchingpipeline using opencv-python and imageio, with thefollowing steps:1. Ensure frame rate consistency: Assert that the videoshave same FPS. Read the left and right video framessequentially with imageio.get_reader().

2. Read and resize frames: Resize the left and right videoframes to same size for consistency into a panoramic view.3. Stitch frames: Use Stitcher.stitch() method to alignand blend each pair of frames.4. Append stitched frames: Append the output frame tothe output video (opened with imageio.get_writer()function, using the same FPS as the input videos), ifstitching is successful.5. Save final output: After all frames are processed, closethe writer and save the stitched video to disk.Now refer to the next code snippet:
import numpy as np
import datetime
import imutils
import time
import cv2
import imageio
stitcher = cv2.Stitcher_create()total = 0
reader1 = imageio.get_reader('images/vid3.mp4')reader2 = imageio.get_reader('images/vid4.mp4')fps1 = reader1.get_meta_data()['fps']fps2 = reader2.get_meta_data()['fps']
assert(fps1 == fps2)
writer = imageio.get_writer('video_stitched.mp4', fps = fps1)
for i, (left, right) in enumerate(zip(reader1, reader2)): # resize the frames left = imutils.resize(left, width=400) right = imutils.resize(right, width=400) # stitch the frames together to form the panorama (status, result) = stitcher.stitch([left, right]) if status: continue

 # no homograpy could be computed if result is None: print("[INFO] homography could not be computed") break

 writer.append_data(cv2.resize(result, (800, 600)))

 plt.figure(figsize=(20,8)) plt.subplots_adjust(0,0,1,0.95,0.05,0.05) plt.subplot(131), plt.imshow(left, aspect='auto') plt.axis('off') plt.title('Left Frame', size=20) plt.subplot(132), plt.imshow(right, aspect='auto') plt.axis('off'), plt.title('Right Frame', size=20) plt.subplot(133), plt.imshow(result, aspect='auto') plt.axis('off'), plt.title('Stitched Frame', size=20) plt.savefig('out_{:03d}.png'.format(i)) plt.close() writer.close()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 6.4: Stitching video frames with opencv-python

For advanced video stitching, consider:• Temporal consistency: Apply smoothing or filteringtechniques to avoid flickering or jitter between stitchedframes over time.• Global motion estimation: Track camera or scene motionacross frames to maintain alignment continuity.• Multi-camera synchronization: Handle slightdesynchronization in multi-camera systems by aligningframes using timestamps or motion cues.• Exposure compensation over time: Adjust forbrightness/lighting variations that occur across the videoduration.• Stitching failure handling: Add fallback mechanisms(e.g., previous frame reuse or interpolation) when stitchingfails temporarily.The aforementioned points are specifically focused onensuring smooth, coherent, and robust video stitchingoutput over time.
NMF for extracting face features with
NimfaNMF is a widely used unsupervised learning technique thatdecomposes (factorizes) a non-negative matrix (V) into twolower-rank non-negative matrices (W and H). Thisdecomposition reveals latent structures in the data and iswidely used in image analysis, especially face recognition. Thekey idea is that face images can be represented as additivecombinations of sparse basis features.Refer to the following figure for a mathematical definition of
NMF:

Figure 6.5: Non-negative matrix factorizationThe goal is to minimize the reconstruction error, typicallymeasured using the Frobenius norm:
This non-negativity constraint leads to a part-based, additiverepresentation of the data, making it particularly useful forfacial feature extraction.The steps for NMF-based face feature extraction are asfollows:1. Data preparation: Collect a set of face images andrepresent each image as a matrix of pixels. The imagematrix should be non-negative, and the dimensionality ofthe matrix should be the same for all images.2. Data normalization: Standardize (normalize) the imagedata to have zero mean and unit variance. This stepensures that the NMF algorithm converges faster andproduces better results.3. Component selection: The number of components (orfeatures) to extract is an important hyperparameter tochoose in NMF. You can use techniques such as the elbowmethod or cross-validation to determine the optimalnumber of components.4. Applying NMF: Apply NMF to the normalized imagematrix to factorize it into two non-negative matricesi. : basis matrix, containing the feature vectors (part-based features)ii. : coefficient matrix (weights for each basis vector),

that represent each image as a linear combination ofthe features.5. Feature selection: Identify the most significant(informative) basis vectors (features) in using sparsityor thresholding to discard noisy or uninformative features.6. Feature extraction: Extract the features from theoriginal image matrix by multiplying it with the selectedfeature vectors from the matrix W.7. Final normalization: Normalize the feature vectors tohave zero mean and unit variance for downstream tasks.The extracted features can be used for face recognition tasks,such as classification or clustering. Overall, NMF can be apowerful technique for face feature extraction.Now, let us use the python library nimfa's implementation of
NMF, to extract features from the faces from the CBCL facedatabase. Nimfa includes implementations of severalfactorization methods, initialization approaches, and qualityscoring. Both dense and sparse matrix representation aresupported. Let us walk through the code step by step:1. Start by importing the required packages and modules:

from os.path import dirname, abspath
from os.path import join
from warnings import warn
import numpy as np
import nimfa
from matplotlib.pyplot import savefig, imshow, set_cmap, show, axis, \ figure, subplot
from PIL.Image import open, fromarray, new
from PIL.ImageOps import expand2. Read face images from the MIT-CBCL database(download from the following link:
http://www.ai.mit.edu/courses/6.899/lectures/faces.ta
r.gz and unzip); each face is a grayscale image of size19×19.3. Create a data matrix V by stacking 2429 flattened imagesalong the columns. The matrix’s shape is 361 (pixels) x

http://www.ai.mit.edu/courses/6.899/lectures/faces.tar.gz

2429 (faces).
print("Reading CBCL faces database")dir = join('faces', 'train', 'face')V = np.zeros((19 * 19, 2429))
for image in range(2429): im = open(join(dir, "face0%s.pgm" % str(image + 1).zfill(4))) V[:, image] = np.asarray(im).flatten()
Normalize the matrix , using the next code snippet.
print("Data preprocessing")V = (V - V.mean()) / np.sqrt(np.multiply(V, V).mean())V = np.maximum(np.minimum((V + 0.25) * 0.25, 1), 0)V.shape
#(361, 2429)4. Use the following code snippet to visualize 225 randomlychosen faces from the matrix V:indices = np.random.choice(range(2429), 225)figure(figsize=(20,20))
for i in range(225): subplot(15,15,i+1) imshow(np.reshape(V[:,i],(19,19)), cmap='gray') axis('off')show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 6.6: Input image samples from CBCL face dataset

5. Define the function factorize() that accepts a data matrix

V as input argument and returns basis and mixturematrices of the fitted factorization model, using the
nimfa.Lsnmf() function which implements the
alternating non-negative least squares matrix
factorization using projected gradient (bound constrainedoptimization) method for each subproblem (LSNMF). Itconverges faster than the popular multiplicative updateapproach.6. Compute 49 basis vectors (pass rank =49 as argument ofthe function nimfa.Lsnmf()), experiment with differentvalues of this parameter and observe the impact on thebasis vector returned.7. Invoke the function factorize() on the CBCL faces datamatrix V to get the basis faces W, using the next codesnippet:
def factorize(V): lsnmf = nimfa.Lsnmf(V, seed="random_vcol", rank=49, \ max_iter=50, sub_iter=10, inner_sub_iter=10, \ beta=0.1, min_residuals=1e-8) print("Algorithm: %s\nInitialization: %s\nRank: %d" % \ (lsnmf, lsnmf.seed, lsnmf.rank)) fit = lsnmf() sparse_w, sparse_h = fit.fit.sparseness() print("""Stats: - iterations: %d - final projected gradients norm: %5.3f - Euclidean distance: %5.3f - Sparseness basis: %5.3f, mixture: %5.3f""" % (fit.fit.n_iter,
 fit.distance(),
 fit.distance(metric='euclidean'),
 sparse_w,
 sparse_h))

 return fit.basis(), fit.coef()
W, _ = factorize(V)W.shape
(361, 49)
Algorithm: lsnmf
Initialization: random_vcol
Rank: 49
Stats:
- iterations: 50

- final projected gradients norm: 2.157
- Euclidean distance: 365.337
- Sparseness basis: 0.708, mixture: 0.467blank = new("L", (133 + 6, 133 + 6))
for i in range(7): for j in range(7): basis = np.array(W[:, 7 * i + j])[:, 0].reshape((19, 19))8. Plot the basis vectors. As can be seen from the next
Figure 6.7, the basis images are sparse (representing partsof faces), that is, NMF computes part-phased features. basis = basis / np.max(basis) * 255 basis = 255 - basis ima = fromarray(basis) ima = ima.rotate(180) expand(ima, border=1, fill='black') blank.paste(ima.copy(), (j * 19 + j, i * 19 + i))
figure(figsize=(7,7))set_cmap('gray'), imshow(blank),axis('off')show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 6.7: Sparse basis features obtained with NMF

Face recognition using LBPH with
opencv-pythonFace recognition is a biometric technology that identifies (or

verifies) individuals by analyzing and comparing facialfeatures from images or video. It works by detecting a face,aligning it, extracting unique features, and matching thesefeatures to a database of known faces. It is widely used insecurity, authentication, and surveillance applications. In thissection we will explore how to use the local binary patterns
histogram (LPPH) algorithm to implement a basic facerecognition system. The process begins with extracting local
binary pattern (LBP) features from face images by followingthese steps:1. Dividing a face into regions: The face image is firstdivided into a grid of cells, for example, an 8x8 gridresulting in R = 64 regions. Each region captures localtexture information, which is crucial for recognizing keyfacial features such as the eyes, nose, and mouth.2. Computing LBP histograms: For each cell, a LBPhistogram is computed. LBP encodes pixel-level texture bycomparing each pixel with its neighbors, producing abinary pattern. The histograms from all the cells are thencombined into a single feature vector, with spatialadvanced features, as shown in the following figure:

Figure 6.8: Computing LBP histogram for a grayscale image

3. Spatial information encoding: Although individual

histograms discard spatial relationships, combininghistograms from different cells retains some level of spatialencoding. This approach helps distinguish between variousfacial features by capturing their relative positions withinthe face.a. Weighted histograms: To enhance discriminativepower, the histograms from different regions of the faceare weighted differently:i. White regions (for example, eyes) are given a weightof 4x.ii. Light gray regions (for example, mouth and ears) areweighted 2x.iii. Dark gray regions (for example, cheeks andforehead) are weighted 1x.iv. Black regions (for example, nose and outer cheeks)are ignored, with a weight of 0x.These weighted histograms are then concatenated to form thefinal feature vector. It provides higher discriminative power tomore distinguishing features of the face, as shown in thefollowing figure:

Figure 6.9: Weighting scheme for LBPH

Face recognitionTo perform face recognition, the following steps are needed tobe followed:1. Input and feature extraction: When a new face ispresented, LBP features are extracted following the sameprocedure used during training. The resulting histogram isweighted and concatenated just like the training data.2. Nearest neighbor classification: The system comparesthe extracted histogram with those in the training setusing the k-NN algorithm (typically with k = 1, to find thebest match). The chi-squared (χ²) distance is commonlyused as the similarity metric, but other distance measurescan be considered, too, as shown in the following figure:

Figure 6.10: Dissimilarity measures for LBPH-based face recognition

3. Classification: The system identifies the face by selectingthe training face with the smallest χ² distance (or someother chosen metric). The label associated with the closestmatch is returned as the final classification.
AdaptabilityOne advantage of the LBPH method is that it can be updatedincrementally. As new faces are added to the dataset, themodel does not need to be retrained from scratch, unlike other

methods such as eigenfaces. This makes LBPH a flexible andscalable solution for face recognition.Let us implement a face recognition system with LBPHfeatures using Python. We shall use LFW dataset from scikit-
learn’s datasets module here. Start by importing therequired libraries, modules and functions, as follows:
import cv2,os
import numpy as np
from PIL import Image
import pickle, time
import matplotlib.pylab as plt
from sklearn.datasets import fetch_lfw_people
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrixNow follow the steps listed as follows:1. Load the LFW dataset with the function

fetch_lfw_people() from sklearn.datasets. Let us ensurethat the extracted dataset will only retain faces of peoplethat have at least min_faces_per_person=70 differentimages.2. The extracted face dataset (to be accessed by
lfw_people.data) contains 1288 faces each of them of size50 × 37, belonging to 7 different persons (check
lfw_people.target_names and number of unique ids in
lfw_people.target). We want to associate a face with anid, that is, the label we want to predict is the id of theperson given his face.3. Split the dataset randomly into training and test set withthe function train_test_split() from
sklearn.model_selection, with 25% data in the test set(specified by the argument test_size=0.25), as done inthe following code snippet:lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)
n_samples, h, w = lfw_people.images.shape
X = lfw_people.datan_features = X.shape[1]

print(X.shape, h, w)
(1288, 1850) 50 37y = lfw_people.targetprint(np.unique(y))
[0 1 2 3 4 5 6]

target_names = lfw_people.target_namesn_classes = target_names.shape[0]print(target_names)
['Ariel Sharon' 'Colin Powell' 'Donald Rumsfeld' 'George W Bush'
'Gerhard Schroeder' 'Hugo Chavez' 'Tony Blair']
print("Total dataset size:")print("n_samples: %d" % n_samples)
n_samples: 1288print("n_features: %d" % n_features)
n_features: 1850print("n_classes: %d" % n_classes)
n_classes: 7

X_train, X_test, y_train, y_test = train_test_split(\ X, y, test_size=0.25, random_state=42)
faces, ids = [], []
for i in range(X_train.shape[0]): faces.append(np.reshape(X_train[i,...], (h,w))) ids.append(y_train[i])ids = np.array(ids)4. With the training and test datasets prepared, we can nowcreate an instance of the LBPH face recognizer using thefunction cv2.face.LBPHFaceRecognizer_create(). Thisfunction accepts several parameters, which we will usewith their default values:a. radius: Defines the radius for constructing the circularlocal binary pattern. A larger radius results in asmoother image while capturing more spatialinformation. The default value is 1.b. neighbors: Specifies the number of sample pointsused to build the circular local binary pattern. Thedefault is 8, which strikes a balance betweencomputational cost and accuracy. Increasing thenumber of neighbours improves detail but alsoincreases computational requirements.

c. grid_x and grid_y: These determine the number ofcells in the horizontal and vertical directions,respectively. The default value of 8 is commonly used instudies. More cells produce a finer grid and result in ahigher-dimensional feature vector.d. threshold: This value sets the limit for face prediction.If the distance to the nearest neighbour exceeds thethreshold, the recognizer returns -1, indicating nomatch.
Note: It is important to note that circular local binary pattern algorith
requires the input images to be in grayscale for both training a
prediction.5. Let us use the train() method to train the model using thefollowing code snippet, which accepts the faces and thecorresponding ids:recognizer = cv2.face.LBPHFaceRecognizer_create()recognizer.train(faces, ids)recognizer.save('recognizer_training.yml')6. Now, let us use the model’s predict() method torecognize faces from the unseen test dataset, using thenext code snippet:
print("Predicting people's names on the test set")y_pred = []
for i in range(X_test.shape[0]): pred = recognizer.predict(X_test[i,...].reshape((h,w))) y_pred.append(pred[0])7. Display the classification report and the confusion
matrix to evaluate how the face recognition worked on thetest dataset:print(classification_report(y_test, y_pred, target_names=target_names))
Predicting people’s names on the test set
precision recall f1-score support
#
Ariel Sharon 0.77 0.77 0.77 13
Colin Powell 0.98 0.90 0.94 60
Donald Rumsfeld 0.82 0.67 0.73 27
George W Bush 0.92 0.96 0.94 146
Gerhard Schroeder 0.68 0.76 0.72 25

Hugo Chavez 0.82 0.60 0.69 15
Tony Blair 0.80 0.89 0.84 36
#
accuracy 0.88 322
macro avg 0.83 0.79 0.80 322
weighted avg 0.88 0.88 0.87 322

print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))
[[10 0 1 1 0 1 0]
[1 54 1 0 3 1 0]
[1 0 18 6 1 0 1]
[0 1 1 140 1 0 3]
[0 0 1 1 19 0 4]
[1 0 0 3 2 9 0]
[0 0 0 2 2 0 32]]8. Plot 12 faces from the test dataset, their ground-truthlabels and the predictions by the face recognizer, usingthe function plot_gallery(), using the following codesnippet:
def plot_gallery(images, titles, h, w, n_row=3, n_col=4): plt.figure(figsize=(1.8 * n_col, 2.4 * n_row)) plt.subplots_adjust(bottom=0, left=.01, right=.99, \ top=.90, hspace=.35) for i in range(n_row * n_col): plt.subplot(n_row, n_col, i + 1) plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray) plt.title(titles[i], size=12) plt.xticks(()) plt.yticks(())
def title(y_pred, y_test, target_names, i): pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1] true_name = target_names[y_test[i]].rsplit(' ', 1)[-1] return 'predicted: %s\ntrue: %s' % (pred_name, true_name)
prediction_titles = [title(y_pred, y_test, target_names, i) \ for i in range(len(y_pred))]
plot_gallery(X_test, prediction_titles, h, w)If you run the preceding code snippet, you should obtain afigure as follows:

Figure 6.11: Face recognition with LBPHAs can be seen from the preceding figure, the face recognizerachieved a decent F1 score on the test dataset, and the faceswe have shown in Figure 6.11 have been correctly recognized.Finally, let us use an image from outside the dataset wheretwo of the subjects are present simultaneously and use therecognizer to recognize the faces, using the next code snippet.Before we recognize the face, we need to be able to detectthe faces in the images first. Let us use the popular pretrainedHaar feature-based cascade classifier from opencv-python(namely, cv2.CascadeClassifier()) for frontal face detection.Follow these steps:1. Detect faces using detector.detectMultiScale()function, which detects objects of different sizes in theinput image. The detected objects are returned as a list ofrectangles:a. The parameter scaleFactor=1.2 specifies how muchthe image size is reduced at each image scale.b. The parameter minNeighbors=5 specifies how manyneighbors each candidate rectangle should have toretain it.2. Once a face is detected, the recognizer is used to

recognize the face, as shown in the next code snippet:detector = cv2.CascadeClassifier(\ "models/haarcascade_frontalface_default.xml")im = cv2.imread('images/leaders.jpg')img = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)print(im.shape)
(190, 265, 3)all_faces = detector.detectMultiScale(img, scaleFactor=1.2, \ minNeighbors=5)
for (x,y,w,h) in all_faces: cv2.rectangle(im,(x,y),(x+w,y+h),(225,0,0),2) id, conf = recognizer.predict(img[y:y+h,x:x+w]) cv2.putText(im,str(target_names[id].rsplit(' ', 1)[-1]), \ (x,y+h//5), cv2.FONT_HERSHEY_SIMPLEX, \ 0.5, (0, 255, 0), 1, cv2.LINE_AA) # Draw the textplt.figure(figsize=(10,10))plt.gray()plt.imshow(cv2.cvtColor(im, cv2.COLOR_BGR2RGB)), plt.axis('off')plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 6.12: Face detection/recognition with Haar Cascade/LBPHAs can be seen from the preceding figure, the faces arerecognized correctly by the recognizer.
Face feature extraction and recognition
using Gabor filter banksIn this section, we shall learn how to use the Gabor filterbanks extracted from face images for face recognition. Asbefore, there are two steps: feature extraction and

recognition.
Feature extraction with Gabor filter
bankGabor filters are widely used for detecting edges and texturevariations in an image. When a Gabor filter is applied to aspecific feature, it produces a prominent response at thespatial location of that feature. This is particularly useful whenworking with convolution kernels in the spatial domain. EachGabor filter consists of two components: a real part and animaginary part, which represent orthogonal orientations.These components can be combined into a complex number orused separately, depending on the specific application, tocapture different directional information, as illustrated in thefollowing figure:

Figure 6.13: Computing the Gabor kernels

Here, is the wavelength ,where is the frequency) of thesinusoidal wave, is the orientation, is the standarddeviation of the Gaussian envelope, is the spatial aspectratio, and is the phase offset.

The Gabor filter bank is created by varying the parameters and to capture different scales and orientations. This allowsthe filters to respond to various features in the image, such asedges and textures at different angles and frequencies. TheGabor filter’s frequency and orientation characteristics closelyresemble those of the human visual system.
With scikit-imageLet us now explore how to compute Gabor filter banks usingthe filters module from the library scikit-image. Gabor filtersare computed at 5 scales and 8 orientations, which convolveeach filter with the image to get 40 features (8 × 5 = 40); thefunction build_filters() defined in the following code snippetcomputes the filter bank using the function
skimage.filters.gabor_kernel() (which expects frequencyand orientation as parameters) and then we visualize thefilters.The different representations (response matrices) of the sameimage generate a feature vector. Hence, a feature vector mayconsist of mean/phase amplitude, local energy or orientationcorresponding to maximum energy. Now, refer to the nextcode snippet:
from skimage.filters import gabor_kernel
from scipy.signal import convolve2d
5 scales and 8 orientations
def build_filters(): freqs = [] filters = [] for freq in np.arange(0.1,0.6,0.12): for theta in np.arange(0, np.pi, np.pi / 8): kern = np.real(gabor_kernel(freq, theta=theta)) filters.append(kern) return filters
filters = build_filters()
i = 1plt.figure(figsize=(15,10))plt.subplots_adjust(0,0,1,1,0.05,0.05)
for f in filters:

 plt.subplot(5,8,i), plt.imshow(f), plt.axis('off') i += 1plt.show()If you run the preceding code snippet, you should obtain afigure as follows, displaying the Gabor filter bank computed:

Figure 6.14: Gabor kernels with scikit-image

With opencv-pythonNow, let us compute the Gabor filter bank again, but this timeusing the function cv2.getGaborKernel(). The next codesnippet defines a function build_filters(), which returns afilter bank and subsequently defines another function
process() that uses cv2.filter2D() to convolve the filtersobtained with input Lena image and compute the maximumresponse of the filters:
import numpy as np
import cv2
import sys
def build_filters(): filters = [] ksize = 31
 for theta in np.arange(0, np.pi, np.pi / 16): kern = cv2.getGaborKernel((ksize, ksize), 4.0, theta, \ 10.0, 0.5, 0, ktype=cv2.CV_32F) kern /= 1.5*kern.sum() filters.append(kern) return filters
def process(img, filters): accum = np.zeros_like(img) for kern in filters: fimg = cv2.filter2D(img, cv2.CV_8UC3, kern)

 np.maximum(accum, fimg, accum) return accum img_fn = 'images/lena.jpg'img = cv2.imread(img_fn)filters = build_filters()
res = process(img, filters)plt.imshow(cv2.cvtColor(res, cv2.COLOR_BGR2RGB))plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 6.15: Applying Gabor filter banks to Lena image

Face recognition with Gabor features
with opencv-python and scikit-learnOnce we know how to extract Gabor features from faceimages using the filter banks, we are ready to use it for facerecognition. Let us use the ORL database of faces this time(download from the following link:
https://www.kaggle.com/datasets/tavarez/the-orl-
database-for-training-and-testing and extract the facesinside the images/orl folder), it contains 10 different imagesfor each of 40 distinct subjects (the pictures were captured atdifferent points in time, varying the lighting, facial expressionsand facial details.Let us start our implementation by importing the requiredlibraries and reading the face images. Note that we shall useonly 90 faces from the downloaded dataset belonging to first 9

https://www.kaggle.com/datasets/tavarez/the-orl-database-for-training-and-testing

persons.
import matplotlib.pyplot as plt
import numpy as np
import cv2
from glob import glob
faces = sorted(glob('images/orl/*_[1-9].jpg'))len(faces)
90Now follow the next steps to extract the Gabor features fromthe face images and create a dataset ready to be used by asupervised ML classification model:1. Prepare filter bank kernels using the function

cv2.getGaborKernel(), as before.2. The images are processed using the real components ofmultiple Gabor filter kernels through the cv2.filter2D()function. The mean and variance of the filtered outputs areextracted as features, which are then used forclassification, with the least squares error methodemployed for simplicity. Hence, there are 2 featuresgenerated for each of the 40 kernels, with a total of 80features per face image, resulting in the dataset of size 90× 80 (each column represents a feature).3. The id/label of a person can be found from the last part ofthe file name, as shown in the next code snippet:ksize = 5 #9kernels = [] # Create empty list to hold all kernels to be
 # generated in a loopsigma, gamma = 1, 0.5
for freq in np.arange(0.1,0.6,0.12): for theta in np.arange(0, np.pi, np.pi / 8): kernel = cv2.getGaborKernel((ksize, ksize), sigma, theta, \ 1/freq, gamma, 0, ktype=cv2.CV_32F) kernels.append(kernel)X = np.empty((0,2*len(kernels)))
y = []
for imfile in faces: im = cv2.imread(imfile, 0) label = int(imfile.split('_')[-1][0]) features = [] for kernel in kernels:

 # Now filter the image and add values to a new column fim = cv2.filter2D(im, cv2.CV_8UC3, kernel) features.append(np.abs(fim).mean()) features.append(np.sum(fim**2)) #fim.var()) X = np.append(X, np.array([features]), axis=0) y.append(label)4. Plot the filters from the filter bank computed:X.shape, len(y)
#((90, 80), 90)plt.figure(figsize=(8,5))plt.gray()
for i in range(len(kernels)): plt.subplot(5,8,i+1), plt.imshow(kernels[i]), plt.axis('off')plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 6.16: Gabor filter bank with opencv-python5. Let us visualize how the Gabor features look like for asingle face image, using the following code snippet:plt.figure(figsize=(15,10))im = cv2.imread(faces[0], 0)label = int(imfile.split('_')[-1][0])i = 0plt.subplots_adjust(0,0,1,0.95,0.025,0.025)
for kernel in kernels: #Now filter the image and add values to a new column fim = cv2.filter2D(im, cv2.CV_8UC3, kernel) plt.subplot(5,8,i+1), plt.imshow(fim), plt.axis('off') i += 1
plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 6.17: Applying Gabor filter bank on a face6. Once the dataset is generated using (mean and varianceof) Gabor features, we can use our regular train-testsplitting of the dataset with the function train_test_split()from scikit-learn’s model_selection module.
With random forest ensemble classifierFirst, let us train a random forest ensemble classifier on thetraining dataset using the
sklearn.ensemble.RandomForestClassifier(). The followthe next steps:1. Let us use the classifier (trained on the training split) topredict the label (id) of a face from the test dataset, usingthe following code snippet.2. Evaluate the performance of the classifier on the unseen

test dataset, using accuracy and confusion matrix.
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import plot_confusion_matrix
import warningswarnings.filterwarnings('ignore')
X_train, X_test, y_train, y_test, indices_train, indices_test = \ train_test_split(X, y, range(len(y)), test_size=0.25, random_state=1)clf = RandomForestClassifier(max_depth=2, random_state=1)clf.fit(X_train, y_train)y_pred = clf.predict(X_test)print('accuracy: {}'.format(sum(y_pred==y_test) / len(y_test)))
accuracy: 0.8260869565217391plot_confusion_matrix(clf, X_test, y_test)

plt.show()The following figure shows the confusion matrix obtained (onthe unseen test dataset) with the random forest classifier:

Figure 6.18: Confusion matrix with random forest classifier

As can be seen, we obtained 82.6% accuracy on the testdataset.
With 2-NN classifierNow, let us use a different classifier, namely, a 2-nearest
neighbors (2-NN) classifier using the function
sklearn.neighbors.NearestNeighbors(). Plot the testimages, along with the ground-truth and the predicted labels(ids), using the next code snippet:
from sklearn.neighbors import NearestNeighborsneigh = NearestNeighbors(n_neighbors=2, radius=0.4)neigh.fit(X_train)nn_indices = neigh.kneighbors(X_test, 2, return_distance=False)n = len(X_test)
plt.figure(figsize=(20,3))plt.gray()plt.subplots_adjust(0,0,1,0.95,0.05,0.05)
for i in range(n): im = cv2.imread(faces[indices_test[i]], 0) plt.subplot(2,n,i+1), plt.imshow(im), plt.axis('off') plt.title('True: {}'.format(y_test[i]), size=12) im = cv2.imread(faces[indices_train[nn_indices[i][0]]], 0) plt.subplot(2,n,i+n+1), plt.imshow(im), plt.axis('off') plt.title('NNbr: {}'.format(y[indices_train[nn_indices[i][0]]]), \ size=11)
plt.show()

If you run the preceding code snippet, you should obtain afigure as follows:

Figure 6.19: Ground-truth vs. predicted face label with 2-NN classifier

Pedestrian detection with HOG vs HAAR
Cascade features with opencv-pythonIn this section, we shall explore how to use pretrainedclassifiers for people detection in an image using two differenttypes of features extracted from the image, namely, HOG andHAAR.
Extracting HOG features
Histogram of Oriented Gradients (HOG) is a widely-usedfeature descriptor in computer vision and image processing,especially for object detection tasks. First introduced by
Navneet Dalal and Bill Triggs for pedestrian detection, HOGhas proven effective for identifying not only pedestrians butalso other objects such as animals, faces, and text. It works byextracting gradient orientation histograms from an inputimage, which describe the local features of objects. The HOGdescriptor can be computed using the following steps:1. Gradient calculation: The gradient magnitudes andorientations are computed for each pixel in the image.2. Orientation binning: The image is divided into smallconnected regions called cells, and for each cell, ahistogram of gradient orientations is created.3. Block normalization: Cells are grouped into largerblocks and the histograms are normalized within eachblock to account for variations in lighting and contrast.

Pedestrian detection with HOG NMSTo perform pedestrian detection using HOG-SVM, you firstneed to compute HOG descriptors, which capture gradientand edge information in localized regions of an image, makingit ideal for detecting objects with distinct shapes, such aspedestrians. The HOG descriptors are extracted by sliding afixed-size window (typically 64x128 pixels) across the image,and for multi-scale detection, this process is repeated atvarious scales of the image using a scale pyramid, where theimage is progressively scaled down.
Classification with the SVM modelThe HOG features are typically computed by sliding a fixed-size window, commonly 64x128 pixels, across the image. Sinceobjects in the image may appear at different scales, the HOGcomputation is applied at multiple levels using a scale
pyramid. The image is scaled down repeatedly, with a scalingfactor between 1.05 and 1.2, until the window can no longerfit within the frame. For each window, the HOG features areextracted and passed to a binary support vector machine(SVM) classifier. The SVM, trained to distinguish between
pedestrians and non-pedestrians, then predicts whether awindow contains an object of interest. If a pedestrian isdetected at any scale, the classifier returns a bounding box forthat region.The following figure shows a typical HOG object (pedestrian)detection workflow:

Figure 6.20: Schematic for pedestrian detection with HOG-SVM classifier

This method is more accurate than Viola-Jones Haar-
cascade detection but comes with higher computationalcomplexity due to the multi-scale analysis.
Computing Bounding-Boxes with HOG-
SVMIn this section, we will explore how to use the OpenCV libraryin Python to detect pedestrians using HOG-SVM. The processinvolves computing HOG descriptors for each sliding windowand using a pre-trained SVM classifier to predict the presenceof a person within the image. The detectMultiScale()function in OpenCV simplifies this process by automaticallyhandling multi-scale detection and applying non-maximum
suppression (NMS) to eliminate redundant bounding boxes.Let us start by importing the required libraries:

import numpy as np
import cv2
import matplotlib.pylab as plt
from imutils.object_detection import non_max_suppressionFollow the next steps, which explain the next python codesnippet in details:1. Create a HOG descriptor using default people(pedestrian) detector (with cv2.HOGDescriptor()).2. Instantiate a pretrained SVM detector with the functions

cv2.HOGDescriptor_getDefaultPeopleDetector() and
setSVMDetector().3. Given a pedestrian image, run detection on the imagewith the function detectMultiScale(), using a spatialstride (winStride) of 4 pixels (horizontal and vertical), a
scale stride of 1.02, and zero grouping of rectangles (todemonstrate that HOG will detect at potentially multipleplaces in the scale pyramid; precisely it detects 69bounding boxes as shown in the next figure, see the outputof the next code snippet).4. Draw bounding boxes on the image.5. Next, use the function non_max_suppression() from
imutils.object_detection module, in order to avoiddetection of the same object at multiple times and scales.It will reduce the number of detections to 3.6. You can also use MeanShift grouping to eliminatemultiple detections of the same object (set the booleanargument useMeanshiftGrouping=True passed to thefunction detectMultiScale()).
def draw_bounding_boxes(img, found_bounding_boxes, title):
 # copy the original image to draw bounding boxes on it for now,
 # as we'll use it again later img_with_raw_bboxes = img.copy()
 for (hx, hy, hw, hh) in found_bounding_boxes: cv2.rectangle(img_with_raw_bboxes, (hx, hy), \ (hx + hw, hy + hh), (0, 0, 255), 2) img_with_raw_bboxes = cv2.cvtColor(img_with_raw_bboxes, \

 cv2.COLOR_BGR2RGB) plt.figure(figsize=(20, 12)) plt.imshow(img_with_raw_bboxes, aspect='auto'), plt.axis('off') plt.title(title, size=20) plt.show()
 img = cv2.imread("images/pedestrians.png")
hog = cv2.HOGDescriptor()hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
(found_bounding_boxes, weights) = hog.detectMultiScale(img, \ winStride=(4, 4), padding=(8, 8), scale=1.1, finalThreshold=0)print(len(found_bounding_boxes)) # number of boundingboxes
69draw_bounding_boxes(img, found_bounding_boxes, \ 'Boundingboxes found by HOG-SVM without grouping')
(found_bounding_boxes, weights) = hog.detectMultiScale(img, \ winStride=(4, 4), padding=(8, 8), scale=1.1, finalThreshold=0)print(len(found_bounding_boxes)) # number of boundingboxes
69found_bounding_boxes[:,2] = found_bounding_boxes[:,0] + \ found_bounding_boxes[:,2]found_bounding_boxes[:,3] = found_bounding_boxes[:,1] + \ found_bounding_boxes[:,3]
found_bounding_boxes = non_max_suppression(found_bounding_boxes, \ probs = weights.ravel(), overlapThresh = 0.2)found_bounding_boxes[:,2] = found_bounding_boxes[:,2] - \ found_bounding_boxes[:,0]found_bounding_boxes[:,3] = found_bounding_boxes[:,3] - \ found_bounding_boxes[:,1]print(len(found_bounding_boxes)) # number of boundingboxes
3

draw_bounding_boxes(img, found_bounding_boxes, \ 'Boundingboxes found by HOG-SVM after non-max suppression')
(found_bounding_boxes, weights) = hog.detectMultiScale(img, \ winStride=(4, 4), padding=(8, 8), scale=1.01, \ useMeanshiftGrouping=True)print(len(found_bounding_boxes)) # number of boundingboxes
3draw_bounding_boxes(img, found_bounding_boxes, \ 'Boundingboxes found by HOG-SVM with meanshift grouping')If you run the preceding code snippet and draw bounding

boxes on the extracted video frames after pedestriandetection, you should obtain figures like the following ones(results obtained without and with NMS suppression shownseparately):

Figure 6.21: HOG-SVM for pedestrian detection

HAAR-like features for HAAR Cascade
classifierHaar-like features are effective in object detection, especiallyfor tasks like object detection (for example, face detection,as demonstrated by the famous Viola-Jones algorithm). Thesefeatures operate by comparing the brightness of adjacentrectangular regions within an image, capturing key patternssuch as edges, lines, and textures that are useful fordistinguishing objects. To efficiently compute Haar-likefeatures at various scales and locations, integral images areused, allowing for rapid calculation in constant time, which isa major advantage over other feature types.Despite their speed, each Haar-like feature alone is weak,meaning it only provides limited classification accuracy. Toaccurately detect an object, such as a person, a large numberof these features are generated across all possible positionsand scales in the image. An AdaBoost ensemble classifier isthen employed during training to sift through the vast numberof features, selecting the most informative ones andcombining them into a robust detection model. Once themodel is trained, it uses these selected features to scanregions of an image, identifying objects like faces or othertarget items with high accuracy. This combination of fastfeature computation and strong ensemble learning makesHaar-like features particularly powerful for real-time objectdetection tasks.
Computing Bounding Boxes with HAAR-
Cascade classifierNow, let us dive into the demonstration part. This time, firstdemonstrate the pedestrian detection task using a pretrained
HAAR-Cascade-AdaBoost classifier:1. Download the pre-trained model as an XML file from thefollowing link:

https://github.com/opencv/opencv/blob/master/data/h
aarcascades/haarcascade_fullbody.xml2. Use the function cv2.CascadeClassifier() to perform theactual object detection and compare it with HOG-SVMdetection, as shown in the next code snippet:ped_cascade = cv2.CascadeClassifier('models/haarcascade_fullbody.xml')
img = cv2.imread("images/pedestrians.png")gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)peds = ped_cascade.detectMultiScale(gray, scaleFactor=1.01, minNbr=3)print(len(peds)) # number of faces detected
3img_haar = img.copy()

HAAR-cascade vs. HOG-SVM in pedestrian
detectionHaar-cascade is faster but less accurate, while HOG-SVMoffers better accuracy and robustness at the cost of highercomputational demand.Haar-cascade classifiers and HOG-SVM classifiers are bothwidely used for pedestrian detection, but they have distinctdifferences in performance and application. Haar-cascadeclassifiers are faster due to efficient feature computationusing integral images, making them suitable for real-timedetection tasks. However, they can struggle with accuracy,particularly in complex environments, and are sensitive tovariations in lighting and pose.In contrast, HOG-SVM classifiers provide higher accuracy bycapturing detailed shape and texture information throughgradient analysis. They are more robust to changes in lighting,pose, and background clutter, making them more reliable forpedestrian detection in complex scenes. However, HOG-SVMis computationally more intensive, leading to slowerperformance than Haar-cascade.Now let us compare these two approaches using the next codesnippet:(found_bounding_boxes, weights) = hog.detectMultiScale(img, \

https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_fullbody.xml

 winStride=(4, 4), \ padding=(8, 8), scale=1.01, \ useMeanshiftGrouping=True)print(len(found_bounding_boxes)) # number of bounding boxes
3
copy original image to draw bounding boxes on it for now, as we'll
use it again laterimg_hog = img.copy()
for (hx, hy, hw, hh) in found_bounding_boxes: cv2.rectangle(img_hog, (hx, hy), (hx + hw, hy + hh), (0, 0, 255), 2)
for (x,y,w,h) in peds: img_haar = cv2.rectangle(img_haar,(x,y),(x+w,y+h),(0,0,255),2)
plt.figure(figsize=(15,7))plt.subplots_adjust(0,0,1,0.95,0.05,0.05)plt.subplot(121)plt.imshow(cv2.cvtColor(img_haar, cv2.COLOR_BGR2RGB)), plt.axis('off')plt.title('Pedestrian detection with HAAR-Cascade-AdaBoost', size=20)plt.subplot(122)plt.imshow(cv2.cvtColor(img_hog, cv2.COLOR_BGR2RGB)), plt.axis('off')plt.title('Pedestrian detection with HOG-SVM-NMS', size=20)plt.tight_layout()plt.show()If you run the preceding code snippet, you should obtain afigure like the following one, which shows pedestriandetection with HAAR-Cascade-AdaBoost vs HOG-SVM:

Figure 6.22: Pedestrian detection with Haar-Cascade vs. HOG-SVMAs can be seen from the preceding figure, both HAAR-Cascade-AdaBoost and HOG-SVM detected all persons in thepedestrian image. Try these person detectors on videos andcompare the performances in terms of accuracy and timecomplexity.
Conclusion

This chapter continued to explore diverse techniques forfeature extraction and their practical applications. Itcommenced with a detailed discussion on the creation ofpanoramas, including image stitching and video stitching(using OpenCV-Python), that demonstrates the practicalapplications of feature-based image alignment in producingseamless and immersive visual content. NMF is introduced asa tool for extracting face features, showcasing its utility intasks related to facial image analysis. Face recognitiontechniques (with hand-crafted features) are coveredextensively, employing LBPH features with OpenCV-Python.Additionally, the application of Gabor filter banks for facefeature extraction and recognition further enriches thechapter, emphasizing the diversity of approaches available.The chapter concludes with a comparative analysis ofpedestrian detection methods, pitting HOG against HAARCascade features with OpenCV-Python. The exploration ofHOG NMS and the comparison of HAAR Cascade versus HOGSVM provide valuable insights into object detection strategies.
Key termsPanorama, NMF, face recognition, LBPH, Gabor filter, HOG,HAAR Cascade, SVM.
Questions1. Feature extraction from deep neural nets: The deepneural networks learn hierarchical representations, whichallows them to capture both local and global features.Lower layers tend to focus on local details, while higherlayers aggregate information to recognize more complexstructures that may span the entire input.Use pretrained models (for example, torchvision modelstrained on imagenet dataset) to extract the deep features

(embeddings) from the last layer prior to the classificationlayer. Use the following cats and dogs images to extractthe deep features for each of them:

Figure 6.23: Cats and dogs input image for deep features instructionFor example, you can use the deep neural net architecture
ResNet50 to extract a 2048 dimensional vector
embedding corresponding to each image. Next, use thedimension reduction technique t-
distributed_stochastict-distributed stochastic
neighbor embedding (TSNE) - feel free to usesklearn.manifold module’s implementation, to reduce theembedding corresponding to each images to 2 dimensionsand use scatterplot to visualize the images in the projecteddimensions. Overlay the images on top, corresponding totheir reduced 2D coordinates.You should obtain a figure like the following one; the catsand dogs are clearly separated even in the low dimensionalembedding, as can be seen:

Figure 6.24: Classifying cats and dogs images with ResNet embedding / T-SNE
visualization

2. Semantic image search engine: Use deep imagefeatures to search similar images. Download the Kagglefast food dataset from the following link:
https://www.kaggle.com/datasets/utkarshsaxenadn/fa
st-food-classification-dataset. The following figureshows a few sample images from the dataset (you maywant to reduce the dataset, for example, create a smalldataset with 81 pizzas, burgers and sandwiches, selectedrandomly, to start with):

https://www.kaggle.com/datasets/utkarshsaxenadn/fast-food-classification-dataset

Figure 6.25: Fast food Kaggle dataset for image search engine

Use a pretrained neural net (for example, EfficientNet) toobtain the embeddings for the images and use a nearest-neighbor algorithm (for example, ball_tree fromsklearn.neighbors.NearestNeighbors) to find the nearestembeddings from the search images and display the top k(for example, k=5) similar images found, as shown in thefollowing figure (along with the NN-distance: lower thedistance, higher the similarity):

Figure 6.26: Retrieving images using EfficientNet embeddings with image searchYou can use your code to recommend similar food items tocustomers. As you can see from Figure 6.26, querying witha burger image returns 5 most similar food-item images(by searching in the NN-embedding space), all but the lastimage are burger images. The last image returned iswrong; it is not a burger. Fine-tune the pre-trained modelon the training dataset to improve the accuracy of themodel, and test the accuracy (for example, with precision-5metric) on the held-out test dataset.
References1. https://www.youtube.com/watch?v=8_P257eFEqA2. https://www.youtube.com/watch?v=ROgT1XDTX4Q3. https://www.youtube.com/watch?v=kl6-NHxcn-k4. https://www.youtube.com/watch?v=qRouVgXb1G45. https://www.youtube.com/watch?v=J5-xQJjn82s6. https://www.youtube.com/watch?v=2qUIz-MCKX07. https://pyimagesearch.com/2018/12/17/image-

stitching-with-opencv-and-python/8. http://cbcl.mit.edu/software-
datasets/FaceData2.html9. https://youtu.be/TDmrzvtpwOM

https://www.youtube.com/watch?v=8_P257eFEqA
https://www.youtube.com/watch?v=ROgT1XDTX4Q
https://www.youtube.com/watch?v=kl6-NHxcn-k
https://www.youtube.com/watch?v=qRouVgXb1G4
https://www.youtube.com/watch?v=J5-xQJjn82s
https://www.youtube.com/watch?v=2qUIz-MCKX0
https://pyimagesearch.com/2018/12/17/image-stitching-with-opencv-and-python/
http://cbcl.mit.edu/software-datasets/FaceData2.html
https://youtu.be/TDmrzvtpwOM

Join our Discord space
Join our Discord workspace for latest updates, offers, tech
happenings around the world, new releases, and sessions with
the authors:
https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 7
Image Classification

IntroductionIn this chapter, as well as the succeeding one, we shall transition from low-levelimage processing tasks to the exciting realm of advanced computer vision, includingimage classification, object detection/recognition, and high-level imageinterpretation tasks. This chapter will provide a practical, in-depth exploration ofvarious topics in computer vision, guiding you through more complex concepts stepby step.Image classification is a computer vision task that categorizes images byautomatically assigning predefined labels to them based on their visual content. It isdone by training machine-learning models to recognize image patterns or features,allowing them to categorize new images into predefined classes. The goal of the taskis to teach machines to interpret and understand the content of an image and thenassign a class label, from a set of predefined labels or categories. It goes beyondbasic image processing since it focuses on high-level semantic understanding orcategorization.To classify images with classical supervised machine learning classification models,handcrafted features (like HOG, SIFT) are first extracted from images, and then theclassification models (for example, SVM, KNN, random forest) used forclassification. They learn statistical relationships between the (handcrafted) featuresand the corresponding class labels (in training phase), which enables the models toclassify new (unseen) images based on similar feature patterns (in test phase). Incontrast, the deep learning models, particularly Convolutional Neural Networks(CNN), can learn hierarchical features automatically from raw pixel data,eliminating the need for manual feature extraction. Popular CNN architecturesinclude LeNet-5, AlexNet, VGG16, residual networks (ResNet), and
EfficientNet, which have demonstrated high accuracy in various computer visiontasks. Deep learning has gained widespread popularity in the past decade due to itssuperior performance in image classification and related tasks.
StructureThis chapter focuses on the following topics:

• Classifying Fashion-MNIST images using machine learning models with scikit-

learn
• Classifying Fashion-MNIST images using deep learning models withtensorflow/keras
• Image classification with pretrained models with tf.keras
• Image classification with custom classes using transfer learning with pytorch

ObjectivesThis chapter aims to provide a comprehensive understanding of image classificationtechniques, from traditional machine learning to state-of-the-art deep learningapproaches. Through practical examples, you will learn to classify Fashion-MNISTimages using machine learning models with scikit-learn and deep learning modelswith tensorflow and keras. Next you will learn how to use pre-trained models with
tensorflow/keras for efficient classification tasks and implement transfer learningusing pytorch to build custom classifiers for specific applications. By the end of thechapter, you will be equipped with the knowledge and skills to apply various imageclassification methods to diverse image datasets and problem domains.
Classifying Fashion-MNIST images using machine
learning models with scikit-learnFashion-MNIST is a dataset that provides a more challenging alternative to theclassic MNIST dataset, which consists of handwritten digits. Fashion-MNISTcontains grayscale images of different types of clothing and accessories, with each ofthe images labeled with one of ten product types (classes). This dataset is often usedfor benchmarking image classification algorithms and offers a more realisticscenario for testing machine learning models.In this section, we will explore how to perform image classification using the
Fashion-MNIST dataset using scikit-learn, a powerful and accessible machinelearning library in Python. We shall cover the theoretical aspects of imageclassification, the mathematical foundations behind classification algorithms, andprovide practical examples with working code.
Understanding the Fashion-MNIST datasetThe Fashion-MNIST dataset is similar to the MNIST dataset of handwritten digitsbut consists of images of fashion items. Each image is a 28 × 28 pixel grayscaleimage, and there are 10 classes of clothing items, including:

• Ankle boot
• Bag
• Coat
• Dress
• Pullover
• Sandal
• Shirt

• Sneaker
• T-shirt/top
• TrouserThe dataset consists of 70,000 images, each image is labeled with its correspondingclass.This section explores how to perform image classification on the Fashion-MNISTdataset using scikit-learn. The goal is to predict the type of clothing or accessory inthe image. You will learn:
• How to train a machine learning model on the images from a training split
• Use the model to predict the labels (classes) for the images from the held-out

test split
• Evaluate the performance of the model (for example, how well it generalizes) onthe unseen data using the accuracy metric.Now follow the given steps to implement image classification with ML models:1. Let us start the implementation by importing the following required libraries,modules, and functions, as done in the following code snippet:a. urllib.request.urlretrieve: Downloads files from the internet.b. gzip: Provides functionalities to work with gzip compressed files.c. os: Offers a way to interact with the operating system, such as checking fileexistence.d. numpy: A fundamental package for numerical computations in Python, usedhere for array manipulations.e. scipy.stats.multivariate_normal: Used for multivariate normaldistributions.f. matplotlib.pyplot: Used for creating visualizations and plots.g. warnings.simplefilter: Configures warning filters to ignore

FutureWarnings, the required libraries, modules, and functions.Now, the following code snippets demonstrate how to train a few popularclassification models on Fashion-MNIST training dataset and evaluate those modelson the test dataset, by comparing the ground-truth labels with the ones predicted bythe classification models: %matplotlib inline import gzip, os import numpy as np from scipy.stats import multivariate_normal from urllib.request import urlretrieve import matplotlib.pyplot as plt import warnings warnings.simplefilter(action='ignore', category=FutureWarning)Here are the steps you need to follow:1. Data downloading: Use the function download() to download the Fashion-
MNIST dataset files from the specified URL. Invoke the function to obtain thetraining and test images. Here is the description of the function in details:a. Purpose: Downloads a file from the specified URL.b. Parameters:

i. filename: The name of the file to be downloaded.ii. source: Base URL where the file is located. The default is the Fashion-MNIST dataset URL.c. Functionality: Constructs the full URL by appending filename to the basesource URL and downloads it using urlretrieve.2. Data loading and preprocessing: There are two stages here:a. Preparing the dataset: Before diving into classification, it is essential toload and prepare the Fashion-MNIST dataset. scikit-learn does not directlyprovide access to Fashion-MNIST, so we first need to download the datafrom the specified link provided (http://fashion-mnist.s3-website.eu-
central-1.amazonaws.com/) and then process it for use with scikit-learnclassification models.b. Feature extraction and preprocessing: Before applying classificationalgorithms, we need to preprocess the data. For image classification,preprocessing typically involves:i. Normalization: It involves rescaling pixel values to a specific range (suchas 0 to 1) to enhance the performance of machine learning algorithms.ii. Flattening: It implies converting 2D images into 1D vectors, since mosttraditional machine learning algorithms expect feature vectors as input.c. Use the functions load_fashion_mnist_images() and
load_fashion_mnist_labels() to load image and label data from thedownloaded files, for each of the training and test data splits, along withperforming the preprocessing required. The dataset comprises a total of70000 images, split into 60000 training examples and 10000 test examples.d. Now, let us understand the function load_fashion_mnist_images() in detail:i. Purpose: Loads the image data from a Fashion-MNIST file.ii. Parameters: This is filename, that is, the name of the file containing theimage data.iii. Functionality: Checks if the file exists locally. If not, it downloads it. Italso opens the file using gzip for reading and then reads the file into a

numpy array, skipping the first 16 bytes of header information(offset=16). It reshapes the data to a 2D array where each row is aflattened 28×28 image (784 pixels), and normalizes the data to have valuesin between 0 and 1.e. When loading the image data, you need to skip past the header of thecompressed .gz file to access the actual pixel values. The offset parameter in
np.frombuffer is used to specify how many bytes to skip from the start of thefile before starting to read the data.i. For images: The header is 16 bytes long. Therefore, you use offset=16 tostart reading the pixel data immediately after the header.ii. For labels: The header is 8 bytes long. Therefore, you use offset=8 tostart reading the label data immediately after the header.

Now, refer to the next code snippet:
downloads a MNIST data file from zalandoresearch website
def download(filename, \ source='http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/'): print("Downloading %s" % filename) urlretrieve(source + filename, filename)
Invokes download() if necessary, then reads in images
def load_fashion_mnist_images(filename): if not os.path.exists(filename): download(filename) with gzip.open(filename, 'rb') as f: data = np.frombuffer(f.read(), np.uint8, offset=16) data = data.reshape(-1,784) data = data / data.max() # normalization return data
def load_fashion_mnist_labels(filename): if not os.path.exists(filename): download(filename) with gzip.open(filename, 'rb') as f: data = np.frombuffer(f.read(), np.uint8, offset=8) return datatrain_data = load_fashion_mnist_images('train-images-idx3-ubyte.gz')train_labels = load_fashion_mnist_labels('train-labels-idx1-ubyte.gz')test_data = load_fashion_mnist_images('t10k-images-idx3-ubyte.gz')test_labels = load_fashion_mnist_labels('t10k-labels-idx1-ubyte.gz')print(train_data.shape)
(60000, 784) ## 60k 28x28 handwritten digitsprint(test_data.shape)
(10000, 784) ## 10k 28x28 handwritten digitsThe 10 classes include items such as T-shirts/tops, trousers, pullovers, dresses,coats, sandals, shirts, sneakers, bags, and ankle boots, as follows:products = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', \ 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']print(len(products))
#103. Visualization: The function show_image(x, label) displays an image given its1D vector representation. The function also does the following things:a. Reshapes the flattened image x data back to a 28×28 pixel format.b. Uses matplotlib.pylab imshow() function to display the image in grayscale.c. Sets the title of the plot to the corresponding label description from products.d. Removes axis labels for clarity.The next code snippet performs the following steps:a. Iterates over the first 100 test images.b. Visualizes the image using the function show_image() and the ground-truthlabels with the image title.c. Uses plt.subplot() to arrange these images in a 10×10 grid.d. Applies plt.tight_layout() to adjust spacing and plt.show() to display theplot.
def show_image(x, label): plt.imshow(x.reshape((28,28)), cmap=plt.cm.gray) plt.title(products[label], size=15) plt.axis('off')
plt.figure(figsize=(20,20))
for i in range(100):

 plt.subplot(10, 10, i+1) show_image(test_data[i,:], test_labels[i])plt.tight_layout()plt.show()If you run the preceding code snippet, you should obtain a figure like the next one:

Figure 7.1: Sample test images with labels from the Fashion-MNIST dataset

Classification with machine learning modelsA machine learning model is a mathematical or computational framework that learnspatterns and relationships from data, enabling it to make predictions or decisionswithout explicit programming. Training and test datasets are crucial components inmachine learning and statistical modeling. Figure 7.2 shows the basic machinelearning pipeline that we shall use. The two main phases in the pipeline are asfollows:• Training: During the training phase, a machine learning model learns patterns,relationships, and features from the labeled examples in the training dataset. Themodel adjusts its parameters based on the input features and their correspondinglabels to reduce the gap between the predicted and actual outcomes (that is,class labels).• Evaluation: The held-out test dataset, distinct from the training dataset, is usedto evaluate the ability of the model to generalize on new, unseen examples (mustnot be used for training to avoid overfitting), by comparing the model-predictedlabels against the ground-truth labels.

Figure 7.2: Machine learning pipeline

Using scikit-learn, we shall now navigate through the implementation of Fashion-MNIST images classification with a few classification models listed as follows andapply these models one-by-one to classify the image dataset:
• Gaussian Naive Bayes
• Stochastic Gradient Descent (SGD)
• Random forest

Gaussian Naive Bayes modelThe Gaussian Naive Bayes model assumes that the likelihood of the features giventhe class P(X∣Y) follows a multivariate Gaussian (normal) distribution. The naiveaspect refers to the assumption that the features are (conditionally) independent ofeach other, given the class.For a feature vector and a class , the probability density
function (PDF) of the multivariate Gaussian distribution is given by:

Where, is the mean vector for class is the covariance matrix for class is the determinant of
Naive assumption: The naive part of Gaussian Naive Bayes comes from assumingthat the features are conditionally independent given the class y. Thissimplifies the covariance matrix to a diagonal matrix, with the variances of

individual features on the diagonal.During training, the model estimates the parameters (and) for each classbased on the training data.During prediction, the model uses the Bayes theorem (as shown) to compute the
posterior probability (for each of the class labels) and assigns the class with thehighest probability as the predicted class:

Which implies:
(up to a normalization constant)

Where is the posterior probability of class given the features is the likelihood of the features given the class, is the prior probability of class, and is the probability of the features.In summary, Gaussian Naive Bayes leverages Bayes theorem with the assumptionof Gaussian distribution for feature likelihoods and naive independence to makepredictions in a computationally efficient manner. The model is particularly usefulfor continuous feature spaces. Gaussian Naive Bayes is a generative modelbecause it models the joint probability distribution P(X,Y) by learning P(X∣Y) andP(Y), allowing it to generate data samples for each class.The next code snippet shows how we can classify Fashion-MNIST images using aGaussian Generative Model, specifically with the Gaussian Naive Bayes classifier(in this case, we have dimensional feature vector). Here is how it works:1. Import the modules:a. First import the function time from the library time. This function is used tomeasure the time elapsed during training/prediction.b. Import the class GaussianNB from sklearn.naive_bayes. This is the NaiveBayes classifier based on Gaussian distributions. The underlying assumption isthat the features are normally distributed.2. Train the model:a. start = time() records the current time just before starting the trainingprocess. This is used to measure how long the training process takes.b. GaussianNB(var_smoothing=1e-2) instantiates a Gaussian Naive Bayesclassifier (GaussianNB class) with the value of the var_smoothingparameter as . This is a regularization parameter; it is used to avoidnumerical instability (prevents division by zero) by adding a small value to thevariance of each feature. This helps ensure that variance estimates do notbecome zero, which is particularly useful when working with features thatmay have very small variance.c. clf.fit(train_data, train_labels) trains the Gaussian Naive Bayes classifier(clf) on training data (train_data), using the training labels (train_labels).

d. end = time() records the current time immediately after the training processis completed. Now end – start will give you the time taken to train the model.3. Visualize the learned means:a. plt.figure(figsize=(20,8)) creates a new figure with a size of 20 inches by 8inches, suitable for displaying multiple images.b. Loop over each of the 10 product classes from the list of products.c. plt.subplot(2,5,i+1) creates a subplot in a grid (2 rows and 5 columns)for each class, positioning each subplot according to d. plt.imshow(np.reshape(clf.theta_[i], (28,28)), cmap=plt.cm.gray)displays the mean image for class i. The mean image is obtained from
clf.theta_, which contains the mean of the features (pixel values) for eachclass. np.reshape(clf.theta_[i], (28,28)) reshapes this mean vector into a pixel image. The cmap=plt.cm.gray argument sets the color map tograyscale.e. plt.axis('off') hides the axis for each subplot to focus on the image itself.f. plt.title(products[i], size=20) sets the title for each subplot to the name ofthe class from the products list, making it clear which class the displayedmean image corresponds to.g. plt.show() displays the figure with all the subplots.Now refer to the next code snippet:

from time import time
from sklearn.naive_bayes import GaussianNB
start = time()clf = GaussianNB(var_smoothing=1e-2)clf.fit(train_data, train_labels)end = time()print('Training Time: {} seconds'.format(end-start))
Training Time: 0.954862117767334 secondsplt.figure(figsize=(20,8))
for i in range(len(products)): plt.subplot(2,5,i+1) plt.imshow(np.reshape(clf.theta_[i], (28,28)), cmap=plt.cm.gray) plt.axis('off') plt.title(products[i], size=20)plt.show()If you run the preceding code snippet, you should obtain a figure as follows:

Figure 7.3: Mean image for each class label from Fashion-MNIST with Gaussian Naïve Baysian classifier

Now, predict the labels for the test images using the trained Gaussian Naive Bayesclassifier, by computing that is, Prob(label|image) for each (test image, label)pair (using the predict() method) and measure the time taken to compute the labelto be predicted. Compute the accuracy of prediction (proportion of test images forwhich the labels are correctly predicted by the model, that is, the predicted labelsare identical to the ground-truth labels), using the next code snippet. Here is adetailed explanation of how it works:1. Measuring prediction time:a. start = time(): Records the current time just before making predictions withthe classifier. This helps in measuring how long it takes to make predictionson the test dataset.b. test_predictions = clf.predict(test_data): Uses the trained Gaussian NaiveBayes classifier (clf) to predict the labels for the test dataset (test_data). The
predict method returns an array of predicted labels for each test sample.c. end = time(): Records the current time immediately after makingpredictions.d. print('Prediction Time: {} seconds'.format(end-start)): Calculates thetotal time taken for prediction by subtracting start from end, and prints thistime in seconds. This provides insight into the efficiency of the model duringinference.2. Evaluating prediction accuracy:a. errors = np.sum(test_predictions != test_labels): Calculates the numberof misclassified predictions. It compares the predicted labels(test_predictions) with the actual labels (test_labels) and counts thenumber of mismatches. test_predictions != test_labels produces a Booleanarray where true indicates an incorrect prediction and np.sum() then countsthe number of true values corresponding to the number of errors.b. print("The GaussianNB (generative model) makes " + str(errors) + "
errors out of 10000"): Prints the total number of errors made by theGaussian Naive Bayes classifier out of 10,000 test samples. The actual numberof errors is inserted into the string to be output.3. Calculating and printing accuracy:

t_accuracy = sum(test_predictions == test_labels) / float(len(test_labels)):a. test_predictions == test_labels: Produces a Boolean array where Trueindicates a correct prediction and False indicates an incorrect one.b. sum(test_predictions == test_labels): Counts the number of correctpredictions (the number of True values).c. sum(test_predictions == test_labels) / len(test_labels): Calculates theclassifier’s accuracy by dividing the number of correct predictions by the totalnumber of predictions made.d. t_accuracy: Stores the accuracy value, representing the proportion ofcorrect predictions from all test samples.In summary, the next code snippet evaluates the performance of the trained

Gaussian Naive Bayes classifier on the test dataset:start = time()test_predictions = clf.predict(test_data)end = time()print('Prediction Time: {} seconds'.format(end-start))
Prediction Time: 1.0611958503723145 secondserrors = np.sum(test_predictions != test_labels)print("The GaussianNB (generative model) makes " + str(errors) + \ " errors out of 10000")
The generative model makes 3285 errors out of 10000t_accuracy = sum(test_predictions == test_labels) / len(test_labels)t_accuracy
0.6715As can be seen from the preceding code, around 67% accuracy is obtained on thetest dataset using the GaussianNB classifier, which is not good. Let us try a fewmore models to see if the accuracy improves.
Linear classifier with SGD trainingThe SGDClassifier in scikit-learn is an implementation of a linear classifier usingSGD optimization. It is a variant of the traditional gradient descent algorithm thatprocesses a single (randomly selected) training example at a time, updates theparameters (weights) using the gradient of the loss computed, making it particularlysuitable for large datasets.The goal of the classifier is to determine the optimal weights for a linear decisionboundary that demarcates the classes in the input space. Let us go through the keymathematical concepts involved in SGDClassifier:

• Linear model: The SGDClassifier is based on a linear model that makespredictions using the following equation for binary classification (with twoclasses present):o Decision function: Here w is the weight vector, x is the input feature vector, b is the bias term, represents the dot product and sign(⋅) is the sign function defined asfollows:

The decision function outputs the sign of the linear combination of inputfeatures and weights, determining the predicted class.o Loss function: The optimization process involves minimizing a losscomputing the prediction error (that is, the difference in between predictedand true labels). In the case of SGDClassifier, the loss function typically usedfor binary classification is the hinge loss. For a sample with the ground truth(true label) and classifier-predicted score , the hinge loss is defined as:
• Regularization: To prevent overfitting, the SGDClassifier often includes aregularization term in the objective function. The regularization term encouragesthe model to use smaller weights. The two common types of regularization used

are regularization (Lasso) and regularization (Ridge). The regularizedobjective function becomes:
Where is the regularization strength, being the objective function.

• SGD: The optimization is performed using SGD. The update rule for the weightvector in each iteration is:
Here is the learning rate, is the gradient of the objective function withrespect to the weights.The gradient is computed based on a single randomly chosen training example(stochastic gradient). This randomness often helps the algorithm escape localminima and makes it computationally efficient for large datasets.Since the problem we are trying to solve is a multi-class classification problem (withten class labels) here, the One-vs-All (OvA) technique is used to train multiplebinary classifiers, each focusing on distinguishing one class from the rest. The finalclass label is selected based on the binary classifier that outputs the highestconfidence score among all classifiers.Performing prediction with linear classifiers using SGD training in scikit-learninvolves a series of steps, as shown in the following code snippet:1. Start by importing sklearn.linear_model.SGDClassifier.2. Initialize and train the SGD classifier. Create an instance of the SGDClassifierclass and train it on your training data (with the fit() method). The default lossfunction is hinge (for SGDClassifier and also for linearSVM classifier), but youcan adjust it based on your specific classification task. For example, here weshall use the modified Huber loss instead, which is a smoothed variant thatcombines both a quadratic and linear loss. It is defined as:

The modified Huber loss works as follows:a. When y.f(x) ≥ −1, the loss is quadratic for predictions close to the boundary,i.e., the error grows quadratically.b. When y.f(x) < −1 (meaning the classification is very wrong), the losstransitions to a linear penalty to avoid overly penalizing large error.The following figure shows what the loss functions look like:

Figure 7.4: Loss functions

3. Measure the training time using the time() function and compute the differencein time:
from sklearn.linear_model import SGDClassifierparams = dict({"loss":"modified_huber","penalty":"l2"})clf = SGDClassifier(**params)start = time()clf.fit(train_data, train_labels)end = time()print('Training Time: {} seconds'.format(end-start))
#Training Time: 140.620023727417 seconds4. Make predictions: Use the classifier (trained on the training dataset) to makepredictions on your test set, using the method predict(), and also measure thetime required to predict:start = time()pred_labels = clf.predict(test_data)end = time()print('Prediction Time: {} seconds'.format(end-start))
#Prediction Time: 0.07095885276794434 seconds5. Evaluate the model: Assess the performance of your model using the accuracymetric. As can be seen from the following code snippet, the accuracy increased to79.5%:t_accuracy = sum(pred_labels==test_labels) / float(len(test_labels))t_accuracy
#0.79586. This code snippet computes the confusion matrix using the function
confusion_matrix() from the library scikit-learn for the classification model,and visualizes using the heatmap() function from the library seaborn.a. cm = confusion_matrix(test_labels, pred_labels): Computes the

confusion matrix from the true labels (test_labels) and the predicted labels(pred_labels). Here we havei. test_labels: The actual labels of the test dataset.ii. pred_labels: The labels predicted by the classifier for the test dataset.b. cm: Confusion matrix, a 2D array (or matrix/table) that summarizes theperformance of a classification model, by showing the counts of true
positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN). It summarizes the results of the model’s predictions on a set

of data, providing insight into the model’s ability to correctly or incorrectlyclassify instances.7. For multiclass classification problems with more than two classes, the confusionmatrix is a square matrix where each row corresponds to the actual class, andeach column corresponds to the predicted class. The element at position (i, j) inthe table represents the number of samples with true label i and predicted label
j. In other words, each element in the matrix shows how often the modelpredicted class j when the actual class was i.8. The diagonal elements in the confusion matrix represent the number of correctpredictions for each class, while the off-diagonal elements representmisclassifications, as shown in the next figure.9. pd.DataFrame(cm, range(10), range(10)) converts the confusion matrixarray (cm) into a pandas DataFrame (df_cm) for easier manipulation andvisualization.10. sns.heatmap(df_cm, annot=True, annot_kws={"size": 8}, fmt="g")creates a heatmap using the library seaborn to visualize the confusion matrix.Here:a. df_cm: The DataFrame containing the confusion matrix.b. annot=True: Adds the numeric values from the confusion matrix to each cellin the heatmap.c. annot_kws={"size": 8}: Sets the font size of the annotations to 8.d. fmt="g": Formats the annotations to be displayed as general integers (not inscientific notation).
from sklearn.metrics import confusion_matrix
import pandas as pd
import seaborn as sns
cm = confusion_matrix(test_labels, pred_labels)df_cm = pd.DataFrame(cm, range(10), range(10))sns.set(font_scale=1.2)sns.heatmap(df_cm, annot=True,annot_kws={"size": 8}, fmt="g")plt.show()If you run the preceding code snippet, you should obtain a figure like the next one:

Figure 7.5: Confusion matrix for the linear classifierBy following these steps, you can effectively perform prediction with linearclassifiers using SGD training in scikit-learn.
Random forest ensemble classifier

Random forest is an ensemble learning technique that creates several decisiontrees and combines (for example, using majority voting) their predictions to enhanceaccuracy and robustness. The basic building block of a random forest is decision tree(a supervised machine learning / classification model that makes decisions byrecursively splitting data based on feature values, with each leaf node representing afinal prediction or outcome). Here is how a random forest model is created:1. Bootstrap aggregating (Bagging): Random Forest employs a techniquecalled bagging. Multiple decision trees are trained on different subsets of thetraining data, sampled with replacement (bootstrapping). Each tree sees aslightly different perspective of the dataset, introducing diversity.2. Feature randomization: At each split in a decision tree, a random subset of theoriginal features is considered. This prevents a single dominant feature frominfluencing all trees and contributes to the ensemble’s diversity. The defaultnumber of features to consider at each split is the square root of the totalnumber of features.3. Prediction aggregation (Voting): For classification, each tree predicts a class,and the final prediction is often determined by a majority vote.4. Decision tree training: Given a dataset with features and labels , eachdecision tree is trained on a bootstrapped sample from . At each split in atree, a random subset of features is considered.5. Voting/averaging: For classification, the final prediction is determined by amajority vote:

6. Ensemble effect: The ensemble reduces overfitting and generalizes well tounseen data by aggregating the predictions of multiple diverse trees. Thediversity comes from randomization and bootstrapping.The model is less prone to overfitting compared to individual decision trees.Random forest combines the strengths of multiple decision trees through baggingand feature randomization to create a robust and accurate ensemble model. Thediversity introduced by the individual trees, coupled with the majority voting oraveraging mechanism, makes it a robust and widely used machine learningalgorithm.Let us use the following steps for classification with the random forest classifier from
scikit-learn:1. Create an instance of the RandomForestClassifier (imported from

sklearn.ensemble module) and train it on the training split obtained earlier,using the method fit(). Measure the training time as earlier (compare with thoseof earlier models).2. Adjust the n_estimators parameter, which represents the number of trees inthe forest (for example, set n_estimators=100, as in the following codesnippet):
from sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=20, \ random_state=0)

start = time()clf.fit(train_data, train_labels)end = time()print('Training Time: {} seconds'.format(end-start))
Training Time: 234.0610225200653 seconds3. Use the classifier (trained on the training set) to make predictions on your testset, using the method predict(). Measure the prediction time.start = time()pred_labels = clf.predict(test_data)end = time()print('Prediction Time: {} seconds'.format(end-start))
Prediction Time: 0.7255053520202637 seconds4. Assess the performance of your model using relevant evaluation metrics such as
accuracy and classification report.a. classification_report: A function from the sklearn.metrics module thatgenerates a report showing the precision, recall, F1-score, and support foreach class in a classification problem.b. classification_report(test_labels, pred_labels, target_names=products):The arguments to the function are:i. test_labels: The true labels for the test dataset.ii. pred_labels: The predicted labels for the test dataset.iii. target_names=products: A list of class names to display in the report.This should match the class indices in test_labels and pred_labels.c. Classification report output: The classification_report function generatesa report with the following evaluation metrics for each class:i. Precision: The ratio of correctly predicted positive observations to the totalpredicted positives. It answers the question: Of all the samples that were

predicted to be in class X, how many actually belong to class X? Precision iscalculated as:
ii. Recall (sensitivity): The ratio of correctly predicted positive observationsto all observations in the actual class. It answers the question: Of all the

samples that actually belong to class X, how many were correctly predicted
to be in class X? Recall is calculated as:

iii. F1-score: The harmonic mean of precision and recall. It provides a singlemetric that balances both precision and recall. The F1-score is particularlyuseful when dealing with imbalanced datasets. It is calculated as:
iv. Support: The number of actual occurrences of the class in the dataset. Itindicates how many samples belong to each class.

By following these steps, you can effectively evaluate the random forest classifierfrom scikit-learn, on the test dataset, as shown in the following code snippet:from sklearn.metrics import classification_reportprint(classification_report(test_labels, pred_labels, \ target_names=products))
precision recall f1-score support
#
T-shirt/top 0.82 0.86 0.84 1000
Trouser 1.00 0.96 0.98 1000
Pullover 0.77 0.79 0.78 1000
Dress 0.87 0.91 0.89 1000
Coat 0.76 0.82 0.79 1000
Sandal 0.97 0.96 0.96 1000
Shirt 0.72 0.59 0.65 1000
Sneaker 0.93 0.95 0.94 1000
Bag 0.95 0.97 0.96 1000
Ankle boot 0.96 0.95 0.95 1000
accuracy 0.88 10000
macro avg 0.87 0.88 0.87 10000
#weighted avg 0.87 0.88 0.87 10000

t_accuracy = sum(pred_labels == test_labels) / float(len(test_labels))t_accuracy
#0.8751As can be seen from the preceding result, the test accuracy improved to 87%. Thenext code snippet plots the confusion matrix, which shows the correctly classifiedtest images, for each individual class, along the diagonal:cm = confusion_matrix(test_labels, pred_labels)df_cm = pd.DataFrame(cm, range(10), range(10))sns.heatmap(df_cm, annot=True,annot_kws={"size": 10}, fmt="g")plt.show()If you run the preceding code snippet, you should obtain a figure like the next one:

Figure 7.6: Confusion matrix with random forest classifierThe following code snippet plots a few of the test images classified wrongly by themodel. The output is shown in the following figure, along with the true and predictedlabels for each image.wrong_indices = pred_labels != test_labelswrong_images, wrong_preds, correct_labs = test_data[wrong_indices], \ pred_labels[wrong_indices], test_labels[wrong_indices]print(len(wrong_preds))
1249plt.figure(figsize=(20,20))plt.gray()j = 1
for i in np.random.choice(len(wrong_preds), 81): plt.subplot(9,9,j), plt.imshow(np.reshape(wrong_images[i],(28,28))) plt.axis('off')

 plt.title(products[wrong_preds[i]] + '->' + \ products[correct_labs[i]]) j += 1
plt.show()If you run the preceding code snippet, you should obtain a figure as follows:

Figure 7.7: Fashion items wrongly classified with random forest classifier

Classifying Fashion-MNIST images using deep
learning models with tensorflow/kerasThe need for better performance and accuracy in image classification tasks drivesthe transition from traditional machine learning to deep learning models. As imagedata becomes more complex and voluminous, traditional models often fall short dueto their reliance on manual feature engineering and limited capacity to captureintricate patterns. Deep learning models offer a more robust and scalable solutionwith their ability to automatically learn features and their hierarchical structure.While traditional machine learning models have been valuable tools in the past, theadvent of deep learning has provided a paradigm shift in how we approach imageclassification tasks. Error rates on the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) demonstrated dramatic improvements with the advent of deeplearning in 2012, and these improvements have continued since, as shown in thefollowing figure. Human performance, in contrast, achieves an error rate ofapproximately 5%.

Figure 7.8: ImageNet challenge visual recognition error rates
Source: https://www.researchgate.net/figure/Error-rates-on-the-ImageNet-Large-Scale-Visual-Recognition-

Challenge-Accuracy_fig1_332452649Even for datasets such as Fashion-MNIST, which consist of relatively simple and low-dimensional image data, deep learning models still offer superior performance andefficiency, making them the preferred choice for achieving state-of-the-art results. Inthis section, we shall explore how to harness the power of deep learning with
tensorflow/keras to classify Fashion-MNIST images and achieve high levels ofaccuracy.A neural network is generally considered a deep learning model when it has multiplehidden layers (deep architecture), employs non-linear activation functions, can learnhierarchical feature representations, requires substantial training data, andnecessitates significant computational resources. First, let us understand the basicconcepts and components of a deep convolutional neural network.
Convolution Neural Networks (CNN) are a type of deep neural network optimizedfor handling structured grid data, like images. They utilize convolution layers toautonomously learn and adaptively detect spatial patterns and feature hierarchiesfrom the input data, benefiting from parameter sharing (thereby reducing thenumber of parameters), and increasing the field of view to capture broadercontextual information. Now, let us go over the basic concepts and building blocks ofCNN:

• Convolution operation: The core idea of a convolutional layer is to apply a setof filters (kernels) to the input image. Each filter is a small matrix that slides overthe input image, performing element-wise multiplication and summing the resultsto produce a feature map. Mathematically, the convolution operation can beexpressed as:

Where:o is the input image.o is the filter (kernel).

https://www.researchgate.net/figure/Error-rates-on-the-ImageNet-Large-Scale-Visual-Recognition-Challenge-Accuracy_fig1_332452649

o denotes the position of the filter in the image.o and are the dimensions of the filter.
• Activation function: After convolution, an activation function (such as ReLU) isapplied to introduce non-linearity into the model. The ReLU function is definedas:

This function helps the model learn complex patterns.
• Pooling layer: Pooling layers reduce the spatial dimensions of the feature maps,helping decrease computation and control overfitting. The most common poolingoperation is max pooling, which retains the maximum value in a defined window.Mathematically, for a 2×2 max pooling operation:

Where is the feature map and is the top-left corner of the pooling window.
• Fully connected layers: After several convolutional and pooling layers, theoutput is flattened and fed into fully connected (dense) layers. These layersperform classification based on the learned features.
• Dropout layer: A dropout layer is a type of regularization technique used inneural networks to prevent overfitting and improve the model’s generalization tounseen data. It operates differently during training and testing phases as follows:o Training phase: During training, each neuron (or unit) has a probability (the dropout rate) of being dropped out (that is, the output is set to zero).For example, if the dropout rate is (or), then each neuron has a chance of being dropped out during a particular forward pass. This dropoutrate is applied independently for each neuron and each forward pass.o Testing phase: During testing (or inference), dropout is not applied. Allneurons are used, but their activations are scaled down by the dropout rate toaccount for the fact that they were only active part of the time during training.This scaling is done to maintain the balance of activations.
• Forward pass: Forward pass refers to the process of passing input data throughthe neural network to obtain an output or prediction. This involves computing theactivations of each layer sequentially from the input layer to the output layer.The forward pass can be understood as a layer-by-layer transformation of theinput, where each layer applies learned weights, biases, and activation functionsto extract increasingly abstract features until the final output is produced. Hereare the layers:1. Input layer: The input data is fed into the input layer of the network.2. Hidden layers: Each neuron in a hidden layer computes a weighted sum ofits inputs and applies an activation function to produce an output.Mathematically, for a neuron j in layer l:

Where are the weights, are the inputs from the previous layer, and is the bias term.The activation function is applied: where is the activationfunction (for example, ReLU, sigmoid).3. Output layer: The final layer computes the output or prediction of thenetwork. For a classification problem, this is typically a softmax activationfunction to produce class probabilities, as shown in the following figure:

Figure 7.9: Forward propagation in a feedforward neural network

• Backward pass: Backward pass is the process of propagating the errorbackward through the network to update the weights and biases. This stepinvolves calculating the gradients of the loss function with respect to each weightusing the chain rule, as shown in the following Figure 7.10. The steps in thebackward pass are as follows:1. Compute loss: Calculate the loss (or error) between the network’sprediction and the actual target value using a loss function (for example,
cross-entropy loss for classification).2. Compute gradients: Compute the gradient of the loss with respect to eachweight and bias in the network using the chain rule of partial derivatives.This involves propagating the gradients backward from the output layer to theinput layer.
For each layer : Compute the gradient of the loss function with respect tothe activation values

Where is the derivative of the activation function.Compute the gradients for the weights and biases

The next figure summarizes the math equations corresponding to the updateof the weights in the neural network, in backward pass, with the backwardpropagation algorithm:

Figure 7.10: Math for neural-net weight update with backpropagation

• Backpropagation: Backpropagation is the algorithm used to perform thebackward pass efficiently. It is an optimization algorithm that leverages the
chain rule for partial derivatives to compute the gradients of the loss functionwith respect to the weights and biases. The steps in backpropagation are asfollows:1. Initialize gradients: Start with the output layer and compute the gradient ofthe loss function with respect to the activations.2. Propagate gradients backward: Use the chain rule to propagate thesegradients backward through the network, layer by layer.3. Update weights and biases: Use an optimization algorithm (for example,

Gradient Descent or Adam) to update the weights and biases using thecomputed gradients. For example, in gradient descent, the weight-updateequation is:
Where, is the learning rate.

• Loss function and optimization: The model is trained by minimizing a loss
function using optimization algorithms like SGD or Adam. For multi-class

classification tasks (such as this one, since we have 10 class labels here), thecommon loss function is categorical cross-entropy (also called softmax loss),defined as:

Where:o is the number of classes.o is the true label (one-hot encoded).o is the predicted probability for class i.The next python code snippet uses tensorflow and keras to build, train, andevaluate a CNN for classifying images from the Fashion-MNIST dataset. The codedemonstrates the complete pipeline, including loading data, preprocessing, defininga CNN model, training, and evaluation.Let us first import the required libraries using the following code snippet. Thefollowing list explains the purpose of each library, module, class or function used:
• tensorflow as tf: Imports TensorFlow for deep learning tasks.
• fashion_mnist: The dataset module from Keras that provides the Fashion-MNIST dataset.
• Sequential: A type of model in Keras where layers are stacked sequentially.
• Conv2D: Convolutional layer used for feature extraction from images.
• MaxPooling2D: Layer used for downsampling the feature maps.
• Dropout: Regularization layer to reduce overfitting.
• Flatten: Converts 2D matrices to 1D vectors.
• Dense: Fully connected layer used for classification.
• to_categorical: Converts integer labels to one-hot encoded vectors.
• matplotlib.pyplot: For plotting training and validation metrics.
• device_lib: Provides functions to list available devices like GPUs.import tensorflow as tffrom tensorflow.keras.datasets import fashion_mnistfrom tensorflow.keras.models import Sequentialfrom tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, \ BatchNormalization, Flatten, Densefrom tensorflow.keras.utils import to_categoricalimport matplotlib.pyplot as pltfrom tensorflow.python.client import device_libNote that graphics processing units (GPU) are used for training deep neuralnetworks, due to their ability to handle the massive parallelism and simultaneouscomputations required by deep learning algorithms efficiently, leading to significantspeedups (otherwise, the training process can be very slow on CPUs). You arerecommended to create a notebook in Google colab(https://colab.research.google.com/), run the code in this section there usingtheir GPU / TPU runtime, if you do not have GPU available on your local machine.The function get_available_gpus() can be used to retrieve the names of availableGPU devices, as shown in the next code snippet, where we have:
• device_lib.list_local_devices(): Lists all devices available to TensorFlow.

• x.name for x in local_device_protos if x.device_type == 'GPU': Filters outonly GPU devices.Now, refer to the next code snippet:def get_available_gpus(): local_device_protos = device_lib.list_local_devices() return [x.name for x in local_device_protos if x.device_type == 'GPU']
print(get_available_gpus())
['/device:GPU:0']The following code snippet loads and preprocesses the Fashion-MNIST dataset,creates a CNN model using keras Sequential API (with tf.keras.models) anddisplays the summary of the model. Let us understand how it works in details (step-by-step):

• tf.random.set_seed(221) sets the random seed for TensorFlow’s pseudo-random generator, to ensure that the sequence of random numbers is consistentacross different runs of the code. This practice is crucial for achieving
reproducible results.

• fashion_mnist.load_data() loads the Fashion-MNIST dataset, splitting it intotraining and test sets.
• Reshape and normalize: Here are the key functions:o reshape((60000, 28, 28, 1)): Reshapes the training images to be 4D tensorswith shape (60000,28,28,1), where 60000 is the number of images, 28×28 isthe image dimension, and 1 represents a single-color channel (grayscale).o astype('float32') / 255: Converts pixel values to float32 and normalizesthem to the range [0,1].
• One-hot encoding: One-hot encoding (OHE) is a method of convertingcategorical labels into a binary matrix representation. Each class label isrepresented by a binary vector where only one element is 1 (indicating thepresence of the class), and all other elements are 0 (indicating the absence of theclass).
• For Fashion-MNIST, there are 10 (product) classes. Thus, each label needs to beconverted into a vector of length 10. Here are couple of example OHE vectors(from 10 possible unique vectors): class 0: [1,0,0,0,0,0,0,0,0,0], class 3:[0,0,0,1,0,0,0,0,0,0]. We need to convert the training and test labels to OHErepresentation in the following way:o to_categorical(train_labels): Converts the class labels into a one-hotencoded format for the training labels.o to_categorical(test_labels): Similarly converts the test labels.
• Building the CNN model: Here,o Sequential([...]): Defines a sequential model with layers stacked in the givenorder.o Conv2D(64, (3, 3), activation='relu', input_shape=(28, 28, 1)): Firstconvolutional layer with 64 filters of size 3×3, with ReLU activation functionand an input shape of 28×28 pixels with 1 channel.o MaxPooling2D((2, 2)): Applies max-pooling with a 2×2 window to reducethe dimensions of the feature maps.

o Dropout(0.2): Applies dropout with a rate of 0.2 (20%) after the max-poolinglayer.o Flatten(): Flattens the 3D output from the last convolutional layer to 1D.o Dense(256, activation='relu'): Fully connected layer with 256 neurons andReLU activation.o Dense(10, activation='softmax'): Output layer with 10 neurons for the 10classes, uses the softmax activation function to produce class probabilities.
• Model architecture overview:The function model.summary() prints a detailed summary of the model’sarchitecture, including the layers, their output shapes, and the number ofparameters in each layer. This is particularly useful for understanding thestructure of the model and verifying that it has been built as expected.Refer to the next code snippet:

Reproducible outputtf.random.set_seed(1)
Load and preprocess the Fashion-MNIST dataset(train_images, train_labels), (test_images, test_labels) = \ fashion_mnist.load_data()
Reshape and normalize the imagestrain_images=train_images.reshape((60000,28,28,1)).astype('float32')/255test_images=test_images.reshape((10000,28,28,1)).astype('float32')/255
One-hot encode the labelstrain_labels = to_categorical(train_labels)test_labels = to_categorical(test_labels)
Build the CNN modelmodel = Sequential([Conv2D(64, (3, 3), activation='relu', input_shape=(28, 28, 1)), MaxPooling2D((2, 2)), Dropout(0.2), Conv2D(256, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Dropout(0.2), Flatten(), Dense(256, activation='relu'), Dropout(0.4), Dense(10, activation='softmax')])
model.summary()
#Model: "sequential"
#___
Layer (type) Output Shape Param #
#===
conv2d (Conv2D) (None, 26, 26, 64) 640
max_pooling2d (MaxPooling2D) (None, 13, 13, 64) 0
dropout (Dropout) (None, 13, 13, 64) 0
conv2d_1 (Conv2D) (None, 11, 11, 256) 147712
max_pooling2d_1 (MaxPooling2D) (None, 5, 5, 256) 0
dropout_1 (Dropout) (None, 5, 5, 256) 0
flatten (Flatten) (None, 6400) 0
dense (Dense) (None, 256) 1638656
dropout_2 (Dropout) (None, 256) 0
dense_1 (Dense) (None, 10) 2570
#===
#Total params: 1,789,578
#Trainable params: 1,789,578
#Non-trainable params: 0

#___The following figure shows the architecture of the model (dropout layers are notshown):

Figure 7.11: Schematic diagram for Fashion-MNIST image classification with Keras sequential modelLet us deep dive into the next steps:
• Compiling the model:o optimizer='adam': Specifies the Adam optimizer, which adapts learningrates during training.o loss='categorical_crossentropy': The loss function used for multi-classclassification with OHE labels.o metrics=['accuracy']: Metrics to monitor during training and evaluation,specifically accuracy in this case.
• Training the model:o model.fit(): Trains the model on the training data.o train_images and train_labels: Training data and labels.o epochs=5: Number of epochs (iterations over the entire dataset) for training.o batch_size=64: Number of samples per gradient update.o validation_split=0.2: Fraction of training data to be used as validation data(20%).
• Evaluating the model:o model.evaluate(): Evaluates the model’s performance on the test dataset.o test_images and test_labels: Test data and labels.o test_loss and test_accuracy: Loss and accuracy of the model on the test set.o print(f'Test accuracy: {test_accuracy:.4f}'): Prints the test accuracyformatted to four decimal places.
• Plotting training and validation accuracy:o plt.plot(): Plots the training and validation accuracy over epochs.o history.history['accuracy']: Training accuracy recorded during training.o history.history['val_accuracy']: Validation accuracy recorded duringtraining.o plt.xlabel() and plt.ylabel(): Label the x-axis and y-axis, respectively.o plt.ylim([0, 1]): Set the y-axis limits from 0 to 1.o plt.legend(loc='lower right'): Adds a legend to the plot.

o plt.show(): Displays the plot.The next code snippet complies the CNN model created previously, trains the modelon training dataset and evaluates the model on the held-out test dataset. As can beseen, the accuracy on the held-out dataset with the deep learning model is morethan 90.3%, higher than the one obtained with the classical machine learningmodels.
Compile the modelmodel.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
Train the modelhistory = model.fit(train_images, train_labels, epochs=5, batch_size=64, \ validation_split=0.2)
#Epoch 1/5
#750/750 [==============================] - 13s 16ms/step - loss: 0.5117 -
#accuracy: 0.8145 - val_loss: 0.3266 - val_accuracy: 0.8827
#Epoch 2/5
#750/750 [==============================] - 11s 15ms/step - loss: 0.3381 -
#accuracy: 0.8767 - val_loss: 0.3064 - val_accuracy: 0.8877
#Epoch 3/5
#750/750 [==============================] - 9s 12ms/step - loss: 0.2940 -
#accuracy: 0.8932 - val_loss: 0.2921 - val_accuracy: 0.8899
#Epoch 4/5
#750/750 [==============================] - 12s 16ms/step - loss: 0.2659 -
#accuracy: 0.9023 - val_loss: 0.2563 - val_accuracy: 0.9066
#Epoch 5/5
#750/750 [==============================] - 13s 18ms/step - loss: 0.2428 -

#accuracy: 0.9091 - val_loss: 0.2494 - val_accuracy: 0.9068
#313/313 [==============================] - 2s 5ms/step - loss: 0.2633 -
#accuracy: 0.9030
Evaluate the modeltest_loss, test_accuracy = model.evaluate(test_images, test_labels)print(f'Test accuracy: {test_accuracy:.4f}')
#Test accuracy: 0.9030

Plot training and validation accuracyplt.plot(history.history['accuracy'], label='accuracy')plt.plot(history.history['val_accuracy'], label = 'val_accuracy')plt.xlabel('Epoch')plt.ylabel('Accuracy')plt.ylim([0, 1])plt.legend(loc='lower right')plt.show()If you run the preceding code snippet, you should obtain a figure like the next one:

Figure 7.12: Increase in training/validation accuracy w.r.t. number of training epochs

Image classification with pretrained models with
tf.kerasPre-trained models are deep learning models that have previously been trained on alarge dataset (for example, a few widely used datasets in computer vision:
ImageNet, CIFAR-10, CIFAR-100, MS COCO). These models can be used as is, forclassifying images into the categories they were trained on, or can be fine-tuned forspecific image classification tasks. The strength of pre-trained models lies in theirability to capture high-level image features, making them highly versatile for variousimage classification tasks.Pre-trained models can offer a powerful approach to image classification,significantly reducing the time and resources required to develop high-performingmodels. Keras provides an accessible interface to these models, making it easier forpractitioners to leverage deep learning for their image classification tasks. Whetherused directly or as a starting point for fine-tuning, pre-trained models in keras canaccelerate the development of sophisticated image classification solutions.
Popular pre-trained models in tf.keras
tf.keras offers several state-of-the-art pre-trained models, including:

• VGG16 and VGG19: Models from the VGG team, known for their simplicity anddepth.
• ResNet50: A model from Microsoft, known for its residual connections, whichhelp in training very deep networks.
• InceptionV3: A model from Google, known for its efficiency and depth withfewer parameters.
• MobileNet: Also from Google, designed for mobile and embedded visionapplications.

Using pretrained models for image classificationImage classification with pretrained models in tf.keras involves loading a pre-trained model, adapting it to your specific task, and making predictions. Beforeclassification, images must be pre-processed to match the input format expected bythe model. This typically involves resizing the image and scaling pixel values. In thisexample, we shall use several popular pre-trained models for image classification:
VGG16, VGG19, InceptionV3, ResNet50, MobileNet, and Xception.This following Python code snippet demonstrates how to use several pre-traineddeep learning models from tf.keras for image classification. It involves loadingmultiple models, preparing images for prediction, making predictions, andvisualizing the results. Here is a step-by-step explanation:1. Import libraries and functions: The next code snippet imports necessarylibraries including keras, numpy for numerical operations, several pre-trainedmodels from tf.keras.applications (vgg16, vgg19, inception_v3, resnet50,

mobilenet, xception), and functions for image processing and visualization, forexample:a. load_img, img_to_array: Functions for image preprocessing.

b. decode_predictions: Function to decode the predictions from the model intohuman-readable labels on the model you are using.import numpy as npfrom tensorflow.keras.applications import vgg16, vgg19, inception_v3, resnet50, mobilenet, xceptionfrom tensorflow.keras.preprocessing.image import load_imgfrom tensorflow.keras.preprocessing.image import img_to_arrayfrom tensorflow.keras.applications.imagenet_utils import \ decode_predictionsimport matplotlib.pyplot as pltimport cv22. Load pretrained models: The following code snippet carries out the steps asdefined:a. Loads several pretrained models (VGG16, VGG19, InceptionV3, ResNet50,
MobileNet, Xception) with weights trained on ImageNet dataset.b. Instantiates the models from the corresponding list of model classes.c. Displays the summary of the VGG16 model’s architecture.vgg16_model = vgg16.VGG16(weights='imagenet')

Downloading data from https://storage.googleapis.com/tensorflow/keras-
applications/vgg16/vgg16_weights_tf_dim_ordering_tf_kernels.h5
553467096/553467096 [==============================] - 33s 0us/step

vgg16_model.summary()
#Model: "vgg16"
#___
Layer (type) Output Shape Param #
#===
input_1 (InputLayer) [(None, 224, 224, 3)] 0
block1_conv1 (Conv2D) (None, 224, 224, 64) 1792
block1_conv2 (Conv2D) (None, 224, 224, 64) 36928
block1_pool (MaxPooling2D) (None, 112, 112, 64) 0
block2_conv1 (Conv2D) (None, 112, 112, 128) 73856
block2_conv2 (Conv2D) (None, 112, 112, 128) 147584
block2_pool (MaxPooling2D) (None, 56, 56, 128) 0
block3_conv1 (Conv2D) (None, 56, 56, 256) 295168
block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160
block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808
block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808
block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808
block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808
block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
flatten (Flatten) (None, 25088) 0

clbr://internal.invalid/book/OPS/ch07.xhtml

fc1 (Dense) (None, 4096) 102764544
fc2 (Dense) (None, 4096) 16781312
predictions (Dense) (None, 1000) 4097000
#===
#Total params: 138,357,544
#Trainable params: 138,357,544
#Non-trainable params: 0
#___

vgg19_model = vgg19.VGG19(weights='imagenet')
#vgg19_model.summary()

inception_model = inception_v3.InceptionV3(weights='imagenet')resnet_model = resnet50.ResNet50(weights='imagenet')mobilenet_model = mobilenet.MobileNet(weights='imagenet')xception_model = xception.Xception(weights='imagenet')3. Process and classify images: Executes the following steps, using the nextcode snippet:a. Iterate through a list of image filenames (that you want to classify).b. For each image in the specified list, load the image (with the function
load_img()) and resize to the input size expected by the models (224×224pixels for most models). The target_size parameter for the function shouldmatch the input size expected by the model to be used.c. Convert the image from a PIL Image to a numpy array (with img_to_array()function) and adds an extra dimension to create a batch (using the function
np.expand_dims()), as tf.keras models expect inputs in batch form.d. For each model, the image batch is preprocessed according to therequirements of that model. This typically involves scaling pixel values in away that matches how the model was originally trained (use the method
preprocess_input()).e. Classifying the image is as simple as calling the predict() method (running a
forward pass) on the model with the preprocessed image as input. The modelmakes predictions on the input image, outputting the probabilities across all(1000) ImageNet classes.4. Decode predictions: The predictions (probabilities) are decoded into human-readable class labels, with the top predictions (for example, top) being extractedfor each model.5. Visualization: For each of the input images, the following steps are executed:a. The original image is resized for display and annotated with the top 5predictions from each model, including the class labels and the associatedprobabilities.b. The image is annotated with text showing the top prediction for each model,including the label and the probability score.c. Uses cv2.putText() to add this information onto the image.d. The annotated image is displayed using matplotlib, with the axis turned offfor clarity, using the following code snippet:modules = [vgg16, vgg19, inception_v3, resnet50, mobilenet, xception]models = [vgg16_model, vgg19_model, inception_model, resnet_model, \ mobilenet_model, xception_model]

for img in ['clock.jpg', 'bee.jpg', 'peacock.jpg', \ 'zebra.jpg', 'elephant.jpg', 'broccoli.jpg']: img = 'images/' + img # load an image in PIL format original = load_img(img, target_size=(224, 224)) numpy_image = img_to_array(original) image_batch = np.expand_dims(numpy_image, axis=0) labels = {} for i in range(len(modules)): module, model = modules[i], models[i] # prepare the image for the VGG model processed_image = module.preprocess_input(image_batch.copy()) # get the predicted probabilities for each class predictions = model.predict(processed_image) labels[model.name] = decode_predictions(predictions) numpy_image = np.uint8(img_to_array(original)).copy() numpy_image = cv2.resize(numpy_image,(900,900)) y = 40 for model in models: cv2.putText(numpy_image, "{}: {}, {:.2f}".format(\ model.name, \ labels[model.name][0][0][1], \ labels[model.name][0][0][2]), \ (350, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 3) y += 35 numpy_image = cv2.resize(numpy_image, (700,700))
 plt.figure(figsize=[10,10]) plt.imshow(numpy_image) plt.axis('off') plt.show()If you run the preceding code snippet, you should obtain a figure like the next one:

Figure 7.13: Image classification with pretrained popular deep learning models

Image classification with custom classes using
transfer learning with pytorchPretrained models alone cannot classify custom classes they weren’t originally

trained on. To adapt them, transfer learning is used—this involves reusing apretrained model’s learned features and fine-tuning it on the new, task-specificdataset. In this section, we shall demonstrate how to implement transfer learningwith pytorch, to perform image classification with custom classes. We shall use a
pretrained model as feature extractor and train a new classifier (for example, thepopular ResNet model) on top of it. Make sure you have pytorch installed (pip
install torch), before we start.
Understanding transfer learning
Transfer learning is a powerful technique in deep learning that involves startingfrom a pretrained model and adapting it to a new, but related task. For imageclassification, this means leveraging the knowledge a model has gained from a largeand diverse dataset like ImageNet and applying it to classification of images intocustom categories.Transfer learning typically involves two main steps:1. Feature extraction: In feature extraction, the pre-trained model’s layers are

frozen except for the final layer(s), which are replaced with new ones tailored tothe new task.2. Fine-tuning: In fine-tuning, a part of the model, typically the last part (seldomthe entire model) is then trained on the new dataset, allowing the model to adjustits weights to the new task.
PyTorch, a popular deep learning library, offers an accessible and efficient way toimplement transfer learning. This section will demonstrate transfer learning withPyTorch for image classification with custom classes. The merits of transfer learningare as follows:

• Efficiency: Training a deep learning model from scratch requires significantcomputational resources and time. Transfer learning allows you to leverageexisting models to achieve high performance with less computational effort.
• Data requirements: Deep learning models generally require large amounts ofdata to train. Transfer learning enables you to achieve high performance withsmaller datasets.

Setting up the environmentYou need to run the codes in this section on Google Colab, use their GPU / TPUruntime to speed-up the training process needed for transfer learning. First, weneed to prepare the dataset, as explained.
Uploading the DatasetFollow the next steps for data uploading / extraction:1. First download the compressed image dataset from Kaggle through thefollowing link: https://www.kaggle.com/amadeus1996/fruits-360-transfer-

learning-using-keras/data.2. Upload the .tar file it to your Google Drive.3. Mount your Google Drive, using the following commands:
from google.colab import drive
drive.mount("/content/drive")

https://www.kaggle.com/amadeus1996/fruits-360-transfer-learning-using-keras/data

4. Extract the contents of the .tar file) containing image data, using the followingsequence of commands in a terminal shell (first uncomment them and then run):
!tar -xvf /content/drive/MyDrive/256_ObjectCategories.tar5. Then use the following three commands to create subdirectories within imagesfor each animal category:
!mkdir images/goat!mkdir images/elk!mkdir images/raccoon6. Use the final three commands to copy images from specific folders in theextracted archive to their respective category directories:
!cp -r 256_ObjectCategories/085.goat/* images/goat
!cp -r 256_ObjectCategories/065.elk/* images/elk
!cp -r 256_ObjectCategories/168.raccoon/* images/raccoonThe dataset contains images of goats, elks, and raccoons—custom classes we aimto classify using image classification with transfer learning.

Using the pretrained ResNet-18 modelThe ResNet-18 model is a deep CNN that is part of the ResNet family (thearchitecture shown in the following figure). It is designed to address some of thechallenges faced by very deep neural networks, such as vanishing gradients anddegradation of performance with increasing depth. It incorporates residual
learning to address training challenges associated with deep neural networks. Itsuse of residual blocks with identity shortcuts makes it easier to train andoptimize, even though it has fewer layers compared to deeper models in the ResNetfamily. Its architecture balances performance and computational efficiency, makingit a popular choice for various applications in computer vision. Refer to the followingfigure:

Figure 7.14: ResNet-18 model architectureThe following Python code snippet demonstrates how to use transfer learning with
pytorch to classify a custom image dataset. The code effectively demonstrates howto leverage a pretrained ResNet-18 model using transfer learning to classifyimages into custom categories with pytorch. Transfer learning allows for significantimprovements in model performance with relatively small datasets by fine-tuning amodel pretrained on a large and general dataset. The code can be broken down intothe following key steps:

1. Importing libraries:
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision
from torchvision import datasets, models, transforms
import numpy as np
import os, time, copy
from shutil import copyfile
import matplotlib.pyplot as plt2. Preparing dataset:a. The function create_training_validation_dataset() organizes the imagedataset into training and validation sets.b. It defines three classes ('raccoon', 'goat', 'elk'), corresponding to the newcategories and creates separate directories for training and validationdatasets (images/train and images/valid, respectively) for each class.c. It randomly splits the images for each class into training (80%) and

validation (20%) sets, copying the images into the respective directories(using the function copyfile()).Now, refer to the next code snippet:
def create_training_validation_dataset():
 classes = ['raccoon', 'goat', 'elk'] if not os.path.exists('images/train'): os.makedirs('images/train')
 for label in classes: if not os.path.exists(os.path.join('images/train', label)): os.makedirs(os.path.join('images/train', label))
 if not os.path.exists('images/valid'): os.makedirs('images/valid')
 for label in classes: if not os.path.exists(os.path.join('images/valid', label)): os.makedirs(os.path.join('images/valid', label))
 for label in classes: images = os.listdir(os.path.join('images/', label)) train_indices = np.random.choice(len(images), \ int(0.8*len(images)), replace=False)
 valid_indices = list(set(range(len(images))) - \ set(train_indices)) print(len(images), len(train_indices), len(valid_indices)) for index in train_indices: copyfile(os.path.join('images/', label, images[index]), os.path.join('images/train/', label, images[index])) for index in valid_indices: copyfile(os.path.join('images/', label, images[index]), os.path.join('images/valid/', label, images[index]))
create_training_validation_dataset()
#140 112 28
#112 89 23
#101 80 213. Data augmentation and normalization:a. Apply transformations to the training dataset, such as resizing, random

cropping, and horizontal flipping, in order to augment the data and help themodel generalize better.b. Normalizes training and validation datasets using predefined mean and
standard deviation values to match the pretrained model’s requirements.c. Applies data augmentation and normalization for training, but justnormalization for validation.d. data_transforms: A dictionary defining different image transformations for
training and validation datasets.4. Loading dataset:a. Uses pytorch’s ImageFolder to load images from the directory structure,applying the defined transformations (data_transforms).b. Creates DataLoader objects for both training and validation datasets toiterate over the data in batches.c. data_dir: The directory where the image data is stored.d. DataLoader: A dictionary mapping train and valid to DataLoader objects.i. torch.utils.data.DataLoader: A pytorch class for loading data in batchesand managing shuffling and parallel data loading.ii. batch_size=4: Number of samples per batch.iii. shuffle=True: Shuffles the data at every epoch, which is generally usedfor training to ensure varied mini-batches.iv. num_workers=4: Number of subprocesses used for data loading. Thisspeeds up data loading by utilizing multiple CPU cores.5. Setting up the computation device:a. The training will be done on GPU. Otherwise, it will be too slow.b. torch.device: Determines the device to be used for computation.c. "cuda:0": Uses the first GPU if available.d. "cpu": Falls back to the CPU if no GPU is available.e. device: Stores the selected computation device. This ensures that the modeland data are moved to the appropriate hardware (for example, GPU in thiscase) for training.The following code snippet is part of a data preparation pipeline for training andvalidating a deep learning model using pytorch. It sets up image transformationsfor data augmentation, loads datasets from specified directories, creates dataloaders for efficient data handling, calculates dataset sizes, and selects theappropriate computation device. This setup is crucial for training machinelearning models efficiently and effectively.data_transforms = {

 'train': transforms.Compose([transforms.Resize(224), transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], \ [0.229, 0.224, 0.225])

]), 'valid': transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], \ [0.229, 0.224, 0.225])]),}
data_dir = 'images'image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), \ data_transforms[x]) for x in ['train', 'valid']}dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], \ batch_size=8, shuffle=True, num_workers=4) \ for x in ['train', 'valid']}dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'valid']}class_names = image_datasets['train'].classesdevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")device
#device(type='cuda', index=0)6. Visualizing the image:a. The function next(iter(dataloaders['train'])) retrieves the next batch ofimages (note that batch_size is 4 here) and their corresponding class labelsfrom the training data loader: inputs variable is a batch of images, and

classes variable contains the corresponding class indices.b. torchvision.utils.make_grid(inputs): Combines a batch of images into asingle grid image, which is useful for visualizing multiple images at once.c. The plt.imshow() function is designed to display a pytorch tensor as animage using matplotlib. It also handles image normalization anddenormalization.i. .numpy() converts the pytorch tensor to a numpy array.ii. .transpose((1, 2, 0)) changes the array shape from (C,H,W) i.e.,(channels, height, width) to (H,W,C), i.e, (height, width, channels) which isrequired for displaying an image with matplotlib.pylab.iii. Denormalize image: The mean and std (standard deviation) values areused to reverse the normalization applied to the images.iv. np.clip() ensures that pixel values are within the valid range [0,1] afterdenormalization.def imshow(inp, title=None): inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) plt.imshow(inp) plt.axis('off') if title is not None: plt.title(title)
inputs, classes = next(iter(dataloaders['train']))out = torchvision.utils.make_grid(inputs)
plt.figure(figsize=(10,5))imshow(out, title=[class_names[x] for x in classes])plt.show()print(class_names, classes)

['elk', 'goat', 'raccoon'] tensor([2, 0, 2, 1])If you run the preceding code snippet, you should obtain a figure like the nextone:

Figure 7.15: Sample training images

7. Training the model:Now, it is the time to train. The next python code snippet defines a function
train_model() which will be used to train and validate a pytorch model (with
RestNet-18 backbone and pretrained ImageNet weights) over a specifiednumber of epochs. The function handles both training and validation phases,updates the model weights, and tracks the best performing model, based onvalidation accuracy. Here is a detailed explanation of each part of the code:a. The function train_model() accepts the following arguments:o model: The neural network model (with pretrained weights) to be trained(using transfer learning).o criterion: The loss function used to compute the loss.o optimizer: The optimization algorithm used to update modelparameters.o scheduler: A learning rate scheduler to adjust the learning rate duringtraining.o num_epochs: The number of epochs for which the model will be trained.b. Training initialization: The variable best_model_wts is initialized to thecurrent state dictionary of the pretrained model. It will be updated to hold theweights of the best performing model during training. The variable best_acckeeps track of the highest validation accuracy achieved.c. Training epochs: It iterates through each epoch of training.o if (epoch + 1) % 10 == 0: It prints the current epoch number and thetotal number of epochs every epochs. This helps in monitoring the progressof training without cluttering the output.o if phase == 'train': It sets the model to training mode (using

model.train(), which enables behaviors specific to training, such as
dropout and batch normalization updates and so on), otherwise to theevaluation mode (using model.eval()).o inputs, labels = inputs.to(device), labels.to(device): It moves the datato the computation device (CPU or GPU).o optimizer.zero_grad(): Clears old gradients to prevent accumulation.

o with torch.set_grad_enabled(phase == 'train'): Enables gradientcalculation only if we are in the training phase.o outputs = model(inputs): Performs a forward pass through the model.o _, preds = torch.max(outputs, 1): Retrieves predicted class labels(corresponding to the highest probability).o loss = criterion(outputs, labels): Computes the loss.o if phase == 'train': It performs backpropagation and model parameter
update through optimization only in the training phase.

฀ loss.backward(): Computes gradients.
฀ scheduler.step(): Updates the learning rate.
฀ optimizer.step(): Updates model parameters.o running_loss accumulates the loss for the epoch and running_correctscounts the number of correct predictions so far.def train_model(model, criterion, optimizer, scheduler, num_epochs=25):

 since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0 for epoch in range(num_epochs):
 if (epoch + 1) % 10 == 0: print('Epoch {}/{}'.format(epoch + 1, num_epochs)) print('-' * 10)
 for phase in ['train', 'valid']: if phase == 'train': model.train() else: model.eval() running_loss, running_corrects = 0, 0 for inputs, labels in dataloaders[phase]: inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() # zero the parameter gradients with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) if phase == 'train': loss.backward() scheduler.step() optimizer.step() running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data)
 epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase]
 if (epoch + 1) % 10 == 0: print('{} Loss: {:.4f} Acc: {:.4f}'.format(\ phase, epoch_loss, epoch_acc)) if phase == 'valid' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict())
 time_elapsed = time.time() – since
 print('Training complete in {:.0f}m {:.0f}s'.format(\ time_elapsed // 60, time_elapsed % 60))
 print('Best val Acc: {:4f}'.format(best_acc))

 model.load_state_dict(best_model_wts)
 return modeld. Model preparation: sets up the model using the following steps:i. models.resnet18(weights=models.ResNet18_Weights.DEFAULT):Loads the ResNet-18 model with weights pre-trained on ImageNet.ii. Freezing and unfreezing layers: Freezes all the parameterscorresponding to all the layers, except the last fully connected (FC) layerof the model by setting requires_grad=False. This means that thegradients for these parameters will not be computed duringbackpropagation, and thus they will not be updated during training. It alsounfreezes the parameters of the final FC layer, allowing them to be updatedduring training. This is typically done to fine-tune the model for a newclassification task with transfer learning.iii. num_features = base_model.fc.in_features: Gets the number of inputfeatures to the fully connected layer. This value corresponds to the numberof output features from the preceding layer in the network.iv. base_model.fc = nn.Linear(num_features, 3): Replaces the existing FClayer with a new one that has 3 output features. This is typically done toadapt the model to a new classification task with 3 classes, that is, to matchthe number of class labels in the custom dataset (3 in this case, namely,goat, elk and raccoon).v. Moves the model to the GPU if available.e. Training setup: The following steps outline how the training process is setup for image classification using transfer learning:o Define a loss function (categorical cross-entropy loss, which is commonlyused for multi-class classification tasks, measuring the difference betweenthe predicted class probabilities and the true class labels) using thefunction nn.CrossEntropyLoss() and an SGD optimizer.i. lr=0.01: Sets the learning rate to 0.01.ii. momentum=0.9: Sets the momentum for the SGD optimizer.Momentum helps accelerate gradient vectors in the right directions,thus leading to faster convergence.o Implement a learning rate scheduler to adjust the learning rate overepochs.i. lr_scheduler.StepLR: LR scheduler that adjusts the learning rate by aspecified factor at regular intervals.ii. step_size=10: Sets the number of epochs between each learning ratedecay.iii. gamma=0.5: Sets the factor by which the learning rate will bedecayed. For example, if the learning rate is 0.01, it will be reduced to0.005 after 10 epochs.Refer to the next code snippet:

torch.set_warn_always(False)torch.manual_seed(121) # set the random seed for reproducibilitybase_model = models.resnet18\ (weights=models.ResNet18_Weights.DEFAULT)
Freeze all layers
for param in base_model.parameters(): param.requires_grad = False
Unfreeze last layer
for param in base_model.fc.parameters(): param.requires_grad = True
num_features = base_model.fc.in_featuresbase_model.fc = nn.Linear(num_features, 3)base_model = base_model.to(device)
criterion = nn.CrossEntropyLoss()
Observe that all parameters are being optimizedoptimizer = optim.SGD(base_model.fc.parameters(), lr=0.01, \ momentum=0.9)
Decay LR by a factor of 0.1 every 7 epochsexp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=10, \ gamma=0.5)o Train the model for a specified number of epochs (50), adjusting themodel’s weights based on the loss calculated on the training dataset andevaluate the model’s performance on the validation dataset. As can beseen from the output of the following code snippet, the highest validationaccuracy reported is over 93%:base_model = train_model(base_model, criterion, optimizer, \ exp_lr_scheduler, num_epochs=50)
#Epoch 10/50
#----------
#train Loss: 0.4501 Acc: 0.8327
#valid Loss: 0.2535 Acc: 0.9306
#Epoch 20/50
#----------
#train Loss: 0.4113 Acc: 0.8292
#valid Loss: 0.2905 Acc: 0.9167
#Epoch 30/50
#----------
#train Loss: 0.4864 Acc: 0.7972
#valid Loss: 0.2858 Acc: 0.9028
#Epoch 40/50
#----------
#train Loss: 0.4445 Acc: 0.8078
#valid Loss: 0.2868 Acc: 0.9028
#Epoch 50/50
#----------
#train Loss: 0.5053 Acc: 0.7829
#valid Loss: 0.2809 Acc: 0.9028
#Training complete in 5m 55s
#Best val Acc: 0.9305568. Model evaluation and visualization: Here are the steps for evaluation of themodel on the held-out validation dataset, along with supporting visualization:o Once the training is over, the best-performing model weights are saved andreloaded later when further evaluation or inference (the mode is changed to

evaluation) is intended.o The model’s predictions on the validation dataset are visualized with labelsannotated using the function visualize_model(). It shows images from thevalidation dataset, annotated by the predicted labels obtained by running a

forward pass on the model with the image as input), as shown in thefollowing code snippet. As can be seen from the following figure, all the 6images are classified correctly by the model.torch.save(base_model.state_dict(), 'models/resnet18_trans_learn.pth')base_model.load_state_dict(torch.load('models/resnet18_trans_learn.pth', \ map_location='cpu'))base_model.eval()
def visualize_model(model, num_images=6):
 model.eval() images_so_far = 0
 fig = plt.figure(figsize=(6,9)) plt.subplots_adjust(0,0,1,0.925,0.05,0.08)
 with torch.no_grad():
 for i, (inputs, labels) in enumerate(dataloaders['valid']): inputs, labels = inputs.to(device), labels.to(device) outputs = model(inputs) _, preds = torch.max(outputs, 1)
 for j in range(inputs.size()[0]): images_so_far += 1 plt.subplot(num_images//2, 2, images_so_far) plt.axis('off') plt.title('{}'.format(class_names[preds[j]]), size=15) imshow(inputs.cpu().data[j])
 if images_so_far == num_images: plt.suptitle('predicted with Resnet-18 using transfer' 'learning', size=15) plt.show() return visualize_model(base_model)If you run the preceding code snippet, you should obtain a figure like the nextone:

Figure 7.16: Running inference with transfer learning

9. Testing with unseen images:Finally, let us classify a few unseen test images using the model and visualize theresults obtained, using the following code snippet:
from PIL import Image
import glob
import torch.nn.functional as F
from torch.autograd import Variable
loader = transforms.Compose([transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])plt.figure(figsize=(20,25))plt.subplots_adjust(0,0,1,0.925,0.05,0.08)plt.suptitle('Test images predicted with Resnet18 using' 'transfer learning', size=20) i = 1
for img in glob.glob('images/test/*.jpg'):
 image = Image.open(img) image = loader(image).float() image = Variable(image, requires_grad=False) image = image.unsqueeze(0) out = base_model(image.to(device)) y_prob = F.softmax(out, dim=1) prob, pred = torch.max(y_prob, 1) plt.subplot(5,3,i), plt.imshow(Image.open(img)), plt.axis('off') plt.title('{}, prob={:.4g}'.format(class_names[pred], \ round(prob.data.cpu().numpy()[0],3)), size=20) i += 1
plt.show()

If you run the preceding code snippet, you should obtain a figure as follows:

Figure 7.17: Classification with transfer learning (ResNet-18/ImageNet)

Once we finish running the code, the function torch.cuda.empty_cache() should beused to free up unused memory in the GPU:
torch.cuda.empty_cache()

ConclusionThis chapter provided a comprehensive overview of image classification techniques,starting with traditional machine learning models for classifying Fashion-MNISTimages using scikit-learn, followed by deep learning approaches with tensorflowand keras. It explored the power of pre-trained models in tensorflow / keras, forefficient and accurate classification and demonstrated the versatility of transferlearning with pytorch for custom-class classification. By integrating thesetechniques, readers can apply a wide range of image classification methods to solvediverse real-world problems, from basic datasets to complex, domain-specific tasks.
Key termsImage classification, pretrained model, transfer learning, VGG-16, ResNet.
Questions1. Can the popular pretrained models (for example, models from VGG, ReseNet

family) be used to classify Fashion-MNIST images? If yes, how? Use transferlearning and/or fine-tuning (for example, freeze last few layers of a model andtrain on Fashion-MNIST to update weights) to classify the images and comparethe relative performances of the models against number of training epochs. Youshould obtain a figure like the one from
https://www.researchgate.net/figure/Comparison-of-the-accuracy-rate-in-
the-Fashion-MNIST-dataset_fig5_351955214, as shown:

Figure 7.18: Accuracy of deep learning models for Fashion-MNIST classification
Source:

https://www.researchgate.net/publication/351955214_The_microscopic_visual_forms_in_architectural_art_design_
following_deep_learning2. While transfer learning and fine-tuning with PyTorch, train the model byupdating all the weight parameters of the CNN (without freezing any layer).Does the validation accuracy improve? Play with hyperparameter tuning (forexample, change epoch, learning rate, batch size and so on) to observe theimpact on validation accuracy.

References1. https://developer.nvidia.com/cuda-downloads?
target_os=Linux&target_arch=x86_64&Distribution=WSL-
Ubuntu&target_version=2.0&target_type=runfile_local2. https://www.researchgate.net/figure/Error-rates-on-the-ImageNet-Large-
Scale-Visual-Recognition-Challenge-Accuracy_fig1_3324526493. https://stackoverflow.com/questions/67905185/module-keras-engine-has-
no-attribute-layer4. https://ieeexplore.ieee.org/document/7267915. https://www.deeplearningbook.org/

Join our Discord space
Join our Discord workspace for latest updates, offers, tech happenings around the
world, new releases, and sessions with the authors:

https://www.researchgate.net/figure/Comparison-of-the-accuracy-rate-in-the-Fashion-MNIST-dataset_fig5_351955214
https://www.researchgate.net/publication/351955214_The_microscopic_visual_forms_in_architectural_art_design_following_deep_learning
https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=WSL-Ubuntu&target_version=2.0&target_type=runfile_local
https://www.researchgate.net/figure/Error-rates-on-the-ImageNet-Large-Scale-Visual-Recognition-Challenge-Accuracy_fig1_332452649
https://stackoverflow.com/questions/67905185/module-keras-engine-has-no-attribute-layer
https://ieeexplore.ieee.org/document/726791
https://www.deeplearningbook.org/

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 8
Object Detection and Recognition

IntroductionIn the ever-evolving field of computer vision, object detection and recognitionplay a crucial role in enabling machines to interpret and understand visual data.These tasks form the backbone of many real-world applications such as autonomousdriving, security surveillance, medical imaging, retail analytics, and human-computer interaction.
Object detection goes beyond simply identifying the presence of objects in animage—it also localizes them by drawing bounding boxes around each detectedinstance. For example, in a street scene, an object detection model can identify cars,pedestrians, and traffic signs while indicating their precise positions in the image.This dual task of classification and localization makes object detection a morecomplex and powerful technique than recognition alone. A few popular and verywidely used object detection models include Single Shot Multibox Detector(SSD), Faster R-CNN, Mask R-CNN, You Only Look Once (YOLO), RetinaNet,and so on.On the other hand, object recognition refers to the task of identifying andcategorizing objects in an image or video. It involves determining what objects arepresent without necessarily providing precise locations. A key example is face
recognition, which identifies a person from known identities, while face
verification determines whether two face images belong to the same individual. Afacial recognition system can identify specific individuals in an image, even withoutmarking their exact positions. In contrast, object detection entails recognizing anddetermining the positions of multiple objects within an image or video by drawingbounding boxes around them. Object localization focuses on precisely locating asingle object within an image, while detection extends this concept by handlingmultiple objects and assigning labels to each.In the following sections, we will explore the principles and methodologies behindobject detection and recognition, demonstrate how to implement them using Python,and review popular models and libraries. Whether you are a beginner seekingfoundational knowledge or an experienced practitioner exploring advanced tools,this chapter will guide you through both the theoretical and practical aspects ofthese vital computer vision tasks.

StructureIn this chapter, we will cover the following topics:
• Object detection with pretrained deep learning models
• Custom object detection with transfer learning using YOLOv4 DarkNet
• Selective coloring with Mask R-CNN
• Face verification with DeepFace
• Barcode and QR code detection with Python

ObjectivesIn this chapter, we delve into key applications of object detection and recognitionusing Python and deep learning. You will learn how to perform object detectionusing pretrained models and how to build a custom object detector using YOLOv4with the DarkNet framework. The chapter also explores instance segmentationthrough selective coloring using Mask R-CNN. We introduce face verification usingthe DeepFace library, highlighting practical scenarios where determining whethertwo face images belong to the same person is crucial. Finally, you will learn how todetect barcodes and QR codes using specialized Python libraries. With a hands-on,application-oriented approach, this chapter will equip you with essential tools andtechniques for solving real-world problems in visual recognition and detection.
Object detection with pretrained deep learning
modelsObject detection is a crucial area of computer vision that deals with identifying andlocalizing objects in images or videos. With the rise of deep learning, the accuracyand efficiency of object detection have significantly improved and pretrained modelsfor object detection have become widely available, enabling developers to achieveimpressive results often without building models from scratch.As discussed earlier, object detection combines two fundamental tasks in computervision:

• Classification: Recognizing what object is in the image.
• Localization: Identifying where in the image the object is located.This task is challenging because it requires the system to not only detect objects butalso draw bounding boxes around them. Here are a few state-of-the-art objectdetection models described as follows:
• Faster R-CNN: The Faster R-CNN model improves upon its predecessors, R-

CNN (which used a multi-stage pipeline with external region proposals) and Fast
R-CNN (which sped up detection by applying CNNs over the entire image), byintroducing Region Proposal Networks (RPNs). Region proposals arecandidate bounding boxes likely to contain objects, refined and classified later,and traditional methods like selective search for generating region proposals,whereas RPNs generate these proposals nearly cost-free by sharing full-imageconvolutional features, making the system faster and more accurate, than

traditional methods like selective search (https://github.com/rbgirshick/py-
faster-rcnn).

• YOLO: The You Only Look Once (YOLO) model is a real-time, end-to-end objectdetection model that frames detection as a single regression problem,predicting bounding boxes and class probabilities simultaneously in one networkpass (https://github.com/AlexeyAB/darknet). YOLO has multiple versionsincluding YOLOv1, v2 (YOLO9000), v3, v4, v5, v6, v7, v8, and specialized variantslike YOLO-NAS and YOLOX, each improving accuracy, speed, or usability.Compared to the R-CNN family, YOLO is significantly faster due to its single-stage architecture, while R-CNN variants are generally more accurate but slowerbecause of their region proposal and refinement steps.
• SSD: The SSD model is an efficient model that eliminates the need for a separateobject proposal generation step by predicting category scores and box offsets fora fixed set of default bounding boxes using small convolutional filters applied tofeature maps (https://github.com/balancap/SSD-Tensorflow).Here is a table comparing the key features of Faster R-CNN, YOLO, and SSD:

Feature Faster R-CNN YOLO SSD

Architecture type Two-stage (RegionProposal + Detection) Single-stage (End-to-endregression) Single-stage (End-to-enddetection)
Speed Slower (due to regionproposals and two stages) Faster (real-time detection) Faster (real-time, butslightly slower thanYOLO)
Region proposal Uses RPN Does not use regionproposals; direct boundingbox prediction

Uses default boxes andmatching with objectaspect ratios
Detection quality High precision, better forsmall objects Lower precision for smallobjects, but high speed Balances speed andaccuracy, good formedium objects
Application Ideal for high accuracy inobject detection, wherespeed is not the mostimportant

Real-time applications likeautonomous driving,surveillance
Suitable for real-timeapplications with goodaccuracy

Training complexity Complex (needs twoseparate networks, RPNand detection)
Simple (end-to-end training) Moderate (singlenetwork, but needsmultiple default boxes)

Real-time performance Not real-time (slower thanYOLO and SSD) Real-time (can process 30+FPS) Real-time (can process30+ FPS)
Use case High accuracy, particularlyin fine-grained objectdetection

Fast detection for real-timeapplications Balanced between speedand accuracy, often usedin mobile devices andembedded systems
Popular variants Faster R-CNN, Mask R-CNN (instancesegmentation)

YOLOv3, YOLOv4, YOLOv5 SSD300, SSD512
Table 8.1: Comparison of Faster R-CNN, YOLO, and SSDThere are various pretrained deep learning models available for object detection,each with unique characteristics. This section demonstrates object detection usingthree popular (pretrained) models: MobileNet-SSD (with caffe/opencv-python),

YOLOv3 (with gluoncv/mxnet), and YOLOv8 (with ultralytics framework). In theexercises you will be asked to demonstrate object detection in images using a Faster

https://github.com/AlexeyAB/darknet
https://github.com/balancap/SSD-Tensorflow

R-CNN pretrained model from torchvision / pytorch.
With MobileNet-SSD using opencv-pythonOne of the most efficient architectures for object detection tasks is MobileNet-SSD,which balances speed and accuracy, making it ideal for mobile and real-timeapplications on devices with limited computational resources, such as smartphonesand IoT devices. Let us first explore the architecture of MobileNet-SSD, itsadvantages, and then we shall demonstrate how to use a pretrained model for objectdetection using opencv-python.
MobileNet-SSD architectureThe following bullet points break down its key components and how they worktogether:

• MobileNet: It is a lightweight deep neural network designed for mobile andembedded vision applications. Unlike heavy models such as VGG or ResNet,
MobileNet uses depth-wise separable convolutions, which break down aregular convolution into two separate operations:o Depthwise convolution: Applies a single filter to each input channel (spatialconvolution).o Pointwise convolution: Applies a 1×1 convolution to combine the outputs ofdepthwise convolution.o This architecture reduces computational costs significantly, making it suitablefor resource-constrained devices.

• SSD: SSD is an object detection algorithm that predicts both object classes andbounding boxes in a single forward pass of the network. SSD divides the imageinto a grid, and for each grid cell, it predicts multiple bounding boxes and theprobability of each class. Unlike Region Proposal Network used in other modelslike Faster R-CNN, SSD eliminates the need for separate region proposals,making it faster and more efficient.
• MobileNet-SSD: MobileNet-SSD combines the efficiency of MobileNet as abackbone feature extractor with the SSD detection head. This combinationresults in a lightweight, fast, and reasonably accurate object detection modelthat is particularly useful for embedded systems, real-time video processing, andapplications with limited resources. The following figure shows the architectureof a MobileNet -SSD object detector:

Figure 8.1: MobileNet SSD architecture

Source: https://www.mdpi.com/2078-2489/11/7/365The next Python script uses a pretrained MobileNet-SSD model to perform objectdetection on an image. Here are the steps in details:1. Import the necessary packages: At the very outset, import the followingpackages listed as follows (along with the purpose of using each of them), usingthe next code snippet:a. openv-python (cv2): For image processing and model loading.b. numpy: For numerical computations.c. imutils: For image resizing.d. Pillow (PIL): For handling image drawing and text overlay tasks.import cv2from PIL import Image, ImageDraw, ImageFontimport imutilsimport colorsysimport numpy as npimport matplotlib.pylab as pltimport time2. Model and configuration: Define the path to the pre-trained MobileNet-SSDmodel and its prototxt file to be used. Also set a confidence threshold to filterout weak detections. The following explains each component:a. prototxt: This defines the architecture of the MobileNet-SSD model.b. model: This is the pre-trained MobileNet-SSD model trained on the COCOdataset.3. Labels and colors: MobileNet-SSD can detect different object classes. The
labels list defines a list of the class names, whereas the colors list defines a listof unique Hue-Saturation-Value (HSV) tuples, one for each class.a. labels: A list of class names that MobileNet-SSD can detect.b. colors: Generate a unique color for each class label using HSV tuples,making it easier to distinguish different objects in the image.4. Loading the model: Load the pre-trained serialized MobileNet-SSD (caffe)model from the disk using cv2.dnn.readNetFromCaffe() function, from
opencv-python. This loads both the model architecture and the pre-trained
weights of the model.5. Preprocessing the input image: Load the input image using opncv-python’s
imread() function, resize it to a fixed width (while maintaining the aspect
ratio, i.e., the height is automatically adjusted so the image does not lookstretched or squished). Create a 4D blob —a batch of images formatted as
(batch_size, channels, height, width) for feeding into the deep neural networkmodel, using the function cv2.dnn.blobFromImage() which performs meansubtraction and resizes the image to 300×300 pixels (which is the input sizeexpected by MobileNet-SSD).6. Running object detection: Once the blob is created, pass it through thenetwork (run a forward pass) and get the detections, using the net.setInput()and net.forward() methods.7. Processing the detections: Loop over the detections to filter out weak onesbased on the confidence score.

https://www.mdpi.com/2078-2489/11/7/365

a. Confidence: Filter out detections with a confidence score below 0.3.b. Bounding box: Calculate the bounding box coordinates for each detectedobject.8. Drawing bounding boxes and labels: Once the valid detections are obtained,draw bounding boxes and labels on the image using PIL for better textrendering, it ensures smoother text rendering compared to opencv-python’snative putText() method.9. Displaying the output image: Finally, display the image with the detectedobjects. Figure 8.2 shows the annotated output image.Now, refer to the next code snippet:prototxt = 'models/MobileNetSSD_deploy.prototxt.txt'model = 'models/MobileNetSSD_deploy.caffemodel'conf = 0.3labels = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
HSV_tuples = [(x/len(labels), 0.8, 0.8) for x in range(len(labels))]colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples))
net = cv2.dnn.readNetFromCaffe(prototxt, model)image = cv2.imread('images/dog_cycle.jpg')image = imutils.resize(image, width=400)(h, w) = image.shape[:2]blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 0.007843, \ (300, 300), 127.5)
net.setInput(blob)detections = net.forward()for i in np.arange(0, detections.shape[2]): # extract the confidence confidence = detections[0, 0, i, 2] if confidence > conf: # extract the index of the class label from the `detections`,
 # compute(x, y)-coordinates of the bounding box for the object idx = int(detections[0, 0, i, 1]) box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int")
 # draw the prediction on the image label = "{}: {:.2f}%".format(labels[idx], confidence * 100) color = tuple([int(255*x) for x in colors[idx]]) y = startY - 15 if startY - 15 > 15 else startY + 15 pil_im = Image.fromarray(cv2.cvtColor(image,cv2.COLOR_BGR2RGB)) thickness = (image.shape[0] + image.shape[1]) // 300 font = ImageFont.truetype("arial.ttf", 15) draw = ImageDraw.Draw(pil_im) label_size = draw.textsize(label, font)
 if startY - label_size[1] >= 0: text_origin = np.array([startX, startY - label_size[1]]) else: text_origin = np.array([startX, startY + 1]) for i in range(thickness): draw.rectangle([startX + i, startY + i, endX - i, endY - i], \ outline=color)
 draw.rectangle([tuple(text_origin), tuple(text_origin + \ label_size)], fill=color) draw.text(text_origin, label, fill=(0, 0, 0), font=font) del draw

 image = cv2.cvtColor(np.array(pil_im), cv2.COLOR_RGB2BGR)
plt.figure(figsize=(10,8))plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), plt.axis('off')plt.show()If you run the preceding code snippet, you should obtain a figure as follows:

Figure 8.2: Detecting objects with pretrained MobileNet SSD

With Yolov3 using gluoncv and mxnetIn this section, we will demonstrate object detection using the powerful YOLOv3model with the GluonCV toolkit and MXNet framework, which offers a high-level,efficient, and flexible API with pre-trained state-of-the-art models for rapidprototyping and deployment. As described earlier, YOLOv3 is one of the mostpopular end-to-end object detection models due to its balance between speed andaccuracy. It processes images in real time, making predictions in a single passthrough the neural network, hence the name You Only Look Once. We will nowexplore the YOLOv3 architecture, highlight its advantages, and demonstrate how toapply it to object detection tasks, with python code.
YOLOv3 architectureYOLOv3 is the third iteration in the YOLO series of object detection models,designed to detect multiple objects within an image by predicting bounding boxesand class probabilities. It works by dividing the image into a grid and generatingbounding box coordinates and class labels for each individual grid cell.Unlike previous versions, YOLOv3 improves upon the following:

• Multi-scale predictions: YOLOv3 predicts boxes at three different scales,allowing it to detect both small and large objects.
• Bounding box prediction: It predicts four coordinates for each bounding box(x, y, width, and height) and uses anchor boxes to improve localizationaccuracy.
• Feature extractor (Darknet-53): YOLOv3 uses Darknet-53 (a 53-layer CNNbuilt with residual connections and uses only 3×3 and 1×1 convolutions) as itsbackbone, which is deeper and more powerful compared to earlier versions(YOLOv2 uses Darknet-19).The following figure shows the architecture of YOLOv3:

Figure 8.3: YOLOv3 architecture
Source:

https://www.researchgate.net/publication/340019698_Fabric_defect_detection_using_the_improved_YOLOv3_mod
el

Advantages of YOLOv3The advantages of YOLOv3 are:
• Speed: YOLOv3 is known for its speed, making it suitable for real-time objectdetection.
• High accuracy: While faster models may trade off some accuracy, YOLOv3achieves a good balance between speed and precision.
• Single-stage detection: Unlike two-stage detectors (like Faster R-CNN),YOLOv3 makes predictions in a single forward pass, improving inference time.

GluonCV and MXNet are open-source libraries that facilitate deep learning incomputer vision and general-purpose GPU-accelerated computing, respectively. Thefollowing points provide a clearer overview of their features and roles in the deeplearning ecosystem:
• MXNet: Apache MXNet is a flexible, efficient, and scalable deep learningframework that supports fast model training and inference. It is designed to beboth developer-friendly and performant, supporting a variety of programminglanguages including Python, C++, Scala, and R. MXNet is particularly known forits efficiency in both memory and computational speed, making it suitable for awide range of deep learning tasks on devices ranging from mobile phones todistributed GPU clusters.
• GluonCV: GluonCV is a comprehensive toolkit for computer vision tasks, built ontop of the MXNet deep learning framework. GluonCV provides pre-trainedmodels for tasks like object detection, segmentation, pose estimation, and more.MXNet is a flexible and efficient deep learning framework that supports dynamiccomputational graphs, making it ideal for research and production applications.

Object detection with YOLOv3 with gluoncv

https://www.researchgate.net/publication/340019698_Fabric_defect_detection_using_the_improved_YOLOv3_model

In the following demonstration, we will use a pre-trained YOLOv3 model available inGluonCV for detecting objects in an image. The next Python code snippet will allowus to load a pre-trained YOLOv3 model, process an input image with the model, anddisplay the detected objects.
1. Installing the required libraries: To start, you need to install the gluoncvlibrary and mxnet (if they are not already installed). They can be installed using

pip install.2. Importing the necessary packages: The next step is to import the requiredmodules from gluoncv and matplotlib:a. gluoncv’s model_zoo: Provides access to pre-trained models, includingYOLOv3.b. gluoncv’s data.transforms.presets: Includes utility functions to preprocessinput images according to the model’s requirements.c. matplotlib.pylab: Used for displaying the result images.
Note: Dependency alert: GluonCV requires PyTorch versions ≥1.4.0 and <2.0.0. If your PyTor
version falls outside this range, you may need to upgrade using pip or conda.

!pip install gluoncv
!pip install mxnet
from gluoncv import model_zoo, data, utils
from matplotlib import pyplot as plt3. Loading the pre-trained YOLOv3 model: Load a pre-trained YOLOv3 modelwith Darknet-53 as the backbone (using model_zoo.get_model()), which hasbeen trained on the PASCAL VOC dataset. Here yolo3_darknet53_voc refers tothe YOLOv3 model with Darknet-53 trained on the VOC dataset, which containsobject categories.net = model_zoo.get_model('yolo3_darknet53_voc', pretrained=True)4. Preprocessing the input image: Load the input image and apply YOLOv3-specific preprocessing using gluoncv’s preset transformation:a. load_test(): This function handles image loading and resizing, converting theimage into the required input format for YOLOv3.b. short=512: Resizes the shorter side of the image to 512 pixels whilemaintaining the aspect ratio (i.e., the ratio of an image’s width to its

height).c. The preprocessed image is stored in the variable x, which will be used asinput to the model. The original image (in its resized form) is stored in thevariable img for visualization. As can be seen from the next code snippet, thepreprocessed image x has a shape of (1, 3, 512, 512):x, img = data.transforms.presets.yolo.load_test('images/dog_cycle.jpg', \ short=512)print('Shape of pre-processed image:', x.shape)
Shape of pre-processed image: (1, 3, 512, 683)5. Running object detection: Pass the preprocessed image x to the model andrun a forward pass (using the function net()), to get the class IDs, scores(confidence), and bounding_boxs of detected objects:a. class_IDs: Contains the predicted class IDs for each detected object.

b. scores: Contains the confidence scores for the predictions.c. bounding_boxes: Contains the coordinates of the bounding boxes for eachdetected object.6. Visualizing the results: Finally, we visualize the detected objects by drawingbounding boxes and class labels on the image:a. utils.viz.plot_bbox(): This utility function from the library gluoncv is usedto draw the bounding boxes and labels on the image.b. img: The original image on which the bounding boxes are drawn.c. bounding_boxes[0]: The bounding boxes predicted by YOLOv3.d. scores[0]: The confidence scores for each bounding box.e. class_IDs[0]: The class IDs of the detected objects.f. net.classes: The list of object classes that YOLOv3 was trained on.g. linewidth=6: Sets the width of the bounding box lines.h. fontsize=20: Sets the font size for the class labels.7. Displaying the output: Use matplotlib.pylab to display the image withbounding boxes. This will show the image with detected objects, each enclosedby a bounding box and labeled with its predicted class and confidence score.class_IDs, scores, bounding_boxes = net(x)
plt.figure(figsize=(10,10))utils.viz.plot_bbox(img, bounding_boxes[0], scores[0], class_IDs[0], \ class_names=net.classes,ax=plt.gca(), \ linewidth=6, fontsize=20)plt.axis('off')plt.show()If you run the preceding code snippet, you should obtain a figure as follows:

Figure 8.4: Detecting objects using YOLOv3 with gluoncv

With YOLOv8 using ultralyticsIn this section, we shall dive into YOLOv8, one of the cutting-edge models in theYOLO family, implemented through the ultralytics package. YOLOv8 improves uponits predecessors by delivering faster inference, better accuracy, and a morestreamlined interface. This makes it suitable for both real-time and high-performance object detection tasks.

We will explore the architecture of YOLOv8, walk through the installation process,and explain how to train, evaluate, and use the model for object detection in images.To demonstrate its practical use, we will break down a Python code example step-by-step.
YOLOv8 architectureYOLOv8 is one of the latest iterations of the YOLO series, continuing the tradition ofbeing one of the fastest and most accurate object detection models. YOLOv8 hasbeen designed with significant enhancements in:

• Accuracy: YOLOv8 features better object localization and classification thanprevious versions.
• Speed: With optimizations, YOLOv8 is faster, especially when using GPUs.
• Flexibility: It supports various input image sizes and can be deployed in bothCPU and GPU environments efficiently.

Ultralytics YOLOv8 model typesThe ultralytics package provides several YOLOv8 model sizes, ranging from
YOLOv8n (nano) for speed to YOLOv8x (extra-large) for accuracy. These modelsizes allow users to choose between fast inference or greater precision based ontheir use case, as shown in the next figure:

Model Size Parameters (M) FLOPs
(B)

Speed
(ms)

Accuracy
(mAP) Use case

YOLOv8n Nano ~ 3.2M ~ 8.7B Fastest(~2ms) Lower Real-time, edgedevices, mobileapplication
YOLOv8s Small ~ 11.2M ~ 28.6B Fast (~3ms) Moderate Drones,embeddedsystems, speed-critical tasks
YOLOv8m Medium ~ 25.9M ~ 78.9B Balanced(~5ms) Good General objectdetection withbalanced speedand accuracy
YOLOv8l Large ~ 43.7M ~ 165.2B Slower(~5ms) High Industrialautomation,security cameras
YOLOv8x Extra-Large ~68.2M ~ 257.8B Slowest(~12ms) Highest High-precisionapplications,research,medical imaging

Table 8.2: Speed vs. accuracy tradeoff for ultralytics YOLOv8 models

Advantages of YOLOv8The advantages of YOLOv8 are listed as follows:
• End-to-end model handling: It includes training, validation, and prediction allin one API.
• Lightweight: The model YOLOv8n (nano) offers high-speed object detectionwith low memory requirements.

• Ease of use: The model can be quickly deployed on various platforms, includingmobile and edge devices.
Object detection using YOLOv8 with pythonNow, let us demonstrate how to use YOLOv8 for object detection using the
ultralytics package. The next Python code snippet will be used to demonstrateobject detection with YOLOv8. Let us understand how it works:1. Check for GPU availability: The function torch.cuda.is_available() returns

True if the system has a CUDA-enabled GPU, otherwise False.2. Loading the YOLOv8 model: Import the YOLO module from the ultralyticslibrary and load the YOLOv8n (nano) model. The yolov8n.pt file is the pre-trained model that is designed for lightweight and fast object detection. Whenyou call YOLO("yolov8n.pt"), the ultralytics library checks if yolov8n.pt existsin the cache. If not, it automatically downloads the pretrained weights from theofficial Ultralytics model hub. Then it loads the pre-trained YOLOv8n model,which is optimized for speed and efficient inference.3. Training the YOLOv8 model: The model is trained on the COCO8 dataset (atiny sample version of the COCO dataset provided by Ultralytics) for 100epochs using the method model.train(), with images resized to 640×640 pixels.The data argument to this function points to the dataset YAML file whichcontains the dataset configuration. The device argument ensures the model runson a GPU if available, otherwise, it defaults to the CPU (you must train on GPUto avoid very slow training: Use Google Colab if you don’t have a locallyconfigured CUDA-enabled GPU or an NVIDIA graphics card, as it provides freeaccess to powerful GPUs / TPUs for running deep learning models). Here is thelist of input arguments to the function:a. data="coco8.yaml": This specifies the path to the dataset configuration file.The coco8 dataset is a small subset of the COCO dataset, often used for quicktesting.b. epochs=100: Sets the number of epochs for training the model. An epoch isone complete pass through the entire dataset.c. imgsz=640: Resizes images to 640×640 pixels during training to standardizeinput size for better accuracy.d. device=0: Runs training on GPU if available (0 refers to the first GPU). If noGPU is available, it runs on the CPU.The training process involves:a. Loading the dataset as specified in the YAML file.b. Training the model for the specified number of epochs.c. Logging the training results, including metrics such as loss and accuracy.Refer to the next code snippet:import torchprint(torch.cuda.is_available())
True

from ultralytics import YOLO
Load model

model = YOLO("yolov8n.pt")
Train the modeltrain_results = model.train(data="coco8.yaml", # path to dataset YAML epochs=100, # number of training epochs imgsz=640, # training image size device=0 if torch.cuda.is_available() else "cpu", # device to run on,
 # i.e. device=0 or device=0,1,2,3 or device=cpu)Refer to the following figure to see how the training process progresses:

Figure 8.5: Training YOLOv8 with ultralytics

4. Evaluating the model: Once the model is trained, it is to be evaluated on thevalidation dataset to measure its performance. The model.val() method runsevaluation on the validation dataset and returns a dictionary of performanceevaluation metrics such as precision, recall, F1-score, mAP50 (mean averageprecision at an IoU threshold of 0.50: it assesses the model’s accuracy indetecting objects with at least 50% overlap with the ground truth), speed
metrics (including inference time, non-maximum suppression time) etc.These metrics help to gauge how well the model has learned to detect objects.5. Performing object detection on an image: Here, we use the trained YOLOv8model to perform object detection on an input (test) image. The model processesthe image and outputs predictions, including bounding boxes, confidence scores,and class labels for detected objects.a. model("images/dog_cycle.jpg"): Performs object detection on the specifiedimage and returns the detection results.b. results[0].show(): Displays the image with bounding boxes and class labelsdrawn around the detected objects. YOLOv8 automatically handlesvisualization using its built-in methods.

The detection process includes:a. Preprocessing the input image (resizing, normalization, and so on.).b. Running the image through the YOLOv8 model to predict bounding boxes andclass labels.c. Drawing bounding boxes and displaying the results on the original image.Let us now use the model (trained previously) for inference: use it to detect objectsin a test image, run a forward pass on the model with the test image as input, asshown in next code snippet:
Evaluate model performance on the validation setmetrics = model.val()
Perform object detection on an imageresults = model("images/dog_cycle.jpg")results[0].show()The following figure shows the annotated image obtained with detected objects. Ifyou run the preceding code snippet, you should obtain a figure as follows:

Figure 8.6: Detecting objects using YOLOv8 with ultralytics

Custom object detection with transfer learning using
YOLOv4 DarknetPretrained object detection models may not always suffice because they are trainedon general datasets and may not recognize custom objects, making transfer learninga good choice to adapt the model to new, specific classes. In this section, we shallwalk through the process of creating a custom object (raccoon) detector using
transfer learning with YOLOv4 in Google Colab (create a notebook at
https://colab.research.google.com/ and follow the steps listed as follows).
YOLOv4 is again a highly efficient end-to-end object detection model, offering anexcellent trade-off between speed and accuracy. Follow the steps listed, to setup theenvironment, train the model and test it on unseen images, using a dataset for
raccoon detection:1. Setting up the environment: Start by cloning the YOLOv4 repository andsetting up dependencies in Google Colab (Google Colab is to be used to train themodel on GPU). YOLOv4 is implemented in the Darknet framework, which we

https://colab.research.google.com/

will need to build from source.2. Cloning the Darknet repository: Run the following command to clone theofficial YOLOv4 Darknet GitHub repository:
run in google colab (you could run on WSL too)!git clone https://github.com/AlexeyAB/darknet/%cd darknet/Using the preceding commands, first clone the Darknet repository into thecurrent working directory and then navigate to the Darknet directory.3. Installing dependencies: Change the Makefile to enable GPU and opencvand run make to create the darknet executable:!apt install libopencv-dev python-opencv ffmpeg

4. OpenCV will help in image augmentation and other preprocessing tasks. Now,let us modify the Darknet Makefile to enable GPU, CUDNN, and OpenCV:!sed -i 's/OPENCV=0/OPENCV=1/g' Makefile!sed -i 's/GPU=0/GPU=1/g' Makefile!sed -i 's/CUDNN=0/CUDNN=1/g' Makefile
%cat Makefile5. Build Darknet: After making these changes, build the Darknet framework(using the command make as shown). This process will compile Darknet withOpenCV, GPU, and CUDNN support, significantly speeding up training andinference.!make

6. Downloading/preparing the dataset: In this step, we shall set up our datasetfor custom object detection. Start with a dataset of raccoon images, which areannotated with bounding boxes for training YOLOv4 model. The (compressed)dataset can be downloaded from this book’s GitHub repository(https://github.com/sandipan/Book-
BPB600/blob/main/Chapter08/images/raccoons.zip , download it and unzip).There are images containing one or more instances of the custom object(raccoon).Each image has a corresponding text file with the same name, specifying the
bounding boxes for the objects exactly in the format as the YOLOv4 Darknetmodel accepts, which looks like [class, x, y, width, height].In this annotation,a. The first two coordinates (x, y) represent the center of the bounding box.b. The next two represent the width and height of the bounding box,respectively.Here we are providing you the annotated images (along with the ground-truthlabels and bounding boxes for the objects to be detected) for training images. Inthe exercise section, you will explore how to annotate and extract bounding boxcoordinates from your own images manually/automatically/semi-automaticallyusing tools available on the internet.Since we shall use Google Colab for the training of the YOLOv4 Darknetmodel, we need to upload the annotated images to the Google Drive as shown inthe following figure:

Figure 8.7: Uploading images to Google DriveAs can be seen from the preceding figure, the google drive contains a foldernamed raccoon, inside which all the images and the corresponding ground-truthannotation texts (with bound box coordinates) are uploaded. One such image, theground-truth class (id 0, there is only one custom class raccoon that we want todetect) and the corresponding annotation bound box (normalized) coordinates isshown on the right in Figure 8.8.7. Defining classes: Since we are detecting raccoons, we need to create a filelisting the object classes (in our case, just one class). Let us create a file for classlabels, as shown:all_classes = """Raccoon"""
file = """text_file = open("build/darknet/x64/data/obj.names", "w"); text_file.write(all_classes);text_file.close()"""
exec(file)%cat build/darknet/x64/data/obj.names
RaccoonThis creates the obj.names file that lists all object classes, in this case,
Raccoon.8. Defining data file: We need to create a file build/darknet/x64/data/obj.data(using the following command), which specifies the information regarding thedata (for example, the number of classes, paths for the training and validationdata), and the location where the model checkpoints will be saved), as shown:obj_data = """classes= 1train = build/darknet/x64/data/train.txtvalid = build/darknet/x64/data/valid.txtnames = build/darknet/x64/data/obj.namesbackup = build/darknet/x64/backup/"""
file = """text_file = open("build/darknet/x64/data/obj.data", "w"); text_file.write(obj_data);text_file.close()"""

exec(file)
%cat build/darknet/x64/data/obj.dataclasses= 1train = build/darknet/x64/data/train.txtvalid = build/darknet/x64/data/valid.txtnames = build/darknet/x64/data/obj.namesbackup = build/darknet/x64/backup/Here the training and validation text files (train.txt and valid.txt, respectively)list the names of the training and validation set images, whereas backuprepresents the location for saving the model checkpoints while training. It alsospecifies that we have a single object class (classes=1) to be detected.

Loading pre-trained weights for transfer learning
YOLOv4 supports transfer learning, which allows us to fine-tune the model,which was pre-trained on a large dataset (like COCO: Common Objects in
Context). This significantly reduces the training time required (to train fromscratch) for custom datasets. Now, let us follow the next steps:1. Download the pre-trained weights: We need to download the pre-trainedmodel yolov4.conv.137 and copy it to the right folder (build/darknet/x64),using the following command in the terminal. These weights will be used toinitialize the network for training.!wget -P build/darknet/x64/

#https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.conv.1372. Mounting Google Drive for data: Since our dataset is stored in Google Drive,we need to mount it directly into colab to access your training images and labels.
Load the Drive helper and mount
from google.colab import drive
This will prompt for authorization.drive.mount('/content/drive')
Mounted at /content/driveNow that the files in the Google Drive becomes accessible from colab, copy theimages/text annotations to the right path (build/darknet/x64/data/obj/), asexpected by the model:%cp -r "/content/drive/MyDrive/racoon/." build/darknet/x64/data/obj/This command copies the images/corresponding annotations from Google Driveto the Colab folder, as shown in the following figure:

Figure 8.8: Copying images/annotations from google drive to Google ColabVerify whether there are exactly same number of images and annotations (.txt)files (196 in total), using the following commands:%ls -1 build/darknet/x64/data/obj/*.jpg | wc -l
#196 %ls -1 build/darknet/x64/data/obj/*.txt | wc -l
#196 3. Preparing image lists: To train YOLOv4, we need two text files (train.txt and
valid.txt) that list the paths to training and validation images. Let us randomlysplit our dataset, each image has an 80% chance of being assigned to the
training dataset and a 20% chance of being assigned to the validation dataset,determined by a random number generator seeded for reproducibility, as shownin the next code snippet:
import os, fnmatch
import numpy as np
train_file = open("build/darknet/x64/data/train.txt", "w")valid_file = open("build/darknet/x64/data/valid.txt", "w")listOfFiles = os.listdir('build/darknet/x64/data/obj/') pattern = "*.jpg" np.random.seed(24) # for reproducibility
for f_name in listOfFiles: if fnmatch.fnmatch(f_name, pattern): if np.random.rand(1) < 0.8: train_file.write("build/darknet/x64/data/obj/"+f_name+"\n") #print ("data/obj/"+f_name) else: valid_file.write("build/darknet/x64/data/obj/"+f_name+"\n") train_file.close()valid_file.close()This script randomly splits the image files into train.txt and valid.txt.4. Verifying data: To verify the number of images in each dataset, you can countthe lines in the train.txt and valid.txt files, as shown:
Count number of files

!wc -l build/darknet/x64/data/train.txt
#151!wc -l build/darknet/x64/data/valid.txt
#45

Configuring YOLOv4 for custom trainingYOLOv4 needs to be configured to match the number of object classes in yourdataset. We will start by copying the default configuration file and then editing it forour custom training task. Follow the given series of preparation steps, as outlined:1. Editing the YOLOv4 configuration file: Copy the default yolov4.cfg file to
yolov4_train.cfg and make necessary changes for your custom training:%cp cfg/yolov4.cfg cfg/yolov4_train.cfg!sed -i 's/batch=1/batch=8/g' cfg/yolov4_train.cfg!sed -i 's/subdivisions=1/subdivisions=2/g' cfg/yolov4_train.cfg!sed -i 's/classes=80/classes=1/g' cfg/yolov4_train.cfg!sed -i 's/filters=255/filters=18/g' cfg/yolov4_train.cfg!sed -i 's/max_batches = 500200/max_batches = 2000/g' cfg/yolov4_train.cfg!sed -i 's/steps=400000,450000/steps=1800,2200/g' cfg/yolov4_train.cfg2. As can be seen from the preceding code, here is how the hyperparameter valuesare changed:a. batch: Set to 8 (small value) for faster convergence (and also because thenumber of training images is small). As an exercise, check with 3 differentvalues, namely, 16, 8 and 4 and observe the impact on training.b. subdivisions: Set to 2, to reduce GPU memory load.c. classes: Set to 1 for raccoon detection (need to change the number of classesto 1, becuase we are interested to detect a single object here, as opposed to80 in the original config file).d. filters: Set to 18, calculated as (classes + 5) × 3 = (1 + 5) × 3.e. max_batches: Set to 2000 (recommended to be at least

2000*number_of_classes), the model checkpoints stored at batches 500,1000 and 2000 respectively.f. steps: Set to 1800 and 2200 for learning rate decay.Total number of images we have is 196, out of which 151 of them are used fortraining and the remaining are used for validation. A relevant portion of theconfig file (with few of the hyperparameters) to be used for training the YOLOv4model are:

Figure 8.9: YOLOv4 config fileNow we can start training the model on our annotated images, initializing it withthe pretrained weights, using the following line of code.3. Training the model: Now we are ready to train the custom YOLOv4 model.Execute the following command to begin training:!./darknet detector train build/darknet/x64/data/obj.datacfg/yolov4_train.cfg build/darknet/x64/yolov4.conv.137 -dont_showThis command trains the model using the dataset, configuration file, and pre-trained weights. A few iterations of training are shown in the following figure:

Figure 8.10: Training iterations with YOLOv4It may take around 30 mins – 1 hour to finish 2000 batches and in the end, thefinal model weights are stored in a file (yolov4_train_final.weights) on the
backup folder provided.4. Model selection/testing the model/prediction: Now, let us use the model(just trained) for prediction:a. Since the batch size 8 and subdivision size 2 resulted in higher accuracy (interms of Intersection Over Union or IOU measure), the correspondingmodel is selected as the best fit model.b. The final model checkpoint is saved (yolov4_train_final.weights) can beused for prediction (with an unseen image racoons.jpg, you need to upload itto colab first) with the following command.c. The annotated output is saved as predictions.jpg in the same directory. Ifyou want to save the results in a specific file, you can redirect the output to afile.!./darknet detector test build/darknet/x64/data/obj.data cfg/yolov4_train.cfg build/darknet/x64/backup/yolov4_train_final.weights -dont_show /content/raccoons.jpg
Predictions
Raccoon: 79%
Raccoon: 75%
Raccoon: 99%If you run the preceding code snippet, you should have the racoons objects detectedas shown in the next figure:

Figure 8.11: Custom object detection with YOLOv4As can be seen from the preceding figure, all the 3 raccoons in the test image aredetected by the model, with confidence 79%, 75% and 99%, even though couple ofthem were partially occluded.
Selective coloring with Mask R-CNN
Mask R-CNN is a powerful deep learning model for instance segmentation, whichnot only detects objects in an image but also generates high-quality pixel-level
segmentation masks for each individual object instance. It builds on the objectdetection capabilities of Faster R-CNN and extends them to include precisesegmentation. Let us first get acquainted with the key terminology and components:

• Object detection: Identifies and locates objects within an image by predictingbounding boxes and class labels.

• Instance segmentation: A more fine-grained task that creates pixel-wise masksfor each detected object, distinguishing even overlapping instances of the sameclass.
• Backbone network: Typically, a deep CNN (e.g., ResNet-50 or ResNet-101with FPN) used to extract rich hierarchical features from the input image.
• Region Proposal Network (RPN): Generates candidate object regions (regionproposals) from the backbone features.
• RoIAlign: A key improvement over the earlier RoIPool, RoIAlign preciselypreserves spatial locations using bilinear interpolation, which is crucial for pixel-level tasks like mask prediction.
• Bounding box and mask prediction: The model simultaneously predicts objectclasses, refines bounding boxes, and produces a binary mask (segmentation) foreach object.This model is an extension of Faster R-CNN model, adding a branch for predictingobject masks in parallel with bounding box recognition. In this section, we shall usethe Mask R-CNN model to detect objects in an image and generate instancesegmentation masks. Then these masks will be used to selectively color the detectedobjects while leaving the background in grayscale.Here we shall use the library mrcnn, which is an implementation of the Mask R-

CNN model in keras and tensorflow, used for object detection and instancesegmentation with support for training, inference, and visualization. You can installthe mrcnn library by cloning the official Mask R-CNN GitHub repository andinstalling its dependencies, here’s how:
clone the repositorygit clone https://github.com/matterport/Mask_RCNN.gitcd Mask_RCNN
install required packagespip install -r requirements.txt
install the librarypython setup.py installThe following Python code snippet performs selective coloring of the objectsdetected in an image using Mask R-CNN. Here is a step-by-step explanation of howthe selective coloring is achieved:1. Load Mask R-CNN model and weights: As usual, begin by importing thenecessary libraries such as mrcnn, numpy, and matplotlib. Then, download thepre-trained Mask R-CNN weights trained on the COCO dataset (which contains80 object classes) and save them in the location specified by

COCO_MODEL_PATH. These weights will be used to initialize the model forinference or fine-tuning.
from mrcnn import utils, visualize
import mrcnn.model as modellib
from mrcnn.config import Config
import os
import numpy as np
COCO_MODEL_PATH = "models/mask_rcnn_coco.h5"
if not os.path.exists(COCO_MODEL_PATH): utils.download_trained_weights(COCO_MODEL_PATH)
Downloading pretrained model to models/mask_rcnn_coco.h5 ...
... done downloading pretrained model!

2. If you want to train the Mask R-CNN model, we need to provide a configurationobject for training on MS COCO.a. The configuration class must derive from the base Config class and overridevalues specific to the COCO dataset.b. Give the configuration class a recognizable name (for example, CocoConfig,as in the next code snippet).c. Depending on the memory available for GPU and the number of images it canfit, adjust IMAGES_PER_GPU.d. Specify the number of GPUs available as GPU_COUNT.e. Specify the number of classes (including background) as NUM_CLASSES(COCO has 80 classes + 1 Background class)3. Since, we shall use the model for inference, we do not need to train and hencelet us define the class InferenceConfig:a. Set batch size to 1 since we will be running inference on one image at a time(in general, Batch_SIZE = GPU_COUNT * IMAGES_PER_GPU), as shown inthe next code snippet:
class CocoConfig(Config): NAME = "coco" IMAGES_PER_GPU = 1 NUM_CLASSES = 81
class InferenceConfig(CocoConfig): GPU_COUNT = 1 IMAGES_PER_GPU = 1 BATCH_SIZE = 1b. Let us display the config file, using the next code snippet:config = InferenceConfig()config.display()
Configurations:
BACKBONE resnet101
BACKBONE_STRIDES [4, 8, 16, 32, 64]
BATCH_SIZE 1
BBOX_STD_DEV [0.1 0.1 0.2 0.2]

COMPUTE_BACKBONE_SHAPE None
DETECTION_MAX_INSTANCES 100
DETECTION_MIN_CONFIDENCE 0.7
DETECTION_NMS_THRESHOLD 0.3
FPN_CLASSIF_FC_LAYERS_SIZE 1024
GPU_COUNT 1
GRADIENT_CLIP_NORM 5.0
IMAGES_PER_GPU 1
IMAGE_MAX_DIM 1024
IMAGE_META_SIZE 93
IMAGE_MIN_DIM 800
IMAGE_MIN_SCALE 0
IMAGE_RESIZE_MODE square
IMAGE_SHAPE [1024 1024 3]
LEARNING_MOMENTUM 0.9
LEARNING_RATE 0.001
LOSS_WEIGHTS {'rpn_class_loss': 1.0,
'rpn_bbox_loss': 1.0,
'mrcnn_class_loss': 1.0,
'mrcnn_bbox_loss': 1.0,
'mrcnn_mask_loss': 1.0}
MASK_POOL_SIZE 14
MASK_SHAPE [28, 28]
MAX_GT_INSTANCES 100

MEAN_PIXEL [123.7 116.8 103.9]
MINI_MASK_SHAPE (56, 56)
NAME coco
NUM_CLASSES 81
POOL_SIZE 7
POST_NMS_ROIS_INFERENCE 1000
POST_NMS_ROIS_TRAINING 2000
ROI_POSITIVE_RATIO 0.33
RPN_ANCHOR_RATIOS [0.5, 1, 2]
RPN_ANCHOR_SCALES (32, 64, 128, 256, 512)
RPN_ANCHOR_STRIDE 1
RPN_BBOX_STD_DEV [0.1 0.1 0.2 0.2]
RPN_NMS_THRESHOLD 0.7
RPN_TRAIN_ANCHORS_PER_IMAGE 256
STEPS_PER_EPOCH 1000
TOP_DOWN_PYRAMID_SIZE 256
TRAIN_BN False
TRAIN_ROIS_PER_IMAGE 200
USE_MINI_MASK True
USE_RPN_ROIS True
VALIDATION_STEPS 50
WEIGHT_DECAY 0.00014. Create the Mask R-CNN model object in inference mode (using
mode="inference"), using the config. Load weights trained on MS COCO (withthe method load_weights()).model = modellib.MaskRCNN(mode="inference", model_dir='.', \ config=config)model.load_weights(COCO_MODEL_PATH, by_name=True)5. The next code snippet lists the COCO class names; there are 81 classes in thelist. Index of the class in the list is its ID. For example, you can get the ID of the
teddy bear class using class_names.index('teddy bear').class_names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot','hot dog','pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']len(class_names)
816. Selective coloring (color splash effect): The key to selective coloring lies inthe color_splash() function. This function accepts an image and a segmentation
mask (produced by the Mask R-CNN model) as input and selectively appliescolor only to the detected objects, leaving the rest of the image in grayscale. Letus understand how the function works step-by-step:a. Grayscale conversion: The image is first converted to grayscale, using thefunction skimage.color.rgb2gray(). However, it is not converted into asingle channel, but into a -channel grayscale image, using the function

skimage.color.gray2rgb(), ensuring it maintains the same shape as theoriginal RGB image.

b. Mask creation: Use the mask returned by Mask R-CNN to determine wherethe detected objects are located. Sum the mask along the instance dimension(axis=-1), collapsing all detected object masks into a single layer. This maskis binary, where pixels corresponding to any detected object have a value of
True and the background has a value of False.c. Object detection with Mask R-CNN: When an image is passed to themodel, it performs detection and returns the following information in theresults dictionary:i. ROIs: The bounding boxes of detected objects.ii. masks: A Boolean mask indicating the location of each detected object.iii. class_ids: The class IDs corresponding to the detected objects.iv. scores: Confidence scores for the detected objects.d. Selective coloring: The function then selectively keeps the original colorvalues in the regions where the mask is True (that is, where objects aredetected), and applies the grayscale version where the mask is False (that is,background):

def color_splash(image, mask): gray = skimage.color.gray2rgb(skimage.color.rgb2gray(image)) * 255 mask = (np.sum(mask, -1, keepdims=True) >= 1) return np.where(mask, image, gray).astype(np.uint8) \
 if mask.shape[0] > 0 else gray7. Visualization of the color splash: The function show_image() displays theoutput image obtained (with color splash effect). It plots the following threeimages side by side:a. original image: The input image in full color.b. mask: A binary mask highlighting the detected objects.c. splash: The result of the selective coloring, where the detected objectsremain in color while the rest is grayscale.The function allows selective object-coloring based on specific object classes.For example, if you want to highlight only bus, it checks which detected objectsmatch the label 'bus' and zeroes out the mask for other objects, as shown in the
Figure 8.12.
def show_image(image, mask_rcnn_res, class_names, label='all'):
 if label != 'all': class_names = np.array(class_names) idx = np.where(class_names[mask_rcnn_res['class_ids']] != \ label) mask_rcnn_res['masks'][...,idx] = 0
 mask = np.zeros(image.shape[:2]) for i in range(mask_rcnn_res['masks'].shape[2]): mask += mask_rcnn_res['masks'][...,i] splash = color_splash(image, mask_rcnn_res['masks'])
 plt.figure(figsize=(20,10)) plt.gray()
 plt.subplots_adjust(0,0,1,0.95,0.05,0.05) plt.subplot(131), plt.imshow(image), plt.axis('off')

 plt.title('original image', size=20) plt.subplot(132), plt.imshow(mask), plt.axis('off') plt.title('mask r-cnn objects{}detected'.format(\ '' if label == 'all' else ' (' + label + ') '), size=20) plt.subplot(133), plt.imshow(splash), plt.axis('off') plt.title('selective coloring of the objects detected', size=20) plt.show()This ensures that only the specified object class (for example, bus) will remain incolor, while all other objects and the background will appear in grayscale.8. Execution on an example image: Finally, the code loads a sample image andruns the Mask R-CNN model to detect objects (using model.detect()).The detected objects are visualized with the selective color splash effect,specifically focusing on the 'bus' class as defined in the show_image() call, asshown in the following code snippet. The next figure (Figure 8.12) shows theoutput image with color splash, along with the input image and mask obtainedwith the Mask R-CNN model.image = skimage.io.imread('images/bus.jpg')results = model.detect([image], verbose=1)show_image(image, results[0], class_names, 'bus')
Processing 1 image
image shape: (340, 510, 3) min: 0.00000
max: 255.00000 uint8
molded_images shape: (1, 1024, 1024, 3) min: -123.70000
max: 150.10000 float64
image_metas shape: (1, 93) min: 0.00000
max: 1024.00000 float64
anchors shape: (1, 261888, 4) min: -0.35390
max: 1.29134 float32If you run the preceding code snippet, you should obtain a figure like the next one:

Figure 8.12: Selecting coloring with Mask R-CNN

Face verification with DeepFaceFace verification involves determining whether two images belong to the sameperson or not, by comparing their facial features. Face verification and face
recognition are closely related but distinct tasks in facial analysis.The different between face verification and face recognition are as follows:

• Face verification determines whether two images belong to the same person,producing a binary output (match or no match). It compares two inputs usingsimilarity metrics like cosine or Euclidean distance and is simpler, often used inapplications like smartphone unlocking or online authentication.
• In contrast, face recognition identifies a person in an image from a known setof identities, requiring a database of embeddings and solving a classificationproblem. It outputs the identity (or “unknown”) and is used in tasks like securitysurveillance, tagging in photo libraries, and identifying individuals in publicspaces.
• While verification involves pairwise comparison, recognition involves one-to-

many matching, making it more complex.
• Both tasks typically rely on deep learning-based feature extractors trained onlarge-scale face datasets such as VGGFace2 or MS-Celeb-1M.In this section, we will learn how face verification works using the DeepFaceframework, explore its underlying mathematical foundation, and demonstrate animplementation using a pretrained VGGFace2 model, including detailed steps andPython code.

Face embeddings
DeepFace uses a deep convolutional neural network to extract face embeddings,which are high-dimensional vectors representing facial features. These embeddingsencode discriminative features, such as the shape of facial landmarks, texture, andother unique traits.Mathematically, the embedding f(x) of an input image x is produced as: f(x) =
CNN(x; θ), where θ are the learned weights of the network.
Similarity metricsTwo embeddings, f(x1) and f(x2), are compared using distance metrics:

• Cosine distance:
• Euclidean distance: Low distances indicate higher similarity.Let us now implement face verification with Python. The implementation consists ofloading a pretrained VGGFace2 model, detecting faces in images, extractingembeddings, and verifying matches using similarity metrics.Let us go through the following Python code step-by-step to explain how it works indetail:1. Importing required libraries: Start by importing the required libraries,modules and functions using the next code snippet:a. The library opencv_python (cv2) is used for reading images and detectingfaces using Haar cascades.b. Keras/TensorFlow are used for working with deep learning models(VGGFace2 in this case).import numpy as npimport matplotlib.pyplot as pltimport cv2import timefrom tensorflow.keras.models import Model, Sequentialfrom tensorflow.keras.layers import Convolution2D, LocallyConnected2D,\ MaxPooling2D, Flatten, Dense, Dropoutfrom tensorflow.keras.preprocessing.image import load_img, save_img, \ img_to_arrayfrom tensorflow.keras.preprocessing import imageimport os2. Confirm GPU availability: The following code snippet ensures the GPU isavailable for model inference, so that the inference is not too slow:import tensorflow as tftf.config.list_physical_devices('GPU')

[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]3. Define the model architecture using tf.keras sequential API:model = Sequential()model.add(Convolution2D(32, (11, 11), activation='relu', \ name='C1', input_shape=(152, 152, 3)))model.add(MaxPooling2D(pool_size=3, strides=2, padding='same', \ name='M2'))model.add(Convolution2D(16, (9, 9), activation='relu', name='C3'))model.add(LocallyConnected2D(16, (9, 9), activation='relu', name='L4'))model.add(LocallyConnected2D(16, (7, 7), strides=2, activation='relu',\ name='L5'))model.add(LocallyConnected2D(16, (5, 5), activation='relu', name='L6'))model.add(Flatten(name='F0'))model.add(Dense(4096, activation='relu', name='F7'))model.add(Dropout(rate=0.5, name='D0'))model.add(Dense(8631, activation='softmax', name='F8'))4. Inputs and outputs:a. Input layer: model.layers[0].input defines the input for the neuralnetwork.b. Output layer: model.layers[-3].output takes the output of the third-lastlayer, which represents the face embeddings (a compact numericalrepresentation of the face).5. Model summary: Displays the architecture of the loaded model.deepface_model = Model(inputs=model.layers[0].input, \ outputs=model.layers[-3].output)deepface_model.summary()
Model: "model"

Layer (type) Output Shape Param #
#===
C1_input (InputLayer) [(None, 152, 152, 3)] 0
C1 (Conv2D) (None, 142, 142, 32) 11648
M2 (MaxPooling2D) (None, 71, 71, 32) 0
C3 (Conv2D) (None, 63, 63, 16) 41488
L4 (LocallyConnected2D) (None, 55, 55, 16) 62774800
L5 (LocallyConnected2D) (None, 25, 25, 16) 7850000
L6 (LocallyConnected2D) (None, 21, 21, 16) 2829456
F0 (Flatten) (None, 7056) 0
F7 (Dense) (None, 4096) 28905472
===
Total params: 102,412,864
Trainable params: 102,412,864
Non-trainable params: 0
___6. Load the pretrained weights for VGGFace2_DeepFace model, with thefollowing line of code:model.load_weights("models/VGGFace2_DeepFace_weights_val-0.9034.h5")7. Haar cascade classifier for face detection: Before we can verify a faceagainst another one, we need to first detect the faces. OpenCV’s pre-trainedHaar cascade XML file is used here to detect faces in images. Check if it islocated in its library directory, using the following code snippet. If the Haarcascade file is missing, the code raises an error.opencv_home = cv2.__file__folders = opencv_home.split(os.path.sep)[0:-1]path = folders[0]
for folder in folders[1:]: path = path + "/" + folder

detector_path = path+"/data/haarcascade_frontalface_default.xml"
if os.path.isfile(detector_path) != True: raise ValueError("Confirm that opencv is installed on your environment! Expected path ", detector_path," violated.")
else: detector = cv2.CascadeClassifier(detector_path) print("haarcascade is okay")
haarcascade is okay8. The next code snippet defines a function detect_face() which will perform the
detection of faces prior to verification, here is how the function works step-by-step:a. Read image: Uses cv2.imread() to load the input image.b. Face detection: Uses the Haar Cascade classifier(detector.detectMultiScale()) to detect faces in the image:i. 1.2 is the scale factor (shrinks image by 20% in each scale step).ii. 5 is the minimum number of neighboring rectangles that must be detectedfor a region to be considered a face.c. Crop detected face: Extracts the bounding box coordinates (x, y, w, h) of thefirst detected face. A margin is calculated (currently set to 0) and used toadjust the crop, ensuring it remains within image bounds.d. Resize face: Rescales the cropped face to the target size of 152×152 pixels.e. Convert to array: Converts the resized face into a numerical array using

image.img_to_array() from tensorflow.keras.preprocessing module.f. Normalize pixels: Divides pixel values by 255 to scale them between 0 and 1.g. Return preprocessed face: The resulting array is ready to be passed as inputto the face verification neural network.
def detect_face(img_path, target_size=(152, 152)): img = cv2.imread(img_path) faces = detector.detectMultiScale(img, 1.2, 5) if len(faces) > 0: x,y,w,h = faces[0] margin = 0 x_margin = w * margin / 100 y_margin = h * margin / 100
 if y-y_margin > 0 and y+h+y_margin < img.shape[1] and \ x-x_margin > 0 and x+w+x_margin < img.shape[0]: detected_face = img[int(y-y_margin):int(y+h+y_margin), \ int(x-x_margin):int(x+w+x_margin)] else: detected_face = img[int(y):int(y+h), int(x):int(x+w)] detected_face = cv2.resize(detected_face, target_size) img_pixels = image.img_to_array(detected_face) img_pixels = np.expand_dims(img_pixels, axis = 0) img_pixels /= 255 # normalize in [0, 1] return img_pixels else:

 raise ValueError("Face could not be detected in ", img_path,\ ". Please confirm that the picture is a face photo.")8. Compute the similarity/distance metrics:a. Cosine distance is computed using the function find_cosine_distance(), as
1 - cosine similarity. It compares the angle between two vectors in theembedding space, where values closer to 0 indicate higher similarity.b. Euclidean distance computed using the function
find_euclidean_distance() measures the straight-line distance between twopoints in embedding space, again, lower the distance means higher thesimilarity.

def find_cosine_distance(source_representation, test_representation): a = np.matmul(np.transpose(source_representation), \ test_representation) b = np.sum(np.multiply(source_representation, \ source_representation)) c = np.sum(np.multiply(test_representation, test_representation)) return 1 - (a / (np.sqrt(b) * np.sqrt(c)))
def find_euclidean_distance(source_representation,test_representation): euclidean_distance = source_representation - test_representation euclidean_distance = np.sum(np.multiply(euclidean_distance, \ euclidean_distance)) euclidean_distance = np.sqrt(euclidean_distance) return euclidean_distance
def l2_normalize(x): return x / np.sqrt(np.sum(np.multiply(x, x)))9. Verify faces with the function verify_face() defined as follows, which acceptsthe following input arguments:a. dataset: A list of image pairs along with their ground-truth labels (True formatches, False for non-matches).b. threshold: A cosine distance value; if the distance between two images isbelow this threshold, they are considered a match.10. Listed are the detailed steps explaining how the function verify_face() works:a. Extract embeddings: Detects faces from input image pairs and computes

embeddings for both images.b. Compute distances: Calculates the Euclidean distance (alternatively youcan compute the cosine distance too, but the threshold for matching willlikely be different) between the embeddings.c. Match prediction: If the cosine distance is below the threshold, theimages are classified as a match. Otherwise, they are classified as not
matching.d. Print results: Outputs similarity scores and predictions.Now, refer to the following code snippet:

def verify_face(dataset, threshold=0.5):
 for case in dataset:
 img1_path = case[0] img2_path = case[1] target = case[2]

 print(f"{img1_path} and {img2_path}") img1 = detect_face(img1_path) img2 = detect_face(img2_path)
 fig = plt.figure() fig.add_subplot(1,2,1) plt.imshow(img1[0][:, :, ::-1]), plt.axis("off") fig.add_subplot(1,2,2) plt.imshow(img2[0][:, :, ::-1]), plt.axis("off") plt.show(block=True)
 img1_embedding = deepface_model.predict(img1)[0] # 4096 dim img2_embedding = deepface_model.predict(img2)[0] # 4096 dim

 euclidean_l2_distance = find_euclidean_distance(\ l2_normalize(img1_embedding), \ l2_normalize(img2_embedding))
 print("Euclidean L2 distance: ", euclidean_l2_distance) print("Actual: ", target, end = '')
 verified = euclidean_l2_distance <= threshold
 # verified = cosine_distance < threshold # 0.16 print(" - Predicted: ", verified) print("--")11. Run the verificationa. dataset: Contains pairs of image file paths and their ground truth labels.b. Call the function verify_face() with the dataset as input, evaluate each pair(there are five such face-image pairs to be verified, as shown) and printsimilarity scores along with the predictions:dataset = [# face image-pairs of same persons, expecting matches (True) ['images/fcr/mom/mom1.png', 'images/fcr/mom/mom2.png', True], ['images/fcr/dad/dad1.png', 'images/fcr/dad/dad2.png', True], # face-pairs of different persons, expecting mismatches (False) ['images/fcr/mom/mom1.png', 'images/fcr/dad/dad1.png', False], ['images/fcr/mom/mom1.png', 'images/fcr/me/me.png' , False], ['images/fcr/dad/dad1.png', 'images/fcr/me/me.png' , False]]
verify_face(dataset, 0.66)
images/fcr/mom/mom1.png and images/fcr/mom/mom2.pngIf you run the preceding code snippet, you should obtain the next results. Note thatthe first two face image pairs will result in matches (belong to same person’s

faces), where the last three pairs result in mismatches (belong to different
person’s faces).Refer to the following figure, resulting in a match in verification, the verifiercorrectly decides that the face image pairs belong to the same person. The output isthen provided.

Figure 8.13: Match in face verification

Output:
1/1 [==============================] - 79s 79s/step
1/1 [==============================] - 0s 149ms/step
Euclidean L2 distance: 0.6139698
Actual: True - Predicted: True
--
images/fcr/dad/dad1.png and images/fcr/dad/dad2.pngRefer to the following figure, resulting in a match again (true positive):

Figure 8.14: Match in face verification

Output:
1/1 [==============================] - 0s 174ms/step
1/1 [==============================] - 0s 176ms/step
Euclidean L2 distance: 0.6548197
Actual: True - Predicted: True
--
images/fcr/mom/mom1.png and images/fcr/dad/dad1.pngRefer to the following figure, resulting in a mismatch (true negative):

Figure 8.15: Mismatch in face verification

Output:
1/1 [==============================] - 0s 176ms/step
1/1 [==============================] - 0s 158ms/step
Euclidean L2 distance: 0.7342232
Actual: False - Predicted: False
--
images/fcr/mom/mom1.png and images/fcr/me/me.pngRefer to the following figure, resulting in a mismatch again:

Figure 8.16: Mismatch in face verification

Output:
1/1 [==============================] - 0s 166ms/step
1/1 [==============================] - 0s 459ms/step
Euclidean L2 distance: 0.8190897
Actual: False - Predicted: False
--
images/fcr/dad/dad1.png and images/fcr/me/me.pngRefer to the following figure, resulting in a mismatch again:

Figure 8.17: Mismatch in face verification

Output:
1/1 [==============================] – 0s 168ms/step
1/1 [==============================] – 0s 164ms/step
Euclidean L2 distance: 0.8458919
Actual: False – Predicted: False
--As can be seen from the preceding outputs, the face-pairs belonging to the sameperson were verified as True and different persons were verified as False.In summary, the preceding code builds a face verification pipeline using a pretrained
VGGFace2 model. The key steps include:1. Face detection (OpenCV Haar cascade).2. Face preprocessing (resizing, normalizing).3. Embedding extraction.4. Similarity computation using cosine and Euclidean distances.It demonstrates how to verify faces based on learned embeddings and interpretsimilarity metrics.
Barcode and QR code detection with Python
Barcodes and quick response (QR) codes have become indispensable tools forfast, efficient, and reliable data storage and retrieval in various industries, fromretail and logistics to healthcare, manufacturing and advertising. These codes enablequick and error-free input of information simply by scanning a visual pattern using acamera or scanner. With the growing popularity of computer vision in automationand data processing, detecting and decoding these codes using Python has becomehighly accessible with the use of libraries like pyzbar and qrcode.In this section, we shall understand the basics of barcodes and QR codes, explain thePython libraries that can be used to detect and decode them, and walk throughpractical examples for detecting and processing these codes in images and real-timevideo streams.
Understanding barcode and QR code

Bar codes and QR codes are both types of data encoding methods used to storeinformation in a visual format that can be scanned and read by machines. Here arefew details about them.
Bar codes:• Definition: A barcode is a system for visually encoding data in a machine-readable format. Traditional barcodes are linear or one-dimensional (1D),meaning they store information along a single axis using varying line widths andspacings. This limits the amount of data they can represent. Common types ofbarcodes include:o Universal Product Code (UPC): widely used in retail for productidentification.o European Article Number (EAN): A variation of UPC used internationally.o Code 128: A high-density barcode used for shipping and tracking.

• Use cases: Commonly used in retail for tracking inventory, pricing at point-of-sale, and more. Typically, barcodes encode product numbers, serial numbers, orother identifying information.
• Capacity: Limited data capacity, typically encoding numbers or a few characters.

QR codes:
• Definition: A QR code is a two-dimensional (2D) barcode that can store databoth vertically and horizontally, it can hold significantly more data thantraditional barcodes. It can hold significantly more data than traditional barcodesand supports a wider variety of content types, such as URLs, contact details(vCards), text, and even binary data like images or documents.
• Use cases: Used for a wide range of applications, including marketing, productlabeling, ticketing, and personal identification. QR codes can encode URLs,contact information, texts, and much more.
• Capacity: Much higher data capacity compared to barcodes. A QR code canstore up to a few kilobytes of data.The key differences are:
• Dimensionality: Barcodes are 1D while QR codes are 2D.
• Data capacity: QR codes can store more data than barcodes.
• Data types: QR codes can encode various types of data, whereas barcodes aremore limited.
• Error correction: QR codes have error correction capabilities, allowing them tobe scanned even if they are partially damaged or obscured.The following table summarizes the similarities and differences between barcodesand QR codes:

Aspect Barcode (1D) QR Code (2D)

Structure Linear (horizontal only) Matrix (horizontal + vertical)
Data capacity Low (typically numeric or limitedcharacters) High (can store thousands of characters)
Encoded data types Mainly numeric or limited alphanumeric Text, numbers, URLs, vCards, binary data
Read direction One direction (horizontal) Two directions (horizontal and vertical)
Error correction None or very minimal Built-in error correction (can recover

Aspect Barcode (1D) QR Code (2D)partially damaged code)
Scanning speed Fast Fast
Use cases Retail, inventory, logistics Mobile payments, marketing, ticketing,personal ID
Ease of scanning Requires correct orientation Can be scanned from any angle
Visual size Smaller in appearance but longer for moredata More compact for large data
Popularity in mobile Less commonly used Widely adopted in smartphones
Requires internet? No No (but often links to online resources)
Machine readable? Yes Yes

Table 8.3: Similarities and differences between the barcodes and QR codes

Encoding, detection, decoding using Python librariesPython offers several libraries that simplify the task of barcode and QR codedetection. These libraries handle the complex image processing and decodingneeded to detect and interpret codes. The most commonly used Python libraries forthis purpose are:
• opencv-python: A comprehensive library for image processing and computervision.
• pyzbar: A wrapper for the ZBar library that can detect and decode bothbarcodes and QR codes.
• python-barcode: A library can be used to create / generate US barcodes.
• qrcode: A library is popular for generating QR codes.
• First install the preceding libraries with pip. If they are not already installed.Next import all the libraries required, using the next code snippet:

#! pip install python-Levenshtein
#! pip install python-barcode
#! pip install qrcode
#! conda install pyzbar
Install Microsoft Visual C++ 64 bit (on 64 bit windows 64 bit python)
link: https://www.microsoft.com/en-us/download/details.aspx?id=40784 from PIL import ImageFont, ImageDraw, Image from pyzbar import pyzbarimport cv2import numpy as npimport barcodeimport qrcodefrom barcode.writer import ImageWriterimport matplotlib.pylab as plt

Adding barcode/QR code to an imageThis code snippet demonstrates how to generate a barcode and a QR code, and thenadd them to an existing image, which is the cover page of the book Image Processing
Masterclass with Python. Here is a detailed breakdown of the code:1. Generate a barcode:a. barcode.get('ean13', str('123456789012'), writer=ImageWriter())creates an EAN-13 barcode for the number '123456789012' using the

clbr://internal.invalid/book/OPS/ch08.xhtml

ImageWriter to output an image file.b. bar1.save('images/bar1') saves the generated barcode image to thespecified path.
import barcodebar1 = barcode.get('ean13', str(9789389898644), writer=ImageWriter())bar1.save('images/bar1.png')2. Generate a QR code: A qrcode.QRCode object is created with specificparameters such as version, error correction level, box size, and border.
qr.add_data(u'...') adds data to the QR code. The data is a Unicode string,indicating the code can handle non-ASCII characters. Here is the list ofparameters the function accepts:a. version:i. Ranges from 1 to 40, controlling QR code size (for example, version 1 is a21×21 matrix, version 2 is 25×25, version 3 is 29×29, and so on).ii. When set to None, the size is automatically adjusted based on the amountof data using the fit=True parameter.b. fill_color and back_color:i. These parameters change the color of the QR code and its background.ii. Accept RGB color tuples when using the default image factory.c. error_correction levels: This defines how much error correction is appliedto the QR code, allowing it to still be scanned even if parts are damaged. Theavailable levels are:i. ERROR_CORRECT_L: Corrects up to 7% errors.ii. ERROR_CORRECT_M (default): Corrects up to 15% errors.iii. ERROR_CORRECT_Q: Corrects up to 25% errors.iv. ERROR_CORRECT_H: Corrects up to 30% errors.d. box_size: Specifies the size of each individual box (square) in the QR code, interms of pixels.e. border: Defines the thickness of the border around the QR code, measured inboxes. The default is 4, which is the minimum allowed according to the QRcode specification.f. qr.make(fit=True): This method configures the size of the QR code toautomatically fit the data being encoded.g. qr1 = qr.make_image(fill_color="black", back_color="white") generatesan image from the QR code with specified colors.h. qr1.save('images/qr1.png') saves the generated QR code image to thespecified path.qr = qrcode.QRCode(version=1, error_correction=qrcode.constants.ERROR_CORRECT_L, box_size=10, border=4,)qr.add_data(u''' : Image Processing MasterClass (BPB) ''')

qr.make(fit=True)qr1 = qr.make_image(fill_color="black", back_color="white")qr1.save('images/qr1.png')3. Load and copy the original image:a. im_orig = Image.open('images/book_cover.png') loads the original image(a book cover).b. im = im_orig.copy() creates a copy of the original image to work on,preserving the original.4. Load barcode and QR code images: bar1 =
Image.open('images/bar1.png') and qr1 = Image.open('images/bar2.png')load the previously saved barcode and QR code images.5. Paste barcode and QR code onto the book cover:a. im.paste(bar1.resize((262,140)).rotate(10), (550,10,812,150)) resizesthe barcode, rotates it by 10 degrees, and pastes it onto the copied book coverimage at the specified coordinates.b. im.paste(qr1.resize((100,100)).rotate(-10), (400,860,500,960)) doesthe same for the QR code, but rotates it by -10 degrees and places it at adifferent location on the cover.6. Save the modified image:

im.save('images/book_cover_barcode.png') saves the modified book cover, nowwith a barcode and QR code added, to the specified path.im_orig = Image.open('images/book_cover.png')im = im_orig.copy()bar1 = Image.open('images/bar1.png')qr1 = Image.open('images/qr1.png')im.paste(bar1.resize((262,140)).rotate(10), (550,10,812,150))im.paste(qr1.resize((100,100)).rotate(-10), (400,860,500,960))im.save('images/book_cover_barcode.png')The preceding code effectively demonstrated how to use Python for imageprocessing tasks such as generating barcodes and QR codes, manipulating images(resizing, rotating), and combining multiple images.
Detect barcode or QR codeThe following code snippet demonstrates how to detect and annotate barcodes andQR codes in an image using Python libraries such as opencv-python (cv2), pyzbar,and PIL. Here is a step-by-step explanation on how the code works:1. Load the input image: im_bar =

cv2.imread('images/book_cover_barcode.png') loads the image file intomemory.2. Convert image color space: cv2_im_rgb = cv2.cvtColor(im_bar,
cv2.COLOR_BGR2RGB) converts the image from BGR (Blue, Green, Red — thedefault color space in OpenCV) to RGB color space.3. Convert OpenCV image to PIL image: pil_im =
Image.fromarray(cv2_im_rgb) converts the RGB image (a NumPy array) into aPIL image object, which allows for more sophisticated image manipulations anddrawing operations.4. Detect barcodes: barcodes = pyzbar.decode(im_bar) uses the pyzbar

library to detect and decode any barcodes in the original image (keep in mindthat it uses the original BGR image).5. Process each detected barcode: The code iterates over each detectedbarcode, performing following operations for each:a. Extracts the barcode’s bounding box (barcode.rect) and decodes its data(barcode.data.decode("utf-8")) and type (barcode.type).b. Constructs a text string with the barcode data and type.c. Draws the bounding box, polygon (if the barcode is not perfectly rectangular),and the text annotation onto the PIL image using ImageDraw.Draw(pil_im)and ImageFont.truetype for custom font styling.6. Convert PIL image back to OpenCV image: im_out =
cv2.cvtColor(np.array(pil_im), cv2.COLOR_RGB2BGR) converts the modifiedPIL image (which is in RGB) back to a NumPy array and then to BGR color spacefor OpenCV compatibility.7. Save the annotated image:
cv2.imwrite('images/book_cover_barcode_detected.png', im_out) saves theannotated image to a file. Throughout this process, the code also prints thenumber of detected barcodes and information about each barcode (type anddata) to the terminal. This script is useful for applications that require barcodescanning and processing directly from images, such as inventory management,retail checkout systems, and document tracking.im_bar = cv2.imread('images/book_cover_barcode.png')cv2_im_rgb = cv2.cvtColor(im_bar, cv2.COLOR_BGR2RGB) pil_im = Image.fromarray(cv2_im_rgb) barcodes = pyzbar.decode(im_bar)print('Number of barcodes found: {}\n'.format(len(barcodes)))
loop over the detected barcodesi = 1
for barcode in barcodes: (x, y, w, h) = barcode.rect barcodeData = barcode.data.decode("utf-8") barcodeType = barcode.type text = u"{} ({})".format(barcodeData, barcodeType) draw = ImageDraw.Draw(pil_im) font = ImageFont.truetype("images/kalpurush.ttf", size=50, layout_engine=ImageFont.Layout.RAQM)
 draw.line(barcode.polygon,width=15) draw.polygon(barcode.polygon, outline='#0000ff') draw.rectangle(((x, y), (x + w, y + h)), outline='#ff0000', width=10) draw.text((x - 200, y + h + 1), text, font=font, fill=(0,255,0,255), stroke_width=2) print("{}. Found barcode\n\ntype: {} \ndata:\n{}\n"\ .format(i, barcodeType, barcodeData)) i += 1 im_out = cv2.cvtColor(np.array(pil_im), cv2.COLOR_RGB2BGR) cv2.imwrite('images/book_cover_barcode_detected.png', im_out)
Number of barcodes found: 2
1. Found barcode
type: QRCODE
data:
: Image Processing MasterClass (BPB)

2. Found barcode
type: EAN13
data:
9789389898644
True

plt.figure(figsize=(20,10))plt.subplot(131), plt.imshow(im_orig), plt.title('original', size=20)plt.axis('off')plt.subplot(132), plt.imshow(cv2.cvtColor(im_bar, cv2.COLOR_BGR2RGB)) plt.title('with barcode / qrcode added', size=20), plt.axis('off')plt.subplot(133), plt.imshow(cv2.cvtColor(im_out, cv2.COLOR_BGR2RGB)) plt.title('barcode / qrcode detected', size=20), plt.axis('off')plt.tight_layout()plt.show()If you run the preceding code snippet, you should obtain a figure as follows:

Figure 8.18: Detecting and extracting Bar/QR code

ConclusionThis chapter covers various approaches to object detection, and recognition usingstate-of-the-art deep learning models. It begins with running inference usingpretrained MobileNet-SSD model (with opencv-python), which is lightweight andwell-suited for mobile applications. It then explores object detection with YOLOv3,leveraging the gluoncv and mxnet libraries to demonstrate YOLO’s efficiency indetecting multiple objects in real-time. Additionally, the latest YOLOv8 model isintroduced through the ultralytics API, highlighting its streamlined approach forrapid object detection.The chapter also delves into custom object detection, showing how transfer learningwith YOLOv4 allows the model to be fine-tuned for specialized detection tasks.
Mask R-CNN is then explored for instance segmentation, explaining how it can beused to apply selective color effects to detected objects. Finally, the chapter providesan overview of barcode and QR code detection, outlining how libraries like pyzbarcan be used to detect and decode these codes in images, emphasizing practical real-world applications.
Key termsObject detection, YOLOv3/v4/v8, MobileNet, Mask R-CNN

Questions1. Face recognition with keras_vggface: Build a simple celebrity face recognitionsystem using the Keras VGGFace model. You need to load a pretrained VGGFacemodel, process an input image of a celebrity, and use the functiondecode_predictions() to identify the face.
Hint: Here are the key steps:a. Install and import required libraries, e.g, keras_vggface, keras_applicationsetc.b. Load the VGGFace model using VGGFace(model='vgg16', include_top=True).c. Preprocess an input face image, resize it to 224×224, convert it to a numpyarray, expand dimensions, and preprocess using the methodkeras_vggface.utils.preprocess_input().d. Predict the face identity by passing the image through the model and usedecode_predictions() to get the top predicted identities.e. Display the image and the predicted name(s), e.g., print the top 5 predictionswith their confidence scores.For example, with SRK face image as input, first crop the image and predict thecelebrity’s name to obtain the output as shown:

Figure 8.19: Celebrity Face Recognition with keras VGGFace2. Explore the following online annotation tools:a. labelImg (https://github.com/HumanSignal/labelImg)b. VIA (https://www.robots.ox.ac.uk/~vgg/software/via/)c. labelme (http://labelme.csail.mit.edu/Release3.0/)d. imagetagger (https://github.com/bit-bots/imagetagger)Learn how to use them to manually annotate images and extract the boundingboxes corresponding to the custom objects you want to detect with YOLOv4
Darknet model, and prepare the training dataset (make sure that the annotationtext format is same as the model accepts). Also, use roboflow(https://app.roboflow.com/) to automatically/semi-automatically annotatecustom images (for example, try the raccoon), as shown in the following figure:

https://github.com/HumanSignal/labelImg
https://www.robots.ox.ac.uk/~vgg/software/via/
http://labelme.csail.mit.edu/Release3.0/
https://github.com/bit-bots/imagetagger
https://app.roboflow.com/

Figure 8.20: Using roboflow to automatically annotate images3. For the following raccoon image and the given annotation text corresponding tothe bounding box for the object (for YOLOv4 Darknet model), write code todraw bounding box. For the given input image, you should obtain the annotatedoutput image shown side-by-side.

Figure 8.21: Visualizing image with bounding box from an input image and annotation text

4. Intersection over Union (IoU): IoU is a widely used metric for assessing theperformance of an object detection model. It measures how well the predictedbounding box (by the model) matches the ground-truth (true) bounding box. IoUis calculated as the ratio of the intersection area between the predicted andground-truth bounding boxes to the total area covered by both boxes. Theformula to compute IoU is as follows:
Where we have

• Area of overlap: The region where the predicted bounding box intersectswith the ground truth bounding box.
• Area of union: The total area covered by both the bounding boxes combined.In object detection, the IoU helps in determining the correctness of a detectedobject.• High IoU (close to 1): The prediction is very close to the ground truth.

• Low IoU (close to 0): The prediction is far from the ground truth.• Thresholding: Typically, An IoU threshold (such as 0.5) is commonly used todetermine whether a detection is classified as a true positive (TP) or a false
positive (FP). When the IoU of a predicted bounding box and a ground truthbox is above the threshold, it is considered a true positive. If it is below thethreshold, it is a false positive.• IoU is used to compute evaluation metrics like precision, recall, and the mean
Average Precision (mAP), which are commonly used to measure theperformance of the models.In this exercise, you will complete the implementation of the following functioncompute_iou() which accepts two bounding boxes as arguments and returns theIOU of these two bound boxes computed:

def compute_iou(box1, box2): """
 Computes Intersection over Union (IoU) between box1 & box2.
 Arguments:
 box1, box2 -- List or tuple containing coordinates of the
 bounding boxes in the format: (x_min, y_min, x_max, y_max)
 Returns:
 iou -- Intersection over Union (IoU) value
 """ iou = None
 ### ***Your Code Here*** ### return iou
Example usagebox1 = [50, 50, 150, 150] # Ground truth bounding boxbox2 = [100, 100, 200, 200] # Predicted bounding box

test your implementationiou_value = compute_iou(box1, box2)
print(f"IoU: {iou_value}") # uncomment to print
IoU: 0.14285714285714285 # you should obtain this IOU value5. Car License Plate Detection with YOLOv5 and Tesseract OCR: Implement acomplete pipeline for car license plate detection and recognition using pretrained(fine-tuned) YOLOv5 model and Tesseract OCR (an open-source opticalcharacter recognition engine that extracts text from images by detectingcharacter shapes using a neural network-based recognition pipeline). Here is astep-by-step guide for your implementation:• Download Dataset: Use the Car Plate Detection dataset from Kaggle:

https://www.kaggle.com/datasets/andrewmvd/car-plate-detection (withannotations in the PASCAL VOC format)• Set Up YOLOv5:o Clone YOLOv5: !git clone https://github.com/ultralytics/yolov5o Install requirements: !pip install -r yolov5/requirements.txt• Prepare the Dataset:o Convert XML annotations to YOLO format (.txt files).o Split into training and validation sets.o Create a data.yaml file with 1 class: [‘licence’].

https://www.kaggle.com/datasets/andrewmvd/car-plate-detection

• Train YOLOv5 using Transfer Learning:o Download a pretrained checkpoint (e.g., yolov5m6.pt) from the followinglink: https://github.com/ultralytics/yolov5/releaseso Fine-tune it on your dataset: !python train.py --img 1280 --batch 4 --epochs20 --data bgr.yaml --weights yolov5m6.pt• Detect License Plates: Run inference on test images using your fine-tunedmodel: !python detect.py --source /path/to/image --weights best.pt• Apply OCR using Tesseracto Install OCR tools: !sudo apt install tesseract-ocr, !pip install pytesseracto Crop detected plate regions and extract text: use the functionpytesseract.image_to_string()• Display the final image showing detected plates and recognized text. youshould obtain a figure like the following:

Figure 8.22: Car license-plate detection and extracting digits & letters with YOLO-V5 + tesseract

6. Object Detection Using Faster R-CNN with PyTorch: Demonstrate objectdetection in an image using the pre-trained Faster R-CNN model from thetorchvision.models.detection module in pytorch. Your solution should load animage, perform inference, and visualize the detected objects with bounding boxesand class labels, using appropriate thresholding and color coding. For an inputimage on the left, you should come up with the detected objects on the right,using Faster R-CNN pretrained model, as shown in the next figure:

Figure 8.23: Object detection using pretrained faster R-CNN with pytorch

References

https://github.com/ultralytics/yolov5/releases

1. https://app.roboflow.com/sandipan/racoon-detection-with-yolov4/2. https://developer.nvidia.com/cuda-downloads3. https://sandipanweb.wordpress.com/2022/01/17/custom-object-detection-
with-transfer-learning-with-pre-trained-yolo-v4-model/4. https://ieeexplore.ieee.org/document/74858695. https://arxiv.org/pdf/2004.109346. https://arxiv.org/pdf/1512.023257. https://www.youtube.com/watch?v=CgLp7cW5QJU8. https://www.youtube.com/watch?v=Wq_vAWQ0Y_w9. https://www.youtube.com/watch?v=xr_wpaGxlTk10. https://www.youtube.com/watch?v=w5nHj1e5nfI11. https://www.youtube.com/watch?v=2xNXWy7ubKs

https://app.roboflow.com/sandipan/racoon-detection-with-yolov4/
https://developer.nvidia.com/cuda-downloads
https://sandipanweb.wordpress.com/2022/01/17/custom-object-detection-with-transfer-learning-with-pre-trained-yolo-v4-model/
https://ieeexplore.ieee.org/document/7485869
https://arxiv.org/pdf/2004.10934
https://arxiv.org/pdf/1512.02325
https://www.youtube.com/watch?v=CgLp7cW5QJU
https://www.youtube.com/watch?v=Wq_vAWQ0Y_w
https://www.youtube.com/watch?v=xr_wpaGxlTk
https://www.youtube.com/watch?v=w5nHj1e5nfI
https://www.youtube.com/watch?v=2xNXWy7ubKs

CHAPTER 9
Application of Image

Processing and Computer
Vision in Medical Imaging

Introduction
Medical imaging refers to the techniques and processes used tocreate visual representations of the interior of a body for clinicalanalysis and medical intervention. The rapid advancement ofimaging technologies has significantly transformed the field ofmedical diagnostics, enabling earlier detection, more accurateanalysis, enhanced environmental monitoring, and improvedpatient outcomes. This chapter explores the diverse applicationsof image processing and computer vision techniques in medicalimaging, demonstrating how these tools can assist ininterpreting complex medical data and automating key clinicaltasks.This chapter covers key tasks in medical image processing,including loading and visualizing specialized formats such as
DICOM and NIfTI using libraries like pydicom, nibabel, and
itk, along with 3D visualization of MRI data through tools like
matplotlib, vedo, and visvis to better understand anatomicalstructures. It also explores image enhancement techniques

using filters, morphological operations, and CT reconstructionwith the inverse Radon transform. Advanced segmentationmethods are introduced, such as graph cuts for brain MRI, anddeep learning models like XceptionNet, highlighting theessential role of image processing in improving clinical decision-making and diagnostic accuracy.
StructureIn this chapter, we will cover the following topics in medicalimage processing:

• Medical image processing:o Loading and displaying medical images of differentformats and modalities with pydicom, nifti, itk librarieso 3D visualization of a head MRI image with matplotlib, vtk,vedo and visviso Applying filters with medpy and itko Morphological filtering with the library itko Computation tomography reconstruction with inverseRadon transform using scikit-imageo Segmentation of brain MRI images with graph cutalgorithms with medpyo Pneumonia classification from chest X-ray usingXceptionNet with tensorflow
ObjectivesThis chapter explores image processing techniques in medicalimaging, covering visualization, filtering, segmentation, andmachine learning applications to enhance medical diagnostics.It discusses usage of the key libraries like pydicom, medpy anddeep learning models such as XceptionNet for improvedanalysis and patient outcomes. By bridging fundamentalconcepts and practical implementations, this chapter provides a

robust foundation for addressing challenges in medical imagingthrough innovative image processing techniques. By the end ofthis chapter, you will master key image processing techniquesand deep learning applications for analyzing and enhancingmedical images to improve diagnostic accuracy and outcomes.
Medical image processingThe application of image processing in the medical domain hasrevolutionized the way healthcare professionals diagnose, treat,and manage diseases. With advancements in technology, imageprocessing techniques have become indispensable tools inmedical imaging, enabling the extraction of valuableinformation from images that are often invisible to the humaneye. This section explores the various applications of imageprocessing in the medical field, highlighting its impact onimproving patient care and outcomes.Medical image processing plays a vital role in modernhealthcare by enabling the visualization, analysis, andinterpretation of complex medical data. It involves the analysisand manipulation of medical images for various purposes,including diagnosis, treatment planning, and research. Itencompasses a range of techniques from basic imageenhancement to complex feature extraction and patternrecognition. The primary goal is to improve the visibility ofimportant features within an image, facilitating a more accurateand efficient diagnosis. Key applications of image processing inthe medical field include diagnostic imaging for enhancedanomaly detection, image segmentation for analyzinganatomical structures, 3D reconstruction for surgical planning,
computer-aided diagnosis (CAD) for improved diagnosticaccuracy, and telemedicine for remote patient care throughsecure image transmission.To start with, let us define a few of terms that will be usedfrequently in this section:• Pixel vs. Voxel:

o Picture element (pixel) refers to the smallest unit of a2D image, representing a single point in a flat image, likea slice from an MRI or CT scan.o Volume element (voxel) is the 3D equivalent of a pixel,representing a value in a 3D space, like a cube in avolumetric scan, such as a full 3D MRI or CT scan,containing depth information.o Pixels are 2D, while voxels extend this concept into threedimensions.• Modalities: Different medical imaging modalities are usedto visualize various aspects of the human body. Eachmodality is specialized for capturing specific types of tissueor abnormalities. Common modalities include:o X-ray: Utilizes ionizing radiation to capture 2D images ofdense structures like bones.o Computed tomography (CT): Produces detailed cross-sectional 3D images by combining multiple X-ray images,commonly used for diagnosing internal injuries andcancer. A CT slice is like looking at one thin layer of thebody, and stacking slices together gives a 3D view—greatfor bone, lung, and organ imaging.o Magnetic resonance imaging (MRI): Uses strongmagnetic fields and radio waves to generate detailed 3Dimages of soft tissues such as the brain, muscles, andligaments. An MRI slice is also a 2D layer, but it showsmore soft tissue detail than CT and does not useradiation.o Ultrasound: Employs high-frequency sound waves toproduce real-time images, commonly used for fetalimaging and examining soft tissues like the heart.o Positron emission tomography (PET): Showsmetabolic and functional processes in the body usingradioactive tracers, often combined with CT for cancer

detection.These modalities vary in resolution, contrast, and the type oftissue they are best suited to visualize, depending on the clinicalrequirement.This section covers a range of techniques essential forprocessing medical images across various formats andmodalities, such as Digital Imaging and Communications in
Medicine (DICOM), Neuroimaging Informatics Technology
Initiative (NIfTI), and Insight Segmentation and
Registration Toolkit (ITK). We shall start from a few classicalimage processing techniques and then proceed to application ofrecent advanced deep learning models (using tensorflow and
pytorch) for medical image analysis.The key topics include loading and displaying medical images,3D visualization of head MRI images, and applying advancedfilters. Morphological filtering and CT reconstruction withinverse Radon transform further enhance image quality fordiagnostic purposes. Segmentation technique such as graph cutis explored to extract meaningful structures from medical scans.Additionally, deep learning models like XceptionNet forpneumonia classification demonstrate the power of artificialintelligence in radiographic image analysis.This chapter will equip you with essential tools and techniquesto address a wide range of image processing tasks in themedical domain, with hands-on implementations in Python.
Loading and displaying medical images
of different formats and modalities with
python librariesMedical imaging is a cornerstone of modern diagnostics andtreatment planning, providing crucial insights into the humanbody’s anatomy and pathology. Advances in imaging modalitiessuch as MRI, CT, USG, and PET have revolutionized clinicalpractices across radiology, oncology, neurology, and otherfields. To work effectively with this wealth of data, it is essential

to have robust tools and libraries capable of handling diverseimage formats and modalities.Medical images are typically stored in specialized formats thatencode not only pixel data but also vital metadata such aspatient information, image acquisition parameters, and spatialorientations. Among these formats, DICOM, NIfTI, and ITKare widely used in different imaging domains. The complexity ofthese formats, along with the specific requirements of differentmodalities (for example, MRI, CT, or PET), necessitates the useof specialized libraries for reading, manipulating, andvisualizing such data.In this section, let us explore how to efficiently load, process,and display medical images from different formats andmodalities using Python libraries such as pydicom (for DICOMimages), nibabel (for NIfTI images), and SimpleITK (for ITK-compatible image data). These libraries provide seamlessinterfaces for handling medical image data, allowingresearchers and clinicians to extract, manipulate, and visualizeboth image pixels and associated metadata:
• pydicom is a widely-used Python package for working with

DICOM files, which are the standard format for storingmedical imaging information. It enables easy extraction ofpixel data, metadata, and complex attributes such as affinetransformations or slice locations.
• nibabel focuses on formats like NIfTI and Analyze,commonly used in neuroimaging for storing 3D and 4Ddatasets, making it ideal for handling volumetric brainscans, fMRI data, and other similar datasets.
• SimpleITK and the broader ITK ecosystem support variousmedical image formats, including NIfTI and DICOM, whileproviding additional tools for image registration,segmentation, and analysis.In this section, we shall cover the fundamental techniques for:
• Loading medical images in different formats and accessingimage metadata and pixel arrays.

• Visualizing 2D and 3D medical images for interpretation andmanual review.
• Handling image modalities such as MRI, CT, and PETacross the DICOM, NIfTI, and MetaImage formats.By the end of this section, you will be equipped with practicalknowledge of how to work with medical imaging data acrossvarious formats and modalities, leveraging Python’s extensivelibraries to streamline workflows in medical image analysis.

DICOM formatDICOM is the standard format for storing, transmitting, andmanaging medical images and related metadata. It ensuresinteroperability between medical imaging devices, workstations,and healthcare systems. Each DICOM file contains both pixeldata (images from modalities like MRI, CT, and X-rays) andmetadata, such as patient details, image acquisition parameters,and spatial orientation. DICOM files use a structured tag systemfor metadata, supporting rich information for diagnostics andintegration into picture archiving and communication
systems (PACS).DICOM’s key features include:

• Interoperability across devices and systems.
• Rich metadata storing patient, study, and imaging details.
• Support for 2D, 3D, and 4D images from various modalities.
• Integration with PACS for image storage and retrieval.However, DICOM files can be large and complex, requiringspecialized tools for handling, processing, and ensuring privacy.Despite these challenges, DICOM remains a critical standard inmodern healthcare.The next Python code demonstrates how to load and displaymedical images stored in the DICOM format. The codeleverages the pydicom library to read DICOM files and

matplotlib to visualize them. Here is a detailed explanation ofhow this code works, step by step:

1. Installing required libraries: The pydicom library isused for reading and handling DICOM files in Python. Use
pip to install the library, which provides functionality toextract metadata and pixel data from DICOM files. You canalso use it to manipulate and visualize the images.2. Importing necessary modules:a. glob: This module allows you to find all file paths thatmatch a specified pattern. It is used here to search forDICOM files in the directory.b. pydicom: This module is used to read DICOM files,which contain both metadata (for example, patientinformation, scan parameters) and image pixel data.c. matplotlib.pyplot: Used for visualizing the medicalimages. plt.imshow() will display each slice of the MRIas an image.3. Setting up the plotting environment:a. plt.figure(figsize=(10,20)): This command creates anew figure for plotting, with dimensions of 10 units wideand 20 units tall. The large size accommodates displayingmultiple images in a grid layout.b. plt.gray(): This sets the colormap to grayscale, which issuitable for most medical images like MRI and CT scansthat are typically represented in grayscale.c. plt.subplots_adjust(0,0,1,0.95,0.01,0.01): Adjusts thespacing of the subplots to remove unnecessary paddingbetween images. This creates a more compact display fora large number of images.4. Loading DICOM files:a. glob(): This function finds all DICOM files in thespecified directory that match the given pattern ('MR*'),as shown in the next code snippet. It returns a list of filepaths that match the pattern. In this case, it looks forMRI scan slices, which typically start with the prefix MR.

b. pydicom.read_file(dfile): This reads each DICOM fileinto a pydicom dataset object. The dataset contains boththe image data and metadata like patient information andscan parameters.c. mr_scan = [...]: This list comprehension iteratesthrough all matching DICOM files, reading them into alist called mr_scan. Each element in mr_scan is a
pydicom object representing an MRI slice.5. Ordering slices by slice location: DICOM files frommedical imaging (especially in MRI or CT) usually contain aseries of image slices that represent cross-sections of a bodypart. These slices need to be displayed in the correct orderbased on their position along a particular axis (for example,head to feet).a. slice.SliceLocation: Each DICOM file containsmetadata that specifies the position of the slice (typicallythe SliceLocation attribute). This information helpsensure the slices are displayed in the correct order.b. sorted(mr_scan, key=lambda slice:
slice.SliceLocation): This sorts the mr_scan list by the
SliceLocation attribute, ensuring the slices are orderedfrom the top of the scan (for example, top of the head) tothe bottom (such as, base of the neck). Now, the list
mr_scan_ordered contains the slices in the correctorder, using the following code snippet:

#! pip install pydicom
from glob import glob
import pydicom
mr_scan = [pydicom.read_file(dfile) \ for dfile in sorted(glob('images/dicom/MR*.dcm'))]mr_scan_ordered = sorted(mr_scan, \ key=lambda slice: slice.SliceLocation) 6. Displaying the slices:a. dicom_file.pixel_array: This extracts the image datafrom the DICOM file as a NumPy array. DICOM images

store the pixel values in this array format. The
pixel_array attribute gives direct access to this imagedata.b. plt.subplot(4,8,i): This divides the figure into a grid of4 rows and 8 columns. The variable i keeps track of thecurrent subplot, starting at 1 and incrementing with eachloop iteration. This allows for displaying up to 32 slices inthe grid.c. plt.imshow(): This command displays the image (theslice) in the current subplot. The mr variable holds thepixel data extracted from the DICOM file.d. plt.axis('off'): This removes the axes and labels from theplot, making the images easier to view without clutteringthe display with unnecessary axis ticks and labels.e. plt.suptitle(): Adds a title to the entire figure, givingcontext to the displayed images. In this case, the title is
Full head MRI scan DICOM files with a font size of 15.f. plt.show(): Finally, this command renders and displaysthe plot. The entire set of MRI slices will be shown in agrid format.plt.figure(figsize=(12,4))plt.gray()plt.subplots_adjust(0,0,1,0.95,0.01,0.01)i = 1

for dicom_file in ct_scan_ordered: plt.subplot(4,8,i), plt.imshow(dicom_file.pixel_array) plt.axis('off') i += 1plt.suptitle('Full head MRI scan DICOM files', size=15)plt.show()If you run the preceding code snippet, you will get a figurelike the following one which visualizes the DICOM filescorresponding to a full head MRI scan:

Figure 9.1: Full head MRI scan DICOM files

NIfTI formatNIfTI is a widely used file format in neuroimaging for storing 3Dand 4D medical imaging data, particularly for modalities likeMRI and fMRI. It efficiently handles volumetric data andincludes a compact header with image metadata such asdimensions and an affine transformation matrix for mappingvoxel data to real-world coordinates. NIfTI files can becompressed and are compatible with many neuroimaginganalysis tools like FSL and SPM. While primarily used in brainresearch, NIfTI’s focus on volumetric data makes it lessversatile for other medical imaging modalities.The next Python code snippet uses the nibabel library to loadand visualize a medical image stored in the NIfTI format, whichis commonly used for storing MRI and other types of 3D medicalimages. Here is a detailed explanation of how the code worksstep by step:1. Importing and loading the NIfTI image:a. nibabel: This is a Python package used to handleneuroimaging file formats like NIfTI (.nii, .nii.gz files),as well as other formats like Analyze and DICOM. It iscommonly used for loading, manipulating, and saving 3Dor 4D medical imaging data.

b. nifti = nib.load('images/201_t2w_tse.nii.gz'): Thisloads the NIfTI file from the given path. The file
201_t2w_tse.nii.gz is a compressed NIfTI file (the .gzextension indicates gzip compression). The function
nib.load() reads the image and returns a Nifti1Imageobject, which contains the image data and metadata suchas voxel dimensions, orientation, and affinetransformations.2. Inspecting the NIfTI image data and metadata:a. print(nifti): This prints basic information about theNIfTI object, including metadata such as the affinetransformation matrix and file structure.b. nifti.shape: Returns the shape of the image, which tellsyou how many voxels (3D pixels) there are in eachdimension. For instance, the given MRI brain scan has ashape like (256, 256, 27), meaning there are 256 voxelsin the x and y axes (each slice is 256×256) and 27 slicesin the z-axis (depth).c. nifti.header.get_data_shape(): This is another way toobtain the shape of the image, using the NIfTI file’sheader. The header stores metadata about the image,such as data type, dimensions, and scaling factors.3. Converting the NIfTI image to a NumPy array:a. nifti.get_fdata(): This function extracts the image datafrom the NIfTI object and returns it as a NumPy array.The get_fdata() method converts the data into a floating-point array, which is convenient for further analysis andvisualization. NIfTI images are typically stored in 3D (or4D) arrays.b. print(image_array.dtype, image_array.shape): Thisprints the data type (for example, float64) and shape ofthe extracted image array. For example, the shape is(256, 256, 27) for the given 3D brain MRI, which means

there are 27 slices of 256×256 voxels.
#!pip install nilabel
import nibabel as nibnifti = nib.load('images/201_t2w_tse.nii.gz')print(nifti.shape) # get the image shape
(256, 256, 27)print(nifti.header.get_data_shape()) # get image shape another way
(256, 256, 27)image_array = nifti.get_fdata()print(image_array.dtype, image_array.shape)
float64 (256, 256, 27)4. Creating a grid of subplots for visualization:a. plt.subplots(3, 9, figsize=(12, 4)): This commandcreates a grid of subplots using matplotlib. In this case,it creates a 3×9 grid (27 subplots in total). Each subplotwill be used to display one slice from the 3D MRI volume.b. figsize=(12, 4): Specifies the figure size in inches(width 12, height 4) to ensure the grid is large enough forall the subplots.c. plt.subplots_adjust(): Adjusts the spacing between thesubplots to reduce padding. This helps maximize the useof space, removing excess margins between images.5. Displaying the slices:a. slice_counter = 0: This variable keeps track of whichslice (in the z-axis) of the 3D image to display. The slicesare indexed along the third axis (image_array[:,:,slice]).b. The nested loops iterate through the rows and columnsof the grid to fill each subplot with an MRI slice.c. axis[i][j].imshow(image_array[:,:,slice_counter],

cmap="bone"): This displays the current slice as a 2Dimage using imshow(). The slice is extracted from the
NumPy array image_array by taking a cross-sectionalong the z-axis ([:,:,slice_counter]). cmap='bone'option applies a grayscale colormap with a bluish tint,commonly used in medical imaging to enhance contrastand detail.

d. axis[i][j].axis('off'): Hides the axes and ticks for eachsubplot to provide a clean display of the images.Now, refer to the following code snippet:fig, axis = plt.subplots(3, 9, figsize=(12, 4))plt.subplots_adjust(0,0,1,0.9,0.01,0.01)slice_counter = 0for i in range(3): for j in range(9): if slice_counter < image_array.shape[-1]: axis[i][j].imshow(image_array[:,:,slice_counter, cmap='bone') slice_counter+=1 axis[i][j].axis('off')plt.suptitle('Full head MRI scan NIfTI files', size=15)plt.show()If you run the following code snippet, you will get a figure likethe following one which visualizes the NIfTI files correspondingto a full head MRI scan:

Figure 9.2: Fill head MRI scan NIfTI files

RAW or MetaImage formatThe MetaImage format is used for storing medical images,particularly in 3D and 4D imaging like CT and MRI scans. Itconsists of two files:
• A .mhd (Metaimage header) file that contains metadata(image dimensions, data type, voxel spacing).
• A .raw file that holds the uncompressed pixel data in abinary format.The format is called RAW because the image data is storedwithout compression, making it easy to process large datasets

quickly. It is commonly used in medical research due to itssimplicity, flexibility, and compatibility with libraries like
SimpleITK and itk, though the lack of compression results inlarger file sizes.The following Python code reads and displays medical imagesusing the SimpleITK library, which is commonly used forhandling medical image formats such as DICOM, NIfTI, andMetaImage. Here is how the code works:1. Loading the image:a. The function load_itk() is defined in the next codesnippet, it reads a medical image file (in this case, a .mhdfile) using SimpleITK's ReadImage() function.b. SimpleITK handles a variety of medical image formats,with the ability to read both image data (for example,pixel values) and metadata (such as, origin and spacing).c. The loaded image (itkimage) is then converted to aNumPy array using sitk.GetArrayFromImage(). Thisconverts the medical image into a format that can beeasily manipulated in Python.d. The array is reordered to have axes in the order z, y, x(axial, coronal, sagittal planes), which is more suitablefor visualization and manipulation.

Note: To successfully load a MetaImage usingSimpleITK.ReadImage(), both the .mhd and .raw files
must be located in the same directory. If the .raw file
is missing or not found at the expected path, the
image loading will fail. Make sure to keep them
together when using this function.

2. Retrieving metadata (origin and spacing):a. Origin: The code extracts the origin of the scan using
itkimage.GetOrigin(). The origin defines the spatialposition of the image’s starting point (the coordinate of

the first voxel) in the real world. This is useful foraligning the image with physical coordinates.b. Spacing: The spacing is retrieved using
itkimage.GetSpacing(). Spacing represents the physicaldistance between adjacent voxels along each axis (z, y, x).This metadata is essential for converting between voxelspace (discrete coordinates in the image) and real-worldspace (millimeters or other units).

#!pip install SimpleITK
import SimpleITK as sitk
import numpy as np
import matplotlib.pylab as plt
def load_itk(filename): itkimage = sitk.ReadImage(filename) ct_scan = sitk.GetArrayFromImage(itkimage) origin = np.array(list(reversed(itkimage.GetOrigin()))) spacing = np.array(list(reversed(itkimage.GetSpacing()))) return ct_scan, origin, spacing
ct, _, _ = load_itk('images/chest_ct.mhd')
print(ct.shape)
#(112, 256, 256)3. Visualizing the CT scan: After loading the CT scan (avolumetric image) into the ct NumPy array, the codeproceeds to visualize it slice-by-slice using matplotlib.a. The ct.shape[0] indicates the number of slices in thescan (along the z-axis).b. A for loop iterates over each slice of the CT scan, and foreach slice, plt.imshow(ct[i]) displays the 2D cross-sectional image.c. The figure is displayed in a 7×16 grid, meaning 7 rowsand 16 columns of subplots, with plt.axis('off') used tohide axis labels.This workflow is typical for handling 3D medical image data,such as CT or MRI scans, where you need to process andvisualize slices or perform further analysis:plt.figure(figsize=(14,7))

plt.gray()plt.subplots_adjust(0,0,1,0.95,0.01,0.01)
for i in range(ct.shape[0]): plt.subplot(7,16,i+1), plt.imshow(ct[i]), plt.axis('off')plt.suptitle('Chest CT-scan mhd (raw) files', size=15)plt.show()If you run the preceding code snippet, you should obtain afigure like the next one:

Figure 9.3: Chest CT scan .mhd (.raw) files

3D visualization of a head MRI image
with matplotlib, vedo and visvisIn this section, you will learn how to visualize a head MRI imagein 3D using various python libraries.
With matplotlibThe next Python code visualizes a 3D head MRI image using
matplotlib’s 3D plotting capabilities. Here is how the codeworks in detail (step-by-step):1. Loading the MRI image:a. The function load_itk(filename) is responsible forloading the MRI image from a file.

b. It uses SimpleITK (imported as sitk), to read the imageusing the function sitk.ReadImage(filename) andconverts it into a NumPy array (3D array for voxelintensities) using sitk.GetArrayFromImage(). Thisallows for easier manipulation and visualization.c. The image is reshaped so that its axes align correctly: (z,y, x). The axes represent depth (z-axis), height (y-axis),and width (x-axis) of the image.d. The function also extracts the spatial origin (physicalcoordinate of the first voxel, using the function
itkimage.GetOrigin()) and voxel spacing (distancebetween adjacent pixels/voxels in each direction inphysical units, using the function
itkimage.GetSpacing()) of the MRI data.2. 3D plotting function: Creates a 3D surface plot of thevolumetric image using the Marching Cubes algorithm, hereis how it works in details:a. The function takes in the 3D array ct (the CT scandataset) and a threshold value (1150 in this case). Thisthreshold defines the intensity level for rendering the 3Dsurface.b. It uses the function measure.marching_cubes() fromthe skimage library, which is used to extract a 3Dsurface from a 3D array of scalar values (such as the CTimage data). The marching cubes algorithm generates asurface (a mesh of triangles) by detecting contours at thespecified threshold value in the volumetric data. Itreturnsi. verts: Vertices of the triangles in 3D space.ii. faces: The indices of vertices forming triangular faces.3. Rendering the 3D surface: Once the vertices and facesare computed, the next step is to render the 3D surface:a. Poly3DCollection from mpl_toolkits.mplot3d.art3d is

used to create a collection of polygons from the verticesand faces.b. This creates a translucent (alpha = 0.1) surface byassembling the triangular faces into polygons.c. face_color = [0.5, 0.5, 1]: Defines a light blue color.d. ax.add_collection3d(mesh): Adds the mesh to the 3Daxis.e. The axes limits are then set to match the dimensions ofthe image data (since the CT image could be non-cubic).f. Finally, plt.show() is called to display the rendered 3Dvisualization of the CT scan.4. Understanding the visualization process:a. Thresholding: The threshold value (1150 in thisexample) is critical in defining which parts of the CTimage will be visualized. In CT data, voxel intensities aremeasured in Hounsfield Units (HU), which correspond todifferent tissue densities. Selecting an appropriatethreshold allows for the isolation of specific anatomicalstructures, such as bone, soft tissue, or air-filled spaces.b. Marching cubes algorithm: This algorithm extracts a3D surface from a volumetric dataset by identifyingwhere the voxel intensities cross the threshold. The resultis a set of triangular surfaces that can be visualized as amesh.
c. 3D plot: The generated surface is plotted using

Poly3DCollection and displayed interactively using
matplotlib's 3D plotting features.Refer to the next code snippet:

from mpl_toolkits.mplot3d.art3d import Poly3DCollection
import numpy as np
from skimage import measure
import pydicom
import matplotlib.pylab as plt
import SimpleITK as sitk

def load_itk(filename): itkimage = sitk.ReadImage(filename) ct_scan = sitk.GetArrayFromImage(itkimage) origin = np.array(list(reversed(itkimage.GetOrigin()))) spacing = np.array(list(reversed(itkimage.GetSpacing()))) return ct_scan, origin, spacing
def plot_3d(image, threshold=-300): verts, faces, _, _ = measure.marching_cubes(image, threshold) fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(111, projection='3d') mesh = Poly3DCollection(verts[faces], alpha=0.1) face_color = [0.5, 0.5, 1] mesh.set_facecolor(face_color) ax.add_collection3d(mesh) ax.set_xlim(0, image.shape[0]) ax.set_ylim(0, image.shape[1]) ax.set_zlim(0, image.shape[2]) ax.set_title(f'3D plot with Marching Cubes algorithm' '(level={threshold})', size=15) plt.show()
ct, _, _ = load_itk('iamges/FullHead.mhd') plot_3d(ct, 1150)If you run the preceding code, you should obtain a 3Dvisualization as shown in the following figure:

Figure 9.4: 3D visualization of the full head mhd file with matplotlib

With the library visvis

The next Python code utilizes the visvis library, along with
measure.marching_cubes_lewiner() from the skimagelibrary, to visualize a 3D medical image, specifically a CT scan.Here is a detailed breakdown of how the code accomplishes thistask:1. First, import the visvis library (if not installed, first install itusing pip), which is a visualization library for Python. Itprovides tools for 2D and 3D plotting and is particularlyuseful for visualizing volumetric data such as medicalimages.2. Use the function load_itk() (defined earlier) to read themedical image file in metaimage (.mhd) format. Thisfunction returns the image data (ct), along with the originand spacing of the image.3. Use the marching_cubes_lewiner() function from themodule skimage.measure to run the marching cubesalgorithm on the loaded CT image data, along with thefollowing input parameters:a. ct: The 3D volumetric data (the CT scan) from which wewant to extract a surface meshb. 1150: This is the threshold value used to determine thesurface of the volume. It helps to extract the iso-surface(represents all points within the volume that have thesame intensity value) at this particular intensity level. Inmedical imaging, this value may correspond to a specifictissue type or density (for example, bone), and returnsthe following outputs:i. verts: The vertices of the mesh that represent the iso-surface.ii. faces: The faces that connect the vertices to form the3D surface.iii. normals: The normals of the faces, which can beused for lighting calculations.iv. values: The original voxel values at the vertices.

4. Visualizing the 3D mesh:a. The function vv.mesh() creates a 3D mesh visualizationusing the extracted vertices, faces, normals, and valuesas parameters, to render the iso-surface of the CT scan.b. Finally, the function vv.use() function sets up thecurrent visualization environment, and Run() starts theevent loop, allowing the user to interact with the 3Dvisualization (for example, by rotating, zooming etc.) andactivates the visualization window.
import visvis as vvct, _, _ = load_itk('FullHead.mhd') verts, faces, normals, values = measure.marching_cubes_lewiner(ct, \ 1150) vv.mesh(verts, faces, normals, values)vv.use().Run()If you run the preceding code, it should pop up a window with a3D visualization as shown in the following figure:

Figure 9.5: 3D visualization of the full head mhd file with the library visvis

With the library vedo

The next Python snippet code utilizes the vedo library, which isspecifically designed for scientific visualization - particularly 3Dgraphics - to render a medical image in 3D. Here is a step-by-step explanation of how this code does the 3D visualization:1. First, import the library vedo (install it with pip, if notalready installed), which is a powerful tool for 3Dvisualization in Python. It offers a high-level interface forrendering and interacting with 3D geometries.2. Use the function measure.marching_cubes() from thelibrary skimage to read the data and extract a 3D surfacemesh from the volumetric data (in this case, a CT imagestored in the variable ct), with the same parameter values asin the last section, with the vertices of the mesh that definethe surface (verts) and the faces that connect these verticesto form the polygonal mesh (faces) returned as output.3. Creating the polygonal mesh: Create a Mesh object fromthe extracted vertices and faces using the Mesh class in
vedo. The Mesh object will represent the 3D structuredefined by the vertices and faces extracted from the medicalimage.a. The .c('jet') method sets the color map for the mesh tothe 'jet' colormap, which is a widely used colormap forvisualizing scalar fields. This enhances the visualdistinction of different regions of the mesh based onintensity.b. The method.alpha(1.0) sets the transparency of the

Mesh to fully opaque (1.0 means no transparency).c. Finally, the method.show() renders the mesh in a 3Dviewer. This opens an interactive window where userscan manipulate the view (e.g., by rotating, zooming,panning etc.).
from vedo import *verts, faces, _, _ = measure.marching_cubes(ct, 1150) Mesh([verts, faces]).c('jet').alpha(1.0).show()If you run the preceding code, it should pop up a window

with a 3D visualization as shown in the following figure:

Figure 9.6: 3D visualization of the full head mhd file with the library vedo

Applying filters with medpy and itkAs explained earlier, medical image processing is a key tool inthe diagnosis and analysis of diseases. By applying variousfilters, we can extract features, enhance images, and blendlabels with scans to gain insights. This section discusses theapplication of gradient, sigmoid, and overlay filters to medicalimages using medpy, itk, and other libraries like scipy. Itdemonstrates how to work with 3D medical images (forexample, with CT and MRI modalities) and applies these filtersfor visualization and analysis.
Applying gradient filter with scipy and medpyGradient filters are used to detect edges and features in imagesby computing the change in intensity values betweenneighboring pixels. In this section, we will use the function
generic_gradient_magnitude() from the module
scipy.ndimage.filters, with popular operators Prewitt and
Sobel, to compute the gradient of an image, as shown in thenext code snippet. Here is the detailed code breakdown:1. Loading the image: Use the load() function from medpyto load the compressed medical image b0.nii.gz (in NIfTI-1format), which typically denotes the baseline (non-diffusion-weighted) image in diffusion MRI (dMRI) studies. The

function returns both the image data (representing a 3Dvolume) and its header.2. Gradient magnitude calculation: The function
generic_gradient_magnitude() calculates the gradientmagnitude of the image. First apply the Prewitt operator,which is a simple edge detection filter. The Prewitt operatordetects edges by convolving the image with two 3×3 kernelsthat approximate the gradient of intensity in the x and ydirections:
Gx = [[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]], Gy = [[1, 1, 1], [0,
0, 0], [-1, -1, -1]], and the edge magnitude is computed as. The result is stored in data_output.3. Visualization: The filtered image is displayed using
matplotlib.pylab. Compare the original image and theresult after applying the gradient filter.4. Sobel filter application: An alternative to the Prewittfilter is the Sobel filter, which is more sensitive to edges.The Sobel operator detects edges by convolving the imagewith two 3×3 kernels that approximate the gradient ofintensity in the x and y directions:
Gx = [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], Gy = [[1, 2, 1], [0,
0, 0], [-1, -2, -1]], and the edge magnitude is againcomputed as . Apply this filter in a similar way to
Prewitt and display the output side by side for comparison.5. Gradient filter visualization: The comparison between
Prewitt and Sobel filters helps us visualize the edges in themedical images more clearly. Sobel is generally moresensitive to noise but provides more distinct edge detection.Prewitt is simpler but may miss fine details.6. Example output:a. Prewitt filter output: Displays more basic edges.b. Sobel filter output: Captures finer details and is morerobust for medical image analysis.Now, refer to the following code snippet:

import scipy
from scipy.ndimage.filters import generic_gradient_magnitude, prewitt, sobel
from medpy.io import load, save
from medpy.core import Loggerdata_input, header_input = load('images/b0.nii.gz')
prepare result imagedata_output = scipy.zeros(data_input.shape, dtype=scipy.float32)
apply the gradient magnitude filtergeneric_gradient_magnitude(data_input, prewitt, output=data_output)
plt.figure(figsize=(20,7))plt.bone()plt.subplot(131), plt.imshow(data_input), plt.axis('off')plt.title('original', size=20)plt.subplot(132), plt.imshow(data_output), plt.axis('off')plt.title('otuput gradient prewitt', size=20)
alternative to prewitt is sobelgeneric_gradient_magnitude(data_input, sobel, output=data_output)
plt.subplot(133), plt.imshow(data_output), plt.axis('off')plt.title('otuput gradient sobel', size=20)plt.tight_layout()plt.show()If you run the preceding code snippet, you will obtain a figurelike the following one:

Figure 9.7: Computing the gradients from the NIfTI image with scipy/medpy

Applying sigmoid filter with ITKA sigmoid filter is commonly used to enhance the contrast of animage, particularly in medical imaging, where specific intensityranges are targeted for analysis. The library itk provides apowerful sigmoid filter that is highly customizable through its
alpha and beta parameters, as shown in the next code snippet.Here is the detailed code breakdown:1. Reading the image: Use python-style template

instantiation using itk.ImageFileReader[ImageType] (toselect the correct C++ class), to read a brain proton densityimage slice (an MRI image that displays a cross-sectionalview of the brain based on the concentration of hydrogenprotons, providing contrast primarily between tissues withdifferent proton densities) in PNG format.2. Sigmoid filter setup: A SigmoidImageFilter is applied tothe input image. This filter adjusts pixel intensities bymapping values between a specified range (in this case,from 0 to 1), improving contrast.3. Alpha and beta values: The filter’s response can be tunedby changing the alpha (contrast) and beta (midpoint
intensity) values. Higher alpha (α) results in more contrast.Compare the outputs obtained with different values of theparameter alpha.4. Sigmoid filter visualization: The sigmoid filtersignificantly enhances areas of interest in medical images byimproving contrast. This is particularly useful when trying tohighlight specific tissue types or abnormalities in CT or MRIscans.Now, refer to the next code snippet:PixelType = itk.UCDimension = 2

ImageType = itk.Image[PixelType, Dimension]
reader = itk.ImageFileReader[ImageType].New()reader.SetFileName('images/BrainProtonDensitySlice6.png')input = reader.GetOutput()
sigmoidFilter = itk.SigmoidImageFilter[ImageType, ImageType].New()sigmoidFilter.SetInput(input)sigmoidFilter.SetOutputMinimum(0)sigmoidFilter.SetOutputMaximum(1)
beta = 128plt.figure(figsize=(20,7))plt.subplots_adjust(0,0,1,0.9,0.05,0.05)plt.subplot(1,3,1), plt.imshow(itk.GetArrayFromImage(input))plt.axis('off'), plt.title('input', size=15)i = 2
for alpha in [1.2, 1.5]:

 sigmoidFilter.SetAlpha(alpha) sigmoidFilter.SetBeta(beta) output = sigmoidFilter.GetOutput() plt.subplot(1,3,i), plt.imshow(itk.GetArrayFromImage(output)) plt.axis('off') plt.title(r'α={}'.format(alpha), size=15) i += 1plt.suptitle('Applying Sigmoid Filter on an Image with itk', size=20)plt.show()If you run the preceding code snippet, you will obtain a figurelike the following one (sigmoid filter with different values of):

Figure 9.8: Applying a sigmoid filter on a brain proton density slice image with ITK

Applying overlay filter with ITK and opencv-pythonOverlay filters are used to blend medical images with theircorresponding labels (for example, segmentation masks),enhancing visualization and aiding to the interpretation ofanatomical structures. This is crucial when working withannotated medical images, such as tumor segmentation ororgan delineation, as demonstrated with the next code snippet.Here is the detailed code breakdown:1. Loading image and label data: Load a 3D medical imagecorresponding to a multi-parametric MRI scan of prostateand the associated label files using the library nibabel.Here the labels represent the segmentation masks (forexample, prostate boundaries).
import nibabel as nib
import itk
import cv2
import numpy as np
prostate_images = nib.load('images/prostate_00.nii.gz').get_fdata()

prostate_images = (255*prostate_images / prostate_images.max()).astype(np.uintprostate_labels = nib.load('images/label_prostate_00.nii.gz').get_fdata() \ .astype(np.uint8)print(prostate_images.shape, prostate_labels.shape)
(320, 320, 15, 2) (320, 320, 15)2. Label conversion: The segmentation mask (label image) isconverted into an itk.LabelMap. This step prepares thelabels for overlay on the original image.3. Overlay filter application: The
LabelMapOverlayImageFilter blends the label map withthe corresponding medical image. The function
SetOpacity(0.5) blends the label with 50% opacity for clearvisualization.4. Overlay filter visualization: The output provides a clearunderstanding of the anatomical structure (image) and itsannotated label (segmentation), making it easier to analyze.This is especially important in tasks like tumor detection,where overlaying segmentation results on scans improvesclarity.Now, refer to the following code snippet:LabelType = itk.ctype("unsigned long")

LabelObjectType = itk.StatisticsLabelObject[LabelType, Dimension]LabelMapType = itk.LabelMap[LabelObjectType]
i = 8converter = itk.LabelImageToLabelMapFilter[ImageType, \ LabelMapType].New()converter.SetInput(itk.GetImageFromArray(prostate_labels[...,i]))
RGBImageType = itk.Image[itk.RGBPixel[PixelType], Dimension]overlayFilter = itk.LabelMapOverlayImageFilter[LabelMapType, \ ImageType, RGBImageType].New()overlayFilter.SetInput(converter.GetOutput())overlayFilter.SetFeatureImage(itk.GetImageFromArray(\ prostate_images[...,i,0]))overlayFilter.SetOpacity(0.5)
plt.figure(figsize=(20,7))plt.gray()plt.subplot(131), plt.imshow(prostate_images[...,i,0]), plt.axis('off') plt.title('input (prostate CT)', size=20)plt.subplot(132), plt.imshow(prostate_labels[...,i]), plt.axis('off') plt.title('label', size=20)plt.subplot(133)plt.imshow(cv2.rotate(itk.GetArrayFromImage(overlayFilter.GetOutput()) \

 cv2.ROTATE_90_COUNTERCLOCKWISE))plt.axis('off'), plt.title('overlayed label (with itk)', size=20)plt.tight_layout()plt.show()If you run the preceding code snippet, you will obtain a figurelike the following one:

Figure 9.9: Applying overlay filter to display label overlay on a NIfTI image with
itk/opencv

Morphological filtering with the library ITKMorphological filtering is a powerful technique used in imageprocessing to extract and analyze structural information fromimages. It is particularly effective in the realm of medicalimaging, where it can assist in highlighting features of interest,such as organs and tissues, and suppressing noise.
Morphological operations are based on the shape of objectswithin an image, using set theory to define operations like
dilation, erosion, opening, and closing. These operations areoften applied to binary or grayscale images and can be used forvarious tasks, including segmentation, noise reduction, andfeature extraction.Morphological operations rely on a structuring element (SE -a small shape or template) that is used to probe and transformthe image. The two fundamental operations are:

• Dilation: This operation increases the size of the
foreground objects in a binary image. Formally, for a binaryimage A and a structuring element B, dilation can be defined

as:
Here, is the translation of the structuring element bythe point .

• Erosion: This operation decreases the size of the
foreground objects in a binary image. It is defined as:
In essence, erosion removes pixels on object boundaries.Additionally, hole filling can be considered to be amorphological operation where small gaps or holes withinobjects are filled. This is important in medical imaging to ensurecontinuous structures, particularly when dealing with binarymasks representing anatomical regions.The following Python code illustrates how to implementmorphological operations using the library itk. The next codesnippet applies dilation and erosion to a grayscale medicalimage and fills holes in a binary medical image. Let usunderstand the code step-by-step in detail:1. Begin by importing the required libraries, including itk (forimage processing) and matplotlib (for visualization), withthe following lines of code:
#! pip install itk
import itk
import matplotlib.pylab as plt2. Dilation and erosion:a. Setting up the image and structuring element: Theinput and output image paths are defined, along with theradius for the structuring element. The pixel type is set to

unsigned char (8-bit), and the image dimension is set to 2(for a 2D image). A structuring element of a specifiedradius is created using a ball shape.b. Reading the input image: An ITK image reader

(ImageFileReader) is instantiated, which reads thespecified input image file (a CT slice).c. Erosion operation: ITK uses C++-style templates,exposed in Python via square brackets. A grayscaleerosion filter (implemented by the template class
itk.GrayscaleErodeImageFilter) is instantiated withthree template arguments:i. ImageType — the input image type, example:

itk.Image[itk.UC, 2] (unsigned char, 2D)ii. ImageType — the output image type, it’s often thesame as the input, but ITK allows different types ifneeded.iii. StructuringElementType — the type ofmorphological structuring element.It applies the erosion operation to the input image using a
circular SE of radius 2,i. Defined using a dimension-specific type alias for ITK ’s

FlatStructuringElement class using Python-styletemplate syntax, enabling the creation of a flatmorphological structuring element.ii. Created using the ITK factory method
StructuringElementType.Ball(), via its Pythoninterface.

Note: Understanding the ITK factory methodIn ITK, objects such as filters and readers are created usingthe factory method .New(), rather than standardconstructors. This approach returns a smart pointer,ensuring efficient memory management and allowing ITK todynamically manage object creation at runtime.The output of this operation is stored in output_erosion,using the next code snippet:itk.auto_progress(2)

input_image = "images/cthead15.png"output_image = "images/output.png"radius = 5PixelType = itk.UCDimension = 2
ImageType = itk.Image[PixelType, Dimension]ReaderType = itk.ImageFileReader[ImageType]reader = ReaderType.New()reader.SetFileName(input_image)
StructuringElementType = itk.FlatStructuringElement[Dimension]structuringElement = StructuringElementType.Ball(radius)input = reader.GetOutput()GrayscaleFilterType = itk.GrayscaleErodeImageFilter[ImageType, \ ImageType, StructuringElementType]grayscaleFilter = GrayscaleFilterType.New()grayscaleFilter.SetInput(input)grayscaleFilter.SetKernel(structuringElement)output_erosion = grayscaleFilter.GetOutput()d. Dilation operation: Similar to erosion, a grayscale

dilation filter (GrayscaleDilateImageFilter) isinstantiated to apply dilation to the input image,producing another output image.e. The method SetInput() sets the input image for the
grayscaleFilter, whereas the method SetKernel()specifies the structuring element that the filter will useduring the morphological operation.f. Writing the output image: The output of the erosionoperation is written to the specified output file using an
ITK image writer (ImageFileWriter).GrayscaleFilterType = itk.GrayscaleDilateImageFilter[ImageType, \ ImageType, StructuringElementType].New()grayscaleFilter = GrayscaleFilterType.New()grayscaleFilter.SetInput(input)grayscaleFilter.SetKernel(structuringElement)output_dilation = grayscaleFilter.GetOutput()

WriterType = itk.ImageFileWriter[ImageType]writer = WriterType.New()writer.SetFileName(output_image)writer.SetInput(output_erosion)writer.Update()If you run the preceding code snippet and display the input

image along with the output images obtained by applyingmorphological erosion and dilation operations side-by-side,you should obtain a figure like the following one:

Figure 9.10: Applying grayscale dilation/erosion on a ct image with itk

3. Hole filling: Again, read a binary image, and instantiate avoting binary iterative hole-filling filter(VotingBinaryIterativeHoleFillingImageFilter). Thisfilter fills small holes in binary images based on majority
voting from neighboring pixels.a. The method SetRadius() sets the radius of theneighborhood that the filter considers around each pixelduring the voting process. The radius determines howmany pixels in each dimension are examined. A largerradius considers a wider neighborhood, which may resultin more aggressive hole filling.b. The method SetMajorityThreshold() sets the minimumnumber of neighboring foreground pixels required tochange a background pixel to foreground. For example, ifthe threshold is set to 10, any background pixelsurrounded by 10 or more foreground neighbors will befilled in.c. The method SetBackgroundValue() defines which pixelvalue is treated as background in the binary image.Typically, this is set to 0, meaning pixels with a value of 0are considered background and candidates for holefilling.d. The method SetForegroundValue() specifies the pixel

value that represents the foreground (usually 1 or 255),which is the value assigned to filled pixels.e. The method SetMaximumNumberOfIterations() setsthe maximum number of iterations the filter will perform.The filter iteratively applies the voting rule until allfillable holes are processed or this iteration limit isreached, helping to avoid excessive computation orinfinite loops.f. The input image and the results of the hole-fillingoperation with different radii values are displayed using
matplotlib.pylab.Now, refer to the following code snippet:

import itk
import matplotlib.pylab as plt
PixelType = itk.UCDimension = 2
ImageType = itk.Image[PixelType, Dimension]reader = itk.ImageFileReader[ImageType].New()reader.SetFileName('images/BinaryThresholdImageFilter.png')input = reader.GetOutput()
radius = 5binaryFilter = itk.VotingBinaryIterativeHoleFillingImageFilter[\ ImageType].New()binaryFilter.SetInput(input)
plt.figure(figsize=(20,7))plt.gray()plt.subplots_adjust(0,0,1,0.9,0.05,0.05)plt.subplot(1,3,1), plt.imshow(itk.GetArrayFromImage(input))plt.axis('off'), plt.title('input', size=15)i = 2
for radius in [3, 5]: binaryFilter.SetRadius(radius) binaryFilter.SetMajorityThreshold(10) binaryFilter.SetBackgroundValue(0); binaryFilter.SetForegroundValue(255); binaryFilter.SetMaximumNumberOfIterations(20); output = binaryFilter.GetOutput() plt.subplot(1,3,i), plt.imshow(itk.GetArrayFromImage(output)) plt.axis('off'), plt.title('radius={}'.format(radius), size=15) i += 1plt.suptitle('Iterative Hole Filling with itk', size=20)

plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 9.11: Iterative hole filling with itk

Computed tomography reconstruction
with inverse Radon transform using scikit-image
Computed tomography (CT) is a critical medical imagingtechnique that generates cross-sectional images of the humanbody. It works by capturing multiple X-ray images from differentangles around the body and then reconstructing them to form adetailed internal view. The reconstruction process ismathematically complex, as it involves converting 2Dprojections (sinograms) into 3D images. One of the mostcommonly used techniques in CT image reconstruction is the
inverse Radon transform.The theory behind CT reconstruction is grounded in the Radon
transform. This transform converts a 2D object (image) into aset of 1D projections. These projections are acquired byintegrating the image along parallel lines at various angles. The
inverse Radon transform, often referred to as filtered back-
projection, is the process of reconstructing the original imagefrom its sinograms. Now, let us try to understand the underlyingmathematical details:

• Radon transform: The Radon transform converts an image

into its projection data by integrating along lines at differentangles. Mathematically, for a function representingthe original image, the Radon Transform for an angle is given by:

Where is the projection angle, is the position of the line atthat angle. The result is a sinogram, which represents theprojections of the image at different angles.• Inverse Radon transform: To reconstruct the image fromthe sinogram, the inverse Radon transform is used. A simpleform of this process, called back-projection, involvessmearing each projection back across the image domain.However, back-projection alone leads to blurredreconstructions. To counter this, a filtering step is appliedbefore back-projection, known as filtered back projection(FBP). Mathematically, the inverse of the Radon transformis given by:

Filtering is applied in the Fourier domain using a high-pass
filter (for example, ramp filter). This ensures that high-frequency components (edges) in the image are enhanced,leading to sharper reconstructions.The following Python code demonstrates how to perform CTreconstruction using the Radon transform and inverse Radon

transform implementations provided by the skimage library.Let us walk through the following code snippet and explain eachstep:1. Start by importing the necessary libraries:a. The functions radon() and iradon() from the module

skimage.transform are used to apply the Radon and
inverse Radon transforms, respectively.b. The function imread() from skimage.io loads the CTimage.c. The library numpy is used for numerical operations, and
matplotlib is used for visualizing the images.2. Load CT image: The CT image is loaded using imread(),which reads the image stored in the

'images/cthead15.png' file. The second argument
as_gray=1 converts the image to grayscale.3. Set the range of projection angles: The for loop sets twodifferent increments for the projection angles (and). The variable contains the set of angles from to at intervals defined by . The smaller the angle step, themore detailed the reconstruction.4. Apply radon transform (generate sinogram): The
radon() function computes the Radon Transform of theimage im, resulting in a sinogram. The sinogram is thecollection of all 1D projections of the image at differentangles specified by .5. Visualize sinogram: Visualize the sinogram using
pcolor(). The sinogram represents the 1D projections of theimage, and the inferno color map enhances the contrast.6. Reconstruct image with simple back projection(laminogram): The function iradon() is used to reconstructthe original image from the sinogram without applying anyfilter. This process is called simple back projection, andthe result is a blurred image called a laminogram.7. Reconstruct image with filtered back projection
(FBP): Here, the function iradon() reconstructs the imageusing FBP with a ramp filter. The ramp filter removes low-frequency components and enhances edges, producing amuch sharper and clearer image compared to simple back-
projection.

8. Finally, ensure that the layout of the subplots is properlyspaced using plt.tight_layout() and display the final figurewith all the images (input CT image, sinogram, laminogram,and filtered back projection).Now, refer to the following code snippet:
from skimage.transform import radon, iradon
from skimage.io import imread
import numpy as np
import matplotlib.pylab as plt
import warningswarnings.filterwarnings('ignore')
im = imread('images/cthead15.png', 1)
for dθ in [5, 1]: θ = np.arange(0., 180., dθ) plt.figure(figsize=(20,6)) plt.gray() plt.subplot(141), plt.imshow(im, aspect='auto'), plt.axis('off') plt.title('input CT image', size=20) sinogram = radon(im, theta=θ) plt.subplot(142), plt.pcolor(sinogram, cmap='inferno') plt.title(f'sinogram (radon), with {len(θ)} θs', size=20) recons_im = iradon(sinogram, theta=θ, filter_name=None) plt.subplot(143), plt.pcolor(recons_im), plt.axis('off') plt.title('laminogram (recons. iradon)', size=20) recons_im = iradon(sinogram, theta=θ, filter_name='ramp') plt.subplot(144), plt.pcolor(recons_im), plt.axis('off') plt.title('filtered backproj (recons. iradon)', size=20) plt.tight_layout() plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 9.12: CT reconstruction using inverse Radon transformation with scikit-
image

Segmentation of brain MRI images with
graph cut algorithms with medpyIn medical image processing, segmentation is the process ofpartitioning an image into distinct regions, typicallycorresponding to different anatomical structures or tissue types.For brain MRI images, segmentation is crucial for identifyingtumors, lesions, and specific brain structures. One powerfulmethod for segmentation is the graph cut algorithm, whichmodels the problem as a graph where nodes represent pixels orregions, and edges represent relationships between them (forexample, intensity differences). The goal is to find a minimum
cut through the graph that best separates the foreground fromthe background.This section focuses on using the graph cut algorithm forsegmenting brain MRI images using the medpy library inPython. The process involves the following key components thatform the foundation of the graph-based segmentation approach:

• Graph representation of the image: In the graph cut

method, the image is represented as a graph ,where is the set of nodes (each node corresponds to a
pixel or voxel in the image) and is the set of edgesconnecting the nodes. Each node is connected to itsneighboring nodes, and there are two special nodes called
source and sink, representing the foreground and
background, respectively.

• Energy minimization: The segmentation problem isformulated as an energy minimization problem, where theobjective is to find a labeling of nodes (foreground or
background) that minimizes a predefined energy function.The total energy consists of two terms:o Data term : Measures how well the label assigned toa pixel (foreground or background) agrees with theobserved intensity or prior knowledge (e.g., markers).o Smoothness term : Encourages neighboringpixels and to be assigned the same label, particularlyif their intensities are similar. The total energy is givenby:

Where we have
• is the label assignment over pixels (foreground or

background).
• is the data term for pixel , which can be based on

markers (user-defined seeds) or intensity values.
• is the smoothness term between neighboring pixels and , which encourages consistent labeling betweensimilar pixels (encouraging spatial coherence). The goalis to minimize this energy to find the optimal labeling forthe image.
• Min-cut/Max-flow: The segmentation problem is solved

using the max-flow / min-cut algorithm. The algorithmfinds the minimum cut that separates the source(foreground) from the sink (background), whichcorresponds to the optimal segmentation. This methodefficiently finds the globally optimal solution byminimizing the energy function.Now, let us segment a few example MRI images using theimplementation of the graph cut segmentation algorithm fromthe medpy library in Python, as shown in the following codesnippet. Here are the detailed steps:1. Importing required libraries: First, import the necessarylibraries, using the following code snippet. The medpylibrary provides tools for loading a medical image andapplying the graph cut segmentation. The split_marker()function is used to separate the marker image into
foreground and background regions.
from medpy import graphcut, filter
from medpy.graphcut.wrapper import split_marker
from medpy.core import ArgumentError, Logger
from medpy.io import load, save
import scipy
import numpy as np
import matplotlib.pylab as plt
import logging, os2. Graph cut segmentation with labeling: The
graphcut_label() function performs segmentation of animage using the graph cut algorithm, first by generating agraph from labeled regions and applying the minimum-cutalgorithm to separate foreground from background based onimage intensity and boundary terms. It relies on thefollowing images passed as arguments: a region image thatprovides initial labels (e.g., superpixels or labeled regions),an additional image that serves as intensity reference and a
marker image to indicate known foreground and backgroundvoxels. Here is how the function works:a. First it initializes a Logger class to monitor the progressof the algorithm.

b. The input images are loaded as follows:i. b0.nii.gz: The main region image to be segmented,ii. b1000.nii.gz: An auxiliary image providing additionalintensity information,iii. b0markers.nii.gz: A marker image containingmanually labeled foreground and background regions,it guides the graph construction and segmentationprocess.c. The boundary_term is chosen as boundary_stawiaski,based on the Stawiaski method, which computes thesmoothness cost between neighboring pixels. Theboundary function serves as an edge detector in theoriginal image. Conceptually, it serves as an edgedetector by calculating local contrast and assigninghigher weights (energy penalties) to edges betweendissimilar pixels, discouraging segmentation acrossstrong boundaries.d. The split_marker() function separates the markerimage into two parts:i. fgmarkers_image_data: The foreground markers.ii. bgmarkers_image_data: The background markers.These markers provide hard constraints for thesegmentation algorithm and guide the segmentationprocess by indicating which regions of the image areknown to be foreground and background.e. The function graphcut.graph_from_labels() generatesthe graph from the labeled image data and markers. Thegraph represents the relationship between pixels basedon intensity differences (boundary term). The additionalimage data is used as input to the boundary term functionto influence edge weights.f. The maxflow() function computes the maximum flow inthe graph, which corresponds to the minimum cut in the

graph. This step solves the energy minimization problem,producing a binary segmentation by separating the
foreground from the background.g. The segmentation results are applied to the regionimage. Each pixel is labeled as either foreground (1) orbackground (0) based on the result of the graph cut. The
filter.relabel_map() function updates the image labelsaccordingly.h. Finally, the segmented image is displayed alongside theoriginal image and the marker image.

def graphcut_label(region, additional, marker): logger = Logger.getInstance() logger.setLevel(logging.INFO) boundary_term = graphcut.energy_label.boundary_stawiaski logger.info('Selected boundary term: stawiaski') region_image_data, reference_header = load(region) badditional_image_data, _ = load(additional) markers_image_data, _ = load(marker) markers_image_data = np.squeeze(markers_image_data) region_image_data_orig = region_image_data.copy() fgmarkers_image_data, bgmarkers_image_data = split_marker(\ markers_image_data) # check if all images dimensions are the same if not (badditional_image_data.shape \ == region_image_data.shape \ == fgmarkers_image_data.shape \ == bgmarkers_image_data.shape): logger.critical('Not all images are of same shape.') raise ArgumentError('Not all images are of same shape.') # recompute the label ids to start from id = 1 region_image_data = filter.relabel(region_image_data) gcgraph = graphcut.graph_from_labels(region_image_data, fgmarkers_image_data, bgmarkers_image_data, boundary_term = boundary_term, boundary_term_args = \ (badditional_image_data))
 # second is directedness of graph , 0)

 del fgmarkers_image_data del bgmarkers_image_data

 maxflow = gcgraph.maxflow() # apply results to the region image mapping = [0] # no region with id 1 exists in mapping
 # entry used as padding mapping.extend([0 \ if gcgraph.termtype.SINK == gcgraph.what_segment(int(x) - 1) \ else 1 for x in scipy.unique(region_image_data)]) region_image_data = filter.relabel_map(region_image_data, \ mapping)
 plt.figure(figsize=(20,7)) plt.gray() plt.subplot(141), plt.imshow(region_image_data_orig) plt.axis('off'), plt.title('input', size=20) plt.subplot(142), plt.imshow(badditional_image_data) plt.axis('off'), plt.title('additional', size=20) plt.subplot(143), plt.imshow(markers_image_data) plt.axis('off'), plt.title('marker', size=20) plt.subplot(144), plt.imshow(region_image_data), plt.axis('off') plt.title('output graphcut segmentation', size=20) plt.tight_layout() plt.show() graphcut_label('b0.nii.gz', 'b1000.nii.gz', 'b0markers.nii.gz')If you run the preceding code, you should obtain a figurelike the following one:

Figure 9.13: Applying graph cut segmentation to a brain MRI image with medpy

3. Graph cut voxel segmentation: The graphcut_voxel()function defined in the next code snippet performs graph-cutsegmentation on a 3D voxel-based medical image, wheresegmentation is computed over the entire volume ratherthan slice-by-slice.a. Graph construction: The function
graphcut.graph_from_voxels() generates a graph fromvoxel data, where the boundary term, defined by
boundary_difference_power, is based on voxel intensity

differences. The graph is constructed in 3D, and a sigmaparameter controls the influence of intensity variations,effectively tuning the smoothness of the segmentation.b. Segmentation via max-flow: The same max-flowalgorithm is used to compute the minimum cut andsegment the 3D voxel image into foreground and
background Regions, based on intensity gradients andmarker constraints.Now, refer to the next code snippet:

def graphcut_voxel(input, marker):
 logger = Logger.getInstance() logger.setLevel(logging.INFO) boundary_term = graphcut.energy_voxel.boundary_difference_power badditional_image_data, reference_header = load(input) markers_image_data, _ = load(marker) markers_image_data = np.squeeze(markers_image_data) fgmarkers_image_data, bgmarkers_image_data = \ split_marker(markers_image_data) # check if all images dimensions are the same if not (badditional_image_data.shape == \ fgmarkers_image_data.shape == bgmarkers_image_data.shape): raise ArgumentError('Not all images are of same shape.') # extract spacing if required spacing = header.get_pixel_spacing(reference_header) sigma = 10 gcgraph = graphcut.graph_from_voxels(fgmarkers_image_data, \ bgmarkers_image_data, \ boundary_term = boundary_term,\ boundary_term_args = (badditional_image_data, sigma, spacing)) maxflow = gcgraph.maxflow() # reshape results to form a valid mask result_image_data = scipy.zeros(bgmarkers_image_data.size, \ dtype=scipy.bool_) for idx in range(len(result_image_data)): result_image_data[idx] = 0 \ if gcgraph.termtype.SINK == gcgraph.what_segment(idx) else 1 result_image_data = result_image_data.reshape(\ bgmarkers_image_data.shape) return result_image_data, badditional_image_data, markers_image_datac. Visualization and Output: To visualize thesegmentation output effectively, we need to blend theresult mask with the original volumetric image to create a

clear overlay, with the next code snippet. Here are thedetails steps explaining how the code works:i. The graphcut_voxel() function is called with avolumetric image and its corresponding marker image,returning a binary segmentation mask(result_image_data), along with the original intensityimage (badditional_image_data).ii. An empty RGB image is created where the red and
blue channels are filled with the mask (highlightingsegmentation in magenta).iii. This mask is blended with the grayscale image(converted to RGB) using a 40% mask and 60% imagemix.iv. The result is a composite image that clearly showswhere the segmentation aligns with anatomicalstructures, making visual inspection easy and intuitive.Now, refer to the next code snippet:result_image_data, badditional_image_data, markers_image_data = \ graphcut_voxel('images/b1000.nii.gz', \ 'images/b0markers.nii.gz')

save resulting mask result_image_data_out = np.zeros((result_image_data.shape[0], \ result_image_data.shape[1], 3))result_image_data_out[..., 0] = result_image_data_out[..., 2] \ = 255*result_image_dataoutput = (0.4 * result_image_data_out + \ 0.6 * gray2rgb(badditional_image_data)).astype(np.uint8)plt.figure(figsize=(20,7))plt.gray()plt.subplot(131), plt.imshow(badditional_image_data)plt.axis('off'), plt.title('input', size=20)plt.subplot(132), plt.imshow(markers_image_data)plt.axis('off'), plt.title('marker', size=20)plt.subplot(133), plt.imshow(output), plt.axis('off')plt.title('output graphcut voxel segmentation', size=20)plt.tight_layout()plt.show()If you run the preceding code snippet, you should obtain afigure like the following one:

Figure 9.14: Graph cut voxel segmentation with medpyGraph cut segmentation is a powerful tool for segmentingcomplex medical images such as brain MRI. By formulating theproblem as a graph, it leverages global optimization techniquesto produce highly accurate segmentation results. The medpylibrary provides an efficient implementation of graph cutsegmentation for both 2D and 3D medical images, making it avaluable tool for medical image analysis.
Pneumonia classification from chest X-
ray using XceptionNet with tensorflowPneumonia, a severe infection that inflames the air sacs in oneor both lungs, is a leading cause of illness and death worldwide.Chest X-ray images are commonly used to diagnose pneumonia,and automated approaches like deep learning can significantlyimprove the speed and accuracy of diagnoses. In this section,we will discuss the application of XceptionNet, a powerfulCNN, for pneumonia classification using chest X-ray images.This task is carried out using a publicly available Kaggle dataset(chest-xray-pneumonia), and let us demonstrate the fullworkflow in Python using the TensorFlow framework, explaininghow to use XceptionNet for pneumonia detection. The followingis a detailed list of steps to be executed:1. Setup Kaggle account: For this problem, we shall use apublicly available dataset from Kaggle (a platform for datascientists and machine learning practitioners to accesswidely available public datasets, participate in competitions,share code, and collaborate within a global community). Goto https://www.kaggle.com/ and create a new account, if

https://www.kaggle.com/

you do not already have one.2. We shall use Google Colab to demonstrate the python code,we need to be able to access the kaggle public dataset
chest-xray-pneumonia from inside colab. We shall use the
kaggle public API for this purpose.3. The first step is to create a new token from your profile, asshown in the following figure. It will get downloaded to yourlocal machine as kaggle.json file. Now you need to uploadthe .json file to Google Colab, to be able to use Kaggle API.

Figure 9.15: Creating a Kaggle API token4. Start by creating a new notebook (for example,
pneumonia_classification.ipynb) on Google Colab. Youcan use the files.upload() function from google.colabmodule to upload the Kaggle API token (the kaggle.json filewhich contains the credentials to access Kaggle datasets)from the local machine to Google Colab, as shown in thefollowing code snippet:
import function to upload files (upload kaggle.json)
from google.colab import files
Upload Kaggle keyfiles.upload()

5. If you run the preceding command from inside the notebookin Colab, an Open file dialog control should open from whichyou can choose the json file from the right path from yourlocal machine, as shown in the following figure:

Figure 9.16: Uploading Kaggle json (token) to Google Colab

6. Install the Kaggle CLI in the Colab environment (using thefollowing line of code, with pip), which allows you todownload datasets from Kaggle directly. The -q flag runs theinstallation in quiet mode, meaning it does not show detailedinstallation logs.!pip install -q Kaggle
7. Run the following commands to:a. Create a hidden .kaggle directory to store the Kaggle

API key, using the following shell command: !mkdir
~/.kaggle.b. Copy the uploaded kaggle.json file to the .kaggledirectory, using the following shell command: !cp
kaggle.json ~/.kaggle/.c. Change the permission of the kaggle.json file to ensureit is only readable by the user (security measure), usingthe following command: !chmod 600
~/.kaggle/kaggle.json

! mkdir ~/.kaggle
! cp kaggle.json ~/.kaggle/
! chmod 600 ~/.kaggle/kaggle.json8. Run the next commands in the console to:a. Download the Chest X-ray Pneumonia dataset using the

Kaggle CLI. The dataset ID paultimothymooney/chest-
xray-pneumonia is used to identify the dataset.b. Unzip the downloaded dataset into the current workingdirectory. It will create a folder chest_xray and extractthe zip file inside the folder (as shown in the followingfigure). This makes the files (X-ray images) accessible forfurther processing.

Figure 9.17: Downloading chest x-ray pneumonia Kaggle dataset in colabThe commands to be run are as follows:
!kaggle datasets download -d paultimothymooney/chest-xray-pneumonia
!unzip chest-xray-pneumonia.zip9. Use the following magic command in Google Colab thatensures that the environment is using tensorflow version
2.x. It switches the tensorflow version if needed, makingsure you are working with tensorflow 2.x instead of an

older version like tensorflow 1.x. This command is specificto Colab and helps in managing tensorflow versions easily.%tensorflow_version 2.x10. Let us import the required Python libraries, modules andfunctions, using the following code snippet:
import tensorflow as tf
from tensorflow import keras
from keras.preprocessing.image import img_to_array, array_to_img
from keras import backend as K
from sklearn.utils import class_weight
from sklearn.metrics import confusion_matrix
from PIL import Image
import cv2
import numpy as np
from IPython.display import display
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import pathlib, gc11. Define the following constants, for example:a. IMG_HEIGHT, IMG_WIDTH: These define the target

height and width to which each chest X-ray image will beresized (150×150 pixels).b. BATCH_SIZE: Specifies the number of images that willbe processed in a single step (or batch) by the neuralnetwork. A larger batch size allows for more parallelcomputation, while a smaller batch size can be morememory-efficient.c. RESCALE: The constant 1./255 is to convert from uint8to float32 in range [0,1].RESCALE = 1./255BATCH_SIZE = 64IMG_HEIGHT, IMG_WIDTH = 150, 150IMG_SHAPE = (IMG_HEIGHT, IMG_WIDTH, 3)TARGET_SIZE = (IMG_HEIGHT, IMG_WIDTH)SHUFFLE_BUFFER_SIZE = 600012. The reset_graph() function defined in the following codesnippet will be used to reset the current tensorflow

computation graph and clear any allocated resources toavoid memory issues or conflicts when running multiplemodels or sessions in sequence. The following list explainswhat it does:a. Deletes the existing model (if provided): If a model ispassed as an argument, it attempts to delete it, freeing upmemory associated with that model. If this deletion failsfor any reason, it returns False without proceeding.b. Clears the current TensorFlow graph session: Thisclears the current tensorflow backend session (with thefunction clear_session()), which removes any leftoverstates or computations in memory, resetting the graph.c. Runs garbage collection: It calls Python’s garbagecollector (the function gc.collect()) to clean up anyunreferenced objects in memory, helping to free upsystem resources.d. Returns True: If everything goes smoothly, it returns
True, indicating the graph and resources have beensuccessfully reset.13. Call the function reset_graph() to ensure that theenvironment is clean before starting new model training orinference to avoid memory leakage and conflicts fromprevious models or graphs.

def reset_graph(model=None): if model: try: del model except: return False K.clear_session() gc.collect() return True
reset_graph()14. The next code snippet sets up the directories inpreparation for training a deep learning model:a. pathlib.Path is used to define the file paths for the

training, testing, and validation datasets.b. The dataset consists of three subsets: train, test, and
validation; each located in the chest_xray/ directory.These paths will later be used to load the images.15. It also calculates dataset related statistics (for example,

train_data_count, test_data_count, val_data_count,
TOTAL_IMAGE_COUNT and so on).root_dir = "./"dataset_root_dir = r"chest_xray/"
input dirtrain_dir = pathlib.Path(dataset_root_dir + r"train")test_dir = pathlib.Path(dataset_root_dir + r"test")val_dir = pathlib.Path(dataset_root_dir + r"val")
output diroutput_dir = root_dir + r"data/output/"output_figures_dir = output_dir + "figures"
temp = root_dir
for d in output_figures_dir.split('/'): temp += d + "/" if not os.path.exists(temp): os.mkdir(temp)
train_data_count = len(list(train_dir.glob('*/*.jpeg')))test_data_count = len(list(test_dir.glob('*/*.jpeg')))val_data_count = len(list(val_dir.glob('*/*.jpeg')))
TOTAL_IMAGE_COUNT = train_data_count + test_data_count \ + val_data_countSTEPS_PER_EPOCH = np.ceil(TOTAL_IMAGE_COUNT/BATCH_SIZE)16. Preprocess the images using the function
preprocess_image() defined in the following code snippet:a. tf.image.decode_jpeg(img, channels=3): Thisfunction decodes the input JPEG-encoded image file into a3-channel (RGB) image tensor.b. tf.image.resize(img, [IMG_HEIGHT, IMG_WIDTH]):Resizes the image to the specified height and width(150×150 in this case).c. img /= 255.0: Normalizes the image data to a rangebetween 0 and 1. Image pixel values are typically in therange [0,255], so dividing by 255 scales them to the

range [0,1], which helps with the training process, asneural networks work better with normalized data.17. Load train/test images and labels, using the functions
load_image_train(), and load_image_test(), respectively.a. The functions accept an input image and return thepreprocessed image and the corresponding label.b. tf.io.read_file(file_path): Reads the image from theinput image path.c. The function get_label() returns 1 for pneumonia and 0for normal class.d. tf.strings.split(file_path, '/'): Splits the file path stringinto components using '/' as the delimiter. This is used toidentify whether the file belongs to a NORMAL or

PNEUMONIA class based on its directory.Now, refer to the next code snippet:
def preprocess_image(img): img = tf.image.decode_jpeg(img, channels=3) img = tf.image.resize(img, [IMG_HEIGHT, IMG_WIDTH]) img /= 255.0 # Normalize to [0, 1] range return img
def get_label(file_path): parts = tf.strings.split(file_path, '/') return parts[-2] == CLASS_NAMES
def decode_img(img): img = tf.image.decode_jpeg(img, channels=3) img = tf.image.convert_image_dtype(img, tf.float32) return tf.image.resize(img, (IMG_HEIGHT, IMG_WIDTH), \ method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
def load_image_train(file_path): label = get_label(file_path) img = tf.io.read_file(file_path) img = decode_img(img) return img, label
def load_image_test(file_path): label = get_label(file_path) img = tf.io.read_file(file_path) img = decode_img(img) return img, label

18. Create the training batches, using the following codesnippet:a. tf.data.Dataset.list_files(str(train_dir/'*/*.jpeg')):Creates a tensorflow dataset from all the JPEG filesfound in the training directory. The path includes */*.jpegto ensure it finds all JPEG images in the nested folders.b. .map(load_image_label): Maps each file path in thedataset to the load_image_train() function, which loadsand preprocesses the images along with theircorresponding labels.c. .batch(BATCH_SIZE): Groups the images and labelsinto batches of size 64 (as defined earlier). This allowsefficient training with multiple images at once.19. This process is repeated for the validation and testdatasets as well, as shown in the next code snippet:train_dir_ = str(train_dir/'*/*')val_dir_ = str(val_dir/'*/*')test_dir_ = str(test_dir/'*/*')
train_dataset = tf.data.Dataset.list_files(train_dir_)train_dataset = train_dataset.shuffle(SHUFFLE_BUFFER_SIZE)train_dataset = train_dataset.map(load_image_train, \ num_parallel_calls=tf.data.experimental.AUTOTUNE)train_dataset = train_dataset.batch(BATCH_SIZE)
val_dataset = tf.data.Dataset.list_files(val_dir_)val_dataset = val_dataset.shuffle(SHUFFLE_BUFFER_SIZE)val_dataset = val_dataset.map(load_image_test)val_dataset = val_dataset.batch(val_data_count)
test_dataset = tf.data.Dataset.list_files(test_dir_)test_dataset = test_dataset.shuffle(SHUFFLE_BUFFER_SIZE)test_dataset = test_dataset.map(load_image_test)test_dataset = test_dataset.batch(test_data_count)train_dataset, val_dataset, test_datasetNow, we shall use the popular XceptionNet model (pretrainedon ImageNet) and will apply transfer learning by training theparameters corresponding to the added layers on top of it.

XceptionNet is a deep convolutional neural network based on
depth-wise separable convolutions, which improves efficiency

and performance over standard convolutions. As shown in
Figure 9.18 (by default the input image size is 299×299×3,although here we shall use different input shape), its structureconsists of:

• Entry flow: Initial convolutional layers followed by residualconnections and separable convolutions that down samplethe input.
• Middle flow: A series of repeated depth-wise separableconvolution blocks, each with residual connections, focusingon feature extraction.
• Exit flow: Final set of separable convolutions followed by

global average pooling and fully connected layers forclassification. This design allows for efficient learning withfewer parameters while maintaining high accuracy.Refer to the following figure:

Figure 9.18: XceptionNet architecture
Source: https://www.researchgate.net/figure/ception-architecture-

35_fig4_350331747Now, let us deep dive into our python implementation, with thefollowing detailed code-breakdown:1. Let us build the XceptionNet model, using the next codesnippet:a. The function tf.keras.applications.Xception() loadsthe pre-trained XceptionNet model, which has alreadybeen trained on the ImageNet dataset. The
include_top=False argument means that the finalclassification layer (the top) is excluded, as we want toadd our own custom layers for pneumonia classification.b. input_shape=(IMG_HEIGHT, IMG_WIDTH, 3):Specifies the input shape of the images, which is(150,150,3) — 150×150 pixels with 3 color channels(RGB).c. weights='imagenet': Uses weights pre-trained on the
ImageNet dataset.d. base_model.trainable = False: Freezes the basemodel, meaning its pre-trained weights will not beupdated during training. This allows the network to usepre-learned features from ImageNet while we train onlythe newly added layers.2. Add custom layers on top the neural net:a. The function models.Sequential() creates a sequentialmodel, meaning the layers are stacked one after the otherin sequence.b. base_model: The pre-trained XceptionNet model is thefirst layer of this new model.c. layers.GlobalAveragePooling2D(): Reduces eachfeature map to a single number by averaging all thevalues in that map. This reduces the spatial dimensions

https://www.researchgate.net/figure/ception-architecture-35_fig4_350331747

and allows the network to focus on the most importantglobal features.d. layers.Dense(1, activation='sigmoid'): Adds a fullyconnected layer with 1 output neuron (for binary
classification). The sigmoid activation function is used toproduce a probability between and , where values closerto indicate normal and values closer to indicate
pneumonia.Now, refer to the next code snippet:inputs = tf.keras.Input(shape=IMG_SHAPE)x = keras.applications.xception.Xception(input_tensor = inputs, # pass input to input_tensor include_top = False, weights = 'imagenet')x.trainable = False

flat the base model with x.output x = tf.keras.layers.BatchNormalization()(x.output) x = tf.keras.layers.Flatten()(x)x = tf.keras.layers.Dense(2, activation='softmax')(x)
model = tf.keras.Model(inputs, x)Next, let us train this model on the training dataset of chest X-rays, adjust for class-imbalance, and track the performance,using the next code snippet. Follow the next steps:1. Set the learning rate and optimizer:a. INITIAL_LEARNING_RATE = 1e-4: Sets the learningrate to 0.0001. The learning rate controls how much toadjust the weights of the model with respect to thegradient.b. optimizer =

tf.keras.optimizers.Adam(learning_rate=INITIAL_LE
ARNING_RATE): Initializes the Adam optimizer, anadaptive optimization algorithm that adjusts the learningrate based on momentum and Root Mean Square
Propagation (RMSProp is an adaptive optimization

algorithm that adjusts the learning rate for eachparameter by maintaining a moving average of squaredgradients to improve convergence stability). It improvesperformance with minimal tuning.2. Define the loss function and evaluation metrics:a. Use more generic categorical cross-entropy (using loss
= 'categorical_crossentropy') as the loss function,which is suitable for multi-class classification problems.You could use 'binary_crossentropy' as well, since wehave a binary classification problem (try on your own).b. Use accuracy (metrics = ['accuracy']) as aperformance metric during training and validation.3. Compile the model: Use model.compile() to compile themodel with the specified loss function(categorical_crossentropy), optimizer (Adam), andevaluation metric (accuracy). After this step, the model willbe ready for training.4. Calculate class weights:a. Extract the class labels corresponding to the maximum
prediction probability (with np.argmax()) from the
train_dataset by iterating over it and finding the classwith the highest probability.b. Computes class weights to handle class-imbalance usingthe method class_weight.compute_class_weight(). The
balanced option adjusts the weights inverselyproportional to class frequencies.c. Convert the computed class weights into a dictionarythat maps each class to its weight.5. Train the model:a. Set the initial number of epochs (INITIAL_EPOCH) to10, meaning the model will train over 10 full passes of thedataset.b. Begin training the model with model.fit(), using the

following arguments to the function:i. train_dataset: Training data used for fitting themodel.ii. class_weight = classweights: The class weights tohandle class-imbalance.iii. shuffle = True: Shuffles the training dataset eachepoch for better generalization.iv. validation_data = val_dataset: Provides thevalidation dataset for performance evaluation.v. epochs = INITIAL_EPOCH: Number of epochs totrain the model.vi. verbose = 1: Displays detailed progress duringtraining.6. Plot learning curves: Plot the training and validation
accuracy and loss over the epochs based on the historyobject returned from model.fit() using
plot_learning_curves(history), as shown in the next codesnippet:INITIAL_LEARNING_RATE = 1e-4optimizer = tf.keras.optimizers.Adam(learning_rate=\ INITIAL_LEARNING_RATE)loss = 'categorical_crossentropy'metrics = ['accuracy']model.compile(loss=loss, optimizer=optimizer, metrics=metrics)
y_labels = np.argmax(next(iter(train_dataset))[1].numpy(), axis=1)classweights = class_weight.compute_class_weight(\ class_weight = "balanced", \ classes = np.unique(y_labels), \ y = y_labels)classweights = dict(zip(np.unique(y_labels), classweights))
INITIAL_EPOCH = 10history = model.fit(train_dataset, class_weight = classweights, shuffle = True,

 validation_data = val_dataset, epochs = INITIAL_EPOCH, verbose = 1)
plot_learning_curves(history)If you run the preceding code to train the model, you should getthe following plots showing how the training and validation lossdecreases, and how the training and validation accuracychanges over the training epochs:

Figure 9.19: Training/validation loss and accuracy with epochsThe next code snippet evaluates the model’s performance on the(held-out) test dataset, calculating the loss and accuracy, thenprints these metrics. It helps assess how well the modelgeneralizes to unseen data. Again, follow the next steps:1. Extract test data: Retrieve the next batch of data from thetest dataset (test_dataset), which contains images (x_test)and their corresponding labels (y_test), using
next(iter(test_dataset)), a python iterator (use a python
generator instead for lazy evaluation and efficient memoryhandling).2. Evaluate the trained model on the test dataset using thefunction model.evaluate(), the function accepts thefollowing arguments:i. x_test.numpy(), y_test.numpy(): The test images andlabels are converted to NumPy arrays to be passed intothe evaluate function.ii. verbose=0: Suppresses the output of the evaluationprocess (silent mode). If set to 1, it would show a

progress-bar during evaluation. The function returns a
list (score), where:a. score[0] represents the loss on the test dataset(categorical cross-entropy in this case).b. score[1] represents the accuracy on the test dataset.Now, refer to the next code snippet:x_test, y_test = next(iter(test_dataset))score = model.evaluate(x_test.numpy(), y_test.numpy(), verbose=0)print('Model Loss: {}, Accuracy: {}'.format(score[0], score[1]))If you run the preceding code snippet, you should get an outputas follows:

Figure 9.20: Performance of the model on the (unseen) test images

The next code snippet makes predictions on the test data,extracts the predicted and true class labels, and generates a
confusion matrix that compares the two. It saves the matrix asan image file at the specified location (confusion_matrix_file).The confusion matrix visually shows the performance of themodel by illustrating the true positives, false positives, true
negatives, and false negatives for each class. Follow the nextsteps:1. Make predictions on the test data:

a. Use the trained model to predict the class labels for the
test dataset (x_test), with the function model.predict().b. Convert the test data to a NumPy array (using thefunction numpy()) to be fed into the model.c. The output y_pred will be an array of probabilities foreach class.2. Extract predicted class labels: Extract the index of thehighest probability using the function np.argmax(), alongthe given axis:a. axis=1: extract the index of the maximum value alongthe columns (classes) for each image,b. The result y_pred_classes is the predicted class label foreach image in the test dataset.3. Extract true class labels y_true:

from sklearn.metrics import confusion_matrixy_pred = model.predict(x_test.numpy())y_pred_classes = np.argmax(y_pred, axis = 1) y_true = np.argmax(y_test.numpy(), axis = 1) Now, use the function
sklearn.metrics.confusion_matrix(y_true, y_pred) or thefunction sklearn.metrics.ConfusionMatrixDisplay(model,
x_test, y_test) to display the confusion matrix as shown in thefollowing figure:

Figure 9.21: Confusion matrix (on test dataset) for pneumonia classification

Finally, let us implement a Gradient-weighted Class
Activation Mapping (Grad-CAM) to gain intuitive visualinsights into the decision-making process of a deep learningmodel, using the next code snippet. The purpose of Grad-CAM isto highlight the regions of an image that were most importantfor the model’s decision. Let us break down the code step-by-step:1. The function get_img_array(img_path, size) converts animage into a form that the model can process:a. keras.preprocessing.image.load_img(img_path,

target_size=size): Loads an image from the specifiedpath (img_path) and resizes it to a specified target size(size). The result is a PIL image (img).b. keras.preprocessing.image.img_to_array(img):Converts the PIL image into a NumPy array with pixelvalues.c. np.expand_dims(array, axis=0): Adds an extradimension to the image array so that it becomes a batchof size 1.d. Returns the processed image array.2. The function make_gradcam_heatmap(img_array,
model, last_conv_layer_name, pred_index=None)generates the Grad-CAM heatmap for a given image array:a. Create the gradient model using

tf.keras.models.Model(), this model maps the inputimage (model.inputs) to the output of the last
convolutional layer (obtained with
model.get_layer(last_conv_layer_name)) and the finalprediction (model.output) of the model. This allows tocalculate gradients with respect to the convolutionallayer’s output.b. Use tensorflow’s automatic differentiation tool

tf.GradientTape() to record operations for calculatingthe gradient of the model’s prediction with respect to theactivations of the last convolutional layer.c. If pred_index is not provided, we choose the index of thetop predicted class for the image, using tf.argmax(). Thepredicted class is the one with the highest score.d. Compute the gradient of the top predicted class withrespect to the last convolutional layer’s output, using thefunction tape.gradient().e. Take the average of the gradients for each feature map,using tf.reduce_mean(). This gives a measure of howimportant each channel in the feature map is to themodel’s prediction.f. Compute the weighted sum to compute the heatmap, bymultiplying each channel of the last convolutional layerby its corresponding pooled gradient to create the class
activation heatmap, followed by a successivenormalization, to have the heatmap between and forbetter visualization.3. The function save_and_display_gradcam() generates andsaves the Grad-CAM heatmap superimposed on the originalimage:a. Loads a test image from x_test using the index id, thenexpands its dimensions to create a batch.b. Uses the model to predict the class probabilities for theimage and prints both the predicted and actual classes.c. Calls the make_gradcam_heatmap() function to createa heatmap based on the last convolutional layer(last_conv_layer_name).d. Applies the "jet" colormap, which converts the heatmapto RGB colors for better visualization.e. The heatmap is blended with the original image using an

alpha transparency factor. The value 255 * img convertsthe original image to the same range as the heatmap.Now, refer to the next code snippet:
def get_img_array(img_path, size): img = keras.preprocessing.image.load_img(img_path, \ target_size=size) return np.expand_dims(keras.preprocessing.image.img_to_array(img),\ axis=0)
def make_gradcam_heatmap(img_array, model, last_conv_layer_name, \ pred_index=None): grad_model = tf.keras.models.Model([model.inputs], \ [model.get_layer(last_conv_layer_name).output, model.output]) with tf.GradientTape() as tape: last_conv_layer_output, preds = grad_model(img_array) if pred_index is None: pred_index = tf.argmax(preds[0]) class_channel = preds[:, pred_index] grads = tape.gradient(class_channel, last_conv_layer_output) pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) last_conv_layer_output = last_conv_layer_output[0] heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis] heatmap = tf.squeeze(heatmap) heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap) return heatmap.numpy()
def save_and_display_gradcam(id, alpha=0.4): img = x_test[id].numpy() img_array = np.expand_dims(img, axis=0) preds = model.predict(img_array) last_conv_layer_name = "conv_7b_ac" heatmap = make_gradcam_heatmap(img_array, model, \ last_conv_layer_name) heatmap = np.uint8(255 * heatmap) jet = cm.get_cmap("jet") jet_colors = jet(np.arange(256))[:, :3] jet_heatmap = jet_colors[heatmap] jet_heatmap = keras.preprocessing.image.array_to_img(jet_heatmap) jet_heatmap = jet_heatmap.resize((IMG_WIDTH, IMG_HEIGHT)) jet_heatmap = keras.preprocessing.image.img_to_array(jet_heatmap) superimposed_img = jet_heatmap * alpha + 255 * img superimposed_img = keras.preprocessing.image.array_to_img(\ superimposed_img) superimposed_img.save(cam_path) display(Image(cam_path))
save_and_display_gradcam(10)If you run the preceding code snippet, you should get a figureas follows:

Figure 9.22: Superimposing class activation map with on a pneumonia positive x-ray
image with Grad-CAMThe following figure shows a few chest X-ray test images with

ground-truth (true) vs. predicted labels. The code to producethe following visualization is left as an exercise; it should bepretty straightforward.

Figure 9.23: Sample test chest X-ray images with GT/prediction for pneumonia

ConclusionThis chapter explores the diverse applications of imageprocessing and computer vision in medical imaging, focusing onkey challenges and solutions. It addresses the processing ofvarious image formats such as DICOM and NIfTI, 3Dvisualization of MRI scans using tools like matplotlib, visvisand vedo, and the application of filters and morphologicaloperations with libraries like medpy and itk. Advancedtechniques, including CT reconstruction via the inverse Radontransform, segmentation of brain MRI images with graph cut,

and deep learning models like XceptionNet for diseasedetection, are explored, highlighting the impact of thesetechnologies on improving diagnostic accuracy.
Questions1. Convert medical images in DICOM format to NIfTI format(Hint: use the library dicom2nifti).2. Use the visualization toolkit (the python library vtk) to loadand render a full-head MRI scan stored in the metaImage(.mhd) format. You can follow the steps:i. Load the 3D .mhd file representing a full-head MRI scanusing vtkMetaImageReader.ii. Render the volume using either volume rendering(vtkGPUVolumeRayCastMapper) or slicing(vtkImageReslice or vtkImageViewer2).iii. Display the 3D image in an interactive window withappropriate orientation and grayscale mapping.

Hints:
• Use vtkRenderWindowInteractor for interactivity.
• Apply a vtkPiecewiseFunction andvtkColorTransferFunction to control opacity andgrayscale lookup.If you visualize FullHead.mhd, it should be rendered asfollows:

Figure 9.24: Rendering of head image

References1.
https://www.researchgate.net/publication/28359596_In
teractive_Liver_Tumor_Segmentation_Using_Graph-
cuts_and_Watershed2. https://github.com/mateuszbuda/brain-segmentation-
pytorch/tree/master3. https://arxiv.org/pdf/1610.023914. https://github.com/MIC-
DKFZ/nnUNet/blob/master/documentation/inference_e
xample_Prostate.md5. https://www.nature.com/articles/s41592-020-01008-z6. https://link.springer.com/chapter/10.1007/978-3-319-
24574-4_287. http://medicaldecathlon.com/8. https://ieeexplore.ieee.org/document/80996789. https://www.youtube.com/watch?v=_eYIh7fxucM10. https://www.youtube.com/watch?v=EzTsOSJRGwE

https://www.researchgate.net/publication/28359596_Interactive_Liver_Tumor_Segmentation_Using_Graph-cuts_and_Watershed
https://github.com/mateuszbuda/brain-segmentation-pytorch/tree/master
https://arxiv.org/pdf/1610.02391
https://github.com/MIC-DKFZ/nnUNet/blob/master/documentation/inference_example_Prostate.md
https://www.nature.com/articles/s41592-020-01008-z
https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28
http://medicaldecathlon.com/
https://ieeexplore.ieee.org/document/8099678
https://www.youtube.com/watch?v=_eYIh7fxucM
https://www.youtube.com/watch?v=EzTsOSJRGwE

11. https://www.youtube.com/watch?v=hcqnEkfs6u812. https://www.youtube.com/watch?v=eCaXIPKz7yc13. https://www.youtube.com/watch?v=bU-KxXNUQ8014. https://github.com/divamgupta/image-segmentation-
keras15. https://www.youtube.com/watch?v=pFKARAl-wzA16. https://www.youtube.com/watch?v=eW6LWmkigrc

Join our Discord space
Join our Discord workspace for latest updates, offers, tech
happenings around the world, new releases, and sessions with
the authors:
https://discord.bpbonline.com

https://www.youtube.com/watch?v=hcqnEkfs6u8
https://www.youtube.com/watch?v=eCaXIPKz7yc
https://www.youtube.com/watch?v=bU-KxXNUQ80
https://github.com/divamgupta/image-segmentation-keras
https://www.youtube.com/watch?v=pFKARAl-wzA
https://www.youtube.com/watch?v=eW6LWmkigrc
https://discord.bpbonline.com/

CHAPTER 10
Application of Image

Processing and Computer
Vision in Medical Imaging

and Remote Sensing

IntroductionIn this chapter, we explore advanced applications of computervision techniques in two critical domains: medical imagingand remote sensing. We continue to explore computer visionmodels for medical imaging, by addressing challenges such asdisease detection and anatomical structure segmentationusing state-of-the-art deep learning models. These solutionsdemonstrate how computer vision can aid in diagnostics andtreatment planning. In the realm of computer vision andimage processing in remote sensing, we first focus on thesegmentation of FloodNet images using VGG-UNet, themonitoring and management of flood-prone areas. We alsoexamine the landcover classification problem with Fastai’s
ResNet101 applied to the EuroSAT dataset, showcasing howsatellite imagery can be leveraged to understand and managenatural resources and environmental changes.

Through these examples, this chapter provides a well-roundedview of how modern image processing and machine learningtechniques contribute to solving real-world problems acrosshealthcare and environmental monitoring. It highlights thepivotal role of computer vision in extracting actionableinsights from complex image datasets, thereby enhancingdecision-making and planning.
StructureThis chapter covers the following topics:

• Medical image processing
• Computer vision and image processing in remote sensing

ObjectivesBy the end of this chapter, you will be able to apply deeplearning and computer vision techniques to solve real-worldproblems in medical imaging and remote sensing. You willunderstand how models like U-Net, nnUNet, CovidNet, andResNet101 are used for tasks such as disease detection, organand tumor segmentation, environmental monitoring, andlandcover classification. Through hands-on examples withlibraries such as TensorFlow, pytorch, fastai, and
keras_segmentation, you will gain practical skills in buildingand evaluating image analysis pipelines that contribute tohealthcare diagnostics and natural resource management.
Medical image processingThis chapter builds upon Chapter 9, Application of Image
Processing and Computer Vision in Medical Imaging, byfurther exploring advanced techniques in medical imageanalysis through the lens of image processing and computer

vision. It delves into state-of-the-art semantic segmentationmethods, including nnUNet for prostate image segmentationand UNet for detecting brain tumors, highlighting how thesemodels effectively extract clinically relevant structures fromcomplex medical scans. Furthermore, the chapter examinesdeep learning applications such as Covid-Net for identifying
COVID-19 in chest radiographs, showcasing thetransformative role of artificial intelligence in moderndiagnostic imaging.
COVID-19 detection from radiographs
with Covid-Net with tensorflowThe global COVID-19 pandemic has highlighted theimportance of rapid and accurate virus detection, especially inmedical imaging. Among the diagnostic tools available,radiographs such as chest X-rays (CXR) and CT scans haveplayed a pivotal role in identifying COVID-19-related lungabnormalities. Leveraging deep learning models such as
COVID-Net, a convolutional neural network (CNN) designedspecifically for detecting COVID-19 from medical imaging, hasprovided a powerful solution for automating this process.In this section, we will explore how to use a pretrainedCOVID-Net model for detecting COVID-19 from chest CTscans. The following code example demonstrates the completeworkflow: loading the model, preprocessing the input images,running inference, and visualizing the results using Grad-CAM. This serves as a practical introduction to applying deeplearning for medical image classification and interpretingmodel outputs to gain insights into decision-making processes.The key steps involved are outlined as follows:1. Importing the required libraries: Let us start byimporting the required libraries, as usual. Note that weshall use tensorflow version 1.15 here. We shall useGoogle Colab for the implementation, and use the GPU

runtime for faster execution create a new notebook. Copy-paste and run the following code on Colab:
run in google colab
import os
import cv2
import numpy as np
#!pip install tensorflow==1.15
import tensorflow as tf
import matplotlib.pyplot as plt
#!pip install gdown2. Downloading the dataset: The dataset used in thisexample is from Kaggle's COVIDx-CT dataset. Thisdataset includes CT scans images labeled as Normal,
(Non-COVID-19) Pneumonia, or COVID-19, making it asuitable choice for training and testing a model designedto detect COVID-19 from CT images. The dataset can bedownloaded using the Kaggle CLI, by running thefollowing commands in the console:! pip install kaggle! mkdir ~/.kaggle! cp kaggle.json ~/.kaggle/! chmod 600 ~/.kaggle/kaggle.json! kaggle datasets download hgunraj/covidxct!unzip covidxct -d covidxct%cd kaggle/input/covidxct/! unzip val_COVIDx_CT-2A.txt.zip% cd ../The dataset consists of CT scan images and correspondinglabels that indicate the class of the image. This labeling isessential for supervised learning tasks, where the modellearns to classify images based on the ground-truthprovided.3. Downloading the pretrained model: To save time andcomputational resources, we use a pretrained model called
COVID-Net CT-2 S. The model files are hosted on GoogleDrive and can be downloaded using their respective IDs.
Model nameMODEL_NAME = 'COVID-Net CT-2 S'
Model locationMODEL_DIR = 'kaggle'

META_NAME = 'model.meta'CKPT_NAME = 'model'
Model IDs in Google DriveMODEL_IDS = { 'COVID-Net CT-2 L': ('1YQxVRYJ37nPSCtjUU9WWlXWRWYvZkKPl', '1EgelTN_fyku2m2fALqpJvfjkuQ7Wqqdg', '12BhWk_KiQ-hX--Qb7ASdPQTUOfOPccQE'), 'COVID-Net CT-2 S': ('1zKTSxAhRrFhJxUnCcAf73WEZ7OcqvMre', '1CSYekjpU1qYXxuOkjL0fBuzBIkvFXAqw', '12uiQc5QePuqg2ErRF8llrL1vD9aFIiiJ')}!gdown --id {MODEL_IDS[MODEL_NAME][0]}!gdown --id {MODEL_IDS[MODEL_NAME][1]}!gdown --id {MODEL_IDS[MODEL_NAME][2]}These files contain the architecture, checkpoint (weights), and

metadata necessary for running the model on new images.The pretrained model we will use here is COVID-Net CT-2 S,which is a deep learning model designed for COVID-19detection and severity assessment from chest CT scans. Hereis what it does:1. COVID-19 detection: It classifies whether a given CTscan slice shows signs of COVID-19 infection.2. Severity assessment: In addition to binary detection(COVID-positive or negative), the model is trained toestimate the severity of infection (e.g., mild, moderate, or
severe), making it useful for clinical triage and monitoringdisease progression.3. Model variant -S: The “S” in CT-2 S refers to the smallvariant of the model, which has a more compactarchitecture. It is optimized for faster inference and lowercomputational cost, making it suitable for deployment inresource-constrained environments. COVID-Net CT-2 S ispart of the broader COVID-Net initiative and was trainedon the COVIDx-CT dataset, which contains CT scanimages labeled with expert annotations for presence andseverity of COVID-19. The key components of COVID-Net
CT-2 are:

a. Convolutional layers that automatically extract featuresfrom CT scan images.b. Residual connections inspired by the ResNetarchitecture, which allow for training deeper networkswithout encountering the vanishing gradient problem.Final dense layers that classify the input image into oneof the three categories: Normal, (Non-COVID-19)
Pneumonia, or COVID-19.c. COVID-Net models are tailored to handle medicalimaging, where specific structures in the image arecrucial for accurate classification.4. Loading the model: To load the model, tensorflow’slow-level API is used. The model is saved as a MetaGraph(.meta) file that defines the computation graph, and a

checkpoint (.ckpt) file that contains the trained weights.The function load_graph()defined in the next code snippetcreates a new tensorflow graph and session, and loads asaved model’s meta graph from the specified .meta fileusing import_meta_graph(). It returns the graph,
session, and saver object for further use.The create_session() function defined in the followingcode snippet sets up and configures a tensorflow sessionto execute the computation graph. Here is how the codeworks in details:a. tf.ConfigProto(): This line creates a configurationobject (config) that allows customization of varioussettings for the TensorFlow session. These settings helpcontrol how tensorFlow interacts with systemresources like CPUs, GPUs, memory, etc.b. config.gpu_options.allow_growth = True: Bydefault, tensorFlow allocates all available GPU memorywhen it starts a session. This can sometimes lead tomemory waste, if not all of it is needed. The

allow_growth = True setting allows TensorFlow toallocate GPU memory dynamically, meaning it will onlyallocate as much memory as the model requires andgradually grow as more is needed. This ensures betterGPU memory management.c. tf.Session(config=config): This line creates a
tensorflow session (sess) with the configurationdefined earlier. A session in tensorflow is used to runoperations or computations defined in thecomputational graph (for example, loading data, makingpredictions, and so on). The session is what actuallyexecutes the computations in the graph on the availablehardware (CPU or GPU).

Note: In TensorFlow 1.x, sessions are essential for running operatio
within the computational graph—such as loading data, maki
predictions, and executing other computations on available hardwa
(CPU or GPU). However, beginning with TensorFlow 2.x, eager executi
is enabled by default. This means computations are executed immediate
as they are called in Python, eliminating the need for explicitly managi
sessions in most use cases.

Important: If you are running this code, ensure you are using TensorFl
1.x, as it depends on manual session handling, which is not compatib
with TensorFlow 2.x without modification.The session object (sess) is returned, allowing other partsof the code to interact with and use this session forrunning tensorflow operations (such as inference ormodel training), as shown in the next code snippet:
def load_graph(meta_file): graph = tf.Graph() with graph.as_default(): # Create session and load model sess = create_session() # Load meta file print('Loading meta graph from ' + meta_file) saver = tf.train.import_meta_graph(meta_file, \ clear_devices=True) return graph, sess, saver

def create_session(): config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) return sessd. Once the graph is restored from the meta file, thepretrained weights are loaded using the checkpoint ckptusing the function load_ckpt():
def load_ckpt(ckpt, sess, saver): # Load weights if ckpt is not None: print('Loading weights from ' + ckpt) saver.restore(sess, ckpt)e. The following code snippet defines the locations of dataand key tensor variables for running inference on the

pretrained COVID-19 detection model:
Data locationIMAGE_DIR = 'kaggle/input/covidxct/2A_images'LABEL_FILE = 'kaggle/input/covidxct/val_COVIDx_CT-2A.txt'
Tensor namesIMAGE_INPUT_TENSOR = 'Placeholder:0'TRAINING_PH_TENSOR = 'is_training:0'FINAL_CONV_TENSOR = 'resnet_model/block_layer4:0'CLASS_PRED_TENSOR = 'ArgMax:0'CLASS_PROB_TENSOR = 'softmax_tensor:0'LOGITS_TENSOR = 'resnet_model/final_dense:0'
Class names, in order of indexCLASS_NAMES = ('Normal', 'Pneumonia', 'COVID-19')f. The next code snippet creates the full paths for themodel’s meta and checkpoint files, loads the TensorFlowgraph and session (sess) from the meta file (meta_file),and restores the model’s weights from the checkpoint(ckpt):
Create full pathsmeta_file = os.path.join(MODEL_DIR, META_NAME)ckpt = os.path.join(MODEL_DIR, CKPT_NAME)
Load metagraph and create sessiongraph, sess, saver = load_graph(meta_file)
Load checkpoint
with graph.as_default(): load_ckpt(ckpt, sess, saver)

This process restores the complete model, which is nowready for inference.5. Preprocessing CT images: Before feeding images to themodel, they need to be preprocessed. The CT scan imagesare grayscale, and they are resized to the input dimensionsexpected by the model (for example, 512×512 pixels).Bounding boxes are applied to focus the model on specificregions of interest.
def load_and_preprocess(image_file, bbox=None, width=512, \ height=512):
 # Load and crop image image = cv2.imread(image_file, cv2.IMREAD_GRAYSCALE) if bbox is not None: image = image[bbox[1]:bbox[3], bbox[0]:bbox[2]] image = cv2.resize(image, (width, height), cv2.INTER_CUBIC) # Convert to float in range [0, 1] and stack to 3-channel image = image.astype(np.float32) / 255.0 image = np.expand_dims(np.stack((image, image, image), \ axis=-1), axis=0) return image6. The load_labels() function is responsible for loadingimage file names, their associated class labels, andbounding boxes from a label file. This information is thenused for model inference and visualization in subsequentparts of the code. Here is a breakdown of how the functionworks:a. The function takes an argument, label_file, which isthe path to a text file that contains image labels,classes, and bounding boxes for the images.b. It returns three lists:i. fnames: List of image file names.ii. classes: List of corresponding class labels for eachimage.iii. bboxes: List of bounding boxes for each image.
def load_labels(label_file): fnames, classes, bboxes = [], [], [] with open(label_file, 'r') as f: for line in f.readlines():

 fname, cls, xmin, ymin, xmax, ymax = \ line.strip('\n').split() fnames.append(fname) classes.append(int(cls)) bboxes.append((int(xmin), int(ymin), \ int(xmax), int(ymax))) return fnames, classes, bboxes7. Use the next lines of code to select the first image fromthe dataset, retrieve the corresponding class label (cls)and bounding box (bbox) and preprocess the image. Thenload image filenames, classes, and bounding boxes fromthe label file (LABEL_FILE).idx = 0image_file = os.path.join(IMAGE_DIR, filenames[idx])cls, bbox = classes[idx], bboxes[idx]image = load_and_preprocess(image_file, bbox)filenames, classes, bboxes = load_labels(LABEL_FILE)8. Running inference: Once the model is loaded and theimages are preprocessed, we can run inference andvisualize the results using Grad-CAM, which highlights theareas in the image that the model considered important forits classification.The run_inference() function is responsible forperforming inference on one or more images using a pre-trained model loaded in a tensorflow session. It processesthe images in batches, runs them through the model, andreturns the predicted class labels along with theircorresponding confidence scores, as shown in the nextcode snippet:
def run_inference(graph, sess, images, batch_size=1):
 # Create feed dict feed_dict = {TRAINING_PH_TENSOR: False} # Run inference with graph.as_default(): classes, confidences = [], [] num_batches = int(np.ceil(images.shape[0]/batch_size)) for i in range(num_batches): # Get batch and add it to the feed dict feed_dict[IMAGE_INPUT_TENSOR] = \ images[i*batch_size:(i + 1)*batch_size, ...]

 # Run images through model preds, probs = sess.run([CLASS_PRED_TENSOR, \ CLASS_PROB_TENSOR], feed_dict=feed_dict)
 # Add results to list classes.append(preds) confidences.append(probs)
 classes = np.concatenate(classes, axis=0) confidences = np.concatenate(confidences, axis=0) return classes, confidences9. Grad-CAM overview: Grad-CAM is a technique thathelps visualize the regions of the image that are mostinfluential in the model’s decision-making process. This isparticularly useful in medical imaging, as it can revealwhether the model is focusing on clinically relevant areas(e.g., regions affected by COVID-19) and provides insightsinto why the model classifies an image as positive forCOVID-19. The make_gradcam_graph() function definedin the next code snippet augments the existing TensorFlowgraph by adding operations to compute the gradient of thepredicted class score with respect to the feature maps ofthe final convolutional layer:
def make_gradcam_graph(graph): with graph.as_default(): # Get required tensors final_conv = graph.get_tensor_by_name(FINAL_CONV_TENSOR) logits = graph.get_tensor_by_name(LOGITS_TENSOR) preds = graph.get_tensor_by_name(CLASS_PRED_TENSOR) # Get gradient top_class_logits = logits[0, preds[0]] grads = tf.gradients(top_class_logits, final_conv)[0] # Comute per-channel average gradient pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) return final_conv, pooled_grads10. Generating Grad-CAM heatmap: Let us compute theGrad-CAM heatmap using the gradients and convolutionallayer activations. The heatmap highlights regions in theimage that are most influential in the model’s decision-making process.The function run_gracam() defined in the following codeblock generates the Grad-CAM heatmap — for the given

input image — using the activations from the finalconvolutional layer (final_conv), used to determine whichparts of the image the model focused on — the gradientvalues (pooled_grads, computed with respect to thepredicted class), to be used to weigh the importance ofeach channel in the final convolutional layer — on top ofthe tensorflow session (sess) that runs the model and itscomputations:
def run_gradcam(final_conv, pooled_grads, sess, image): with graph.as_default(): final_conv_out, pooled_grads_out, \ class_pred, class_prob = sess.run(
 [final_conv, pooled_grads, CLASS_PRED_TENSOR, \ CLASS_PROB_TENSOR], feed_dict={IMAGE_INPUT_TENSOR: image, \ TRAINING_PH_TENSOR: False}) final_conv_out = final_conv_out[0] class_pred = class_pred[0] class_prob = class_prob[0, class_pred] # Compute heatmap as gradient-weighted mean of activations for i in range(pooled_grads_out.shape[0]): final_conv_out[..., i] *= pooled_grads_out[i] heatmap = np.mean(final_conv_out, axis=-1) # Convert to [0, 1] range heatmap = np.maximum(heatmap, 0)/np.max(heatmap) # Resize to image dimensions heatmap = cv2.resize(heatmap, (image.shape[2], \ image.shape[1])) return heatmap, class_pred, class_prob11. The following code snippet first sets up the requiredelements for Grad-CAM, extracting the final convolutionallayer and computing gradients and then runs Grad-CAMon the input image, generating a heatmap that shows theimportant regions for the classification, along with the
predicted class (class_pred) and its confidence score(class_prob):final_conv, pooled_grads = make_gradcam_graph(graph)heatmap, class_pred, class_prob = run_gradcam(final_conv, \ pooled_grads, sess, image)12. Visualizing predictions: After obtaining the heatmap,we can overlay it on the original CT scan image, as done in

the following code snippet:
Show imagefig, ax = plt.subplots(1, 2, figsize=(9, 5))plt.subplots_adjust(0,0,1,0.9,0.05,0.05)plt.subplots_adjust(hspace=0.01)ax[0].imshow(image[0]), ax[0].axis('off')ax[0].set_title('input CT image', size=10)ax[1].imshow(image[0]), ax[1].axis('off')ax[1].set_title('Covid-Net CT classification', size=10)ax[1].imshow(heatmap, cmap='jet', alpha=0.4) plt.suptitle('Predicted Class: {} ({:.3f} confidence), True Class:' '{}'..format(CLASS_NAMES[class_pred], \ class_prob, CLASS_NAMES[cls]), size=12)
print('**DISCLAIMER**')print('Do not use this prediction for self-diagnosis. ' 'You should check with your local authorities for ' 'the latest advice on seeking medical assistance.')plt.show()If you run the preceding code snippet, you should obtain afigure like the following one. This will allow medicalprofessionals to interpret the model’s decision and verify if thehighlighted regions correspond to actual COVID-19abnormalities.

Figure 10.1: CT image classification with Covid-Net and overlaying class
activation

Prostate image segmentation with
nnUNet with Medical Decathlon datasetProstate cancer is one of the most common malignanciesaffecting men worldwide. Accurate segmentation of theprostate gland in medical images is crucial for effectivediagnosis, treatment planning, and monitoring. Deep learningmodels, particularly CNNs, have demonstrated significantsuccess in medical image segmentation tasks. This sectionexplores the application of nnUNet, a robust and flexibleframework for biomedical image segmentation, to the task ofprostate image segmentation using the Medical Decathlondataset.The nnUNet framework (as shown in Figure 10.2) leverages
U-Net architecture, which consists of an encoder-decoderstructure. The encoder captures context through down-sampling, while the decoder enables precise localization viaup-sampling. Refer to the following figure:

Figure 10.2: nnU-Net architecture
Source: https://www.researchgate.net/figure/figure-supplement-1-Diagram-of-the-

https://www.researchgate.net/figure/figure-supplement-1-Diagram-of-the-nnU-net-architecture-used-for-HiippUnfold-This-119_fig2_366312394

nnU-net-architecture-used-for-HiippUnfold-This-119_fig2_366312394

The Medical Decathlon dataset consists of various medicalimaging tasks, including prostate segmentation. It providesdiverse annotated datasets suitable for training and validatingmachine learning models. For prostate segmentation, thedataset includes multi-modal MRI scans that capture detailedinformation about the prostate anatomy.Let us now explore how to use a pretrained nnUNet model forprostate image segmentation, using the library nnunet. UseGoogle Colab to run this example (create a new notebook andcopy paste the code). Follow the given steps:1. Start by importing essential libraries. Here the library
nibabel is used for loading and saving NIfTI images, globhelps to retrieve file paths, matplotlib is used forvisualization, and skimage.color assists in convertinglabel images to RGB format. Install the library nnunetwith pip, if not already installed.
run in colab
#! pip install nnunet
import nibabel as nib
from glob import glob
from skimage import color
import matplotlib.pylab as plt2. Copy the prostate dataset (Task05_Prostate.tar) fromthe Medical Decathlon dataset (as shown in Figure
10.3), shared by the following (Google Drive) link:
https://drive.google.com/drive/folders/1HqEgzS8BV2c
7xYNrZdEAnrHk7osJJ–2, to your google drive andrename to Task05_Prostate.tar:

https://www.researchgate.net/figure/figure-supplement-1-Diagram-of-the-nnU-net-architecture-used-for-HiippUnfold-This-119_fig2_366312394
https://drive.google.com/drive/folders/1HqEgzS8BV2c7xYNrZdEAnrHk7osJJ%E2%80%932

Figure 10.3: Copying the prostrate (Medical Decathlon) dataset from Google
Drive

3. Mount the Google Drive to the Google Colabenvironment, enabling access the prostate dataset fromColab, by running the following code snippet:
from google.colab import drivedrive.mount('/content/drive/')4. Extract the contents of the prostate segmentation datasetfrom the .tar file stored on Google Drive:!tar xvf drive/MyDrive/Task05_Prostate.tar

5. nnUNet commands: Run the following commands onshell, one by one, as explained:a. nnUNet_convert_decathlon_task: Converts theprostate dataset into the nnUNet format.b. nnUNet_download_pretrained_model: Downloads apretrained model specifically fine-tuned for prostate
segmentation.c. nnUNet_print_pretrained_model_info: Prints detailsabout the downloaded pretrained model.d. nnUNet_predict: Runs inference on the test imagesusing the specified model and outputs the segmentedimages to the designated directory (output_dir,specified by -o switch).!nnUNet_convert_decathlon_task -i Task05_Prostate!nnUNet _download_pretrained_model Task005_Prostate!nnUNet _print_pretrained_model_info Task005_Prostate

!nnUNet _predict -i $nnUNet_raw_data_base/nnUNet_raw_data/Task005_Prostate/imagesTs/ -o output_dir -t 5 -m 3d_fullres6. Use the glob function to collect the paths of the original
input test images and the segmented output images fromtheir respective directories (Task05_Prostate/imagesTs/and output_dir, respectively).7. Load a test image and its corresponding segmentedoutput using the function nibabel.load().8. Create a figure to display the images. The originalprostate MRI slices are shown using a bone colormap,which enhances the contrast of bone structures.9. Visualize the segmented output image using the
label2rgb() function from skimage.color module. Thisfunction assigns different colors (for example, red, blueand green) to differently labeled regions, for clearvisualization against the background of the original image.The alpha parameter controls the transparency of theoverlay, as shown in the next code snippet:nifiles = glob('Task05_Prostate/imagesTs/*.nii.gz')nifiles_seg = glob('output_dir/*.nii.gz')i, j = 1, 10nifti = nib.load(nifiles[i]).get_fdata()nifti_seg = nib.load(nifiles_seg[i]).get_fdata()plt.figure(figsize=(20,7))plt.subplots_adjust(0,0,1,0.95,0.05,0.05)plt.subplot(131), plt.imshow(nifti[...,j,0], cmap='bone') plt.axis('off') plt.title('Prostate input 0', size=20)plt.subplot(132), plt.imshow(nifti[...,j,1], cmap='bone') plt.axis('off') plt.title('Prostate input 1', size=20)plt.subplot(133)plt.imshow(color.label2rgb(nifti_seg[...,j], \ nifti[...,j,0] / nifti[...,j,0].max(), \ colors=[(255,0,0),(0,0,255),(0,255,0)], \ alpha=0.01, bg_label=0, bg_color=None))plt.axis('off'), plt.title('Segmented output with UNet', size=20)plt.show()If you run the preceding code snippet, you should obtain afigure as follows, with the input image channels (0 and 1)

shown on the left, along with the overlayed output color-coded segmentation labels on the right, displayed side-by-side:

Figure 10.4: Semantic segmentation with U-Net

Binary semantic segmentation of brain
tumors using U-Net with pytorch
Binary semantic segmentation in medical imaging,particularly in brain images, plays a crucial role in diagnosingand understanding various neurological conditions, such astumors, lesions, and other abnormalities. This process involvesclassifying each pixel in an image as belonging to one of twoclasses: the region of interest (for example, a tumor) or the
background. This chapter explores the methodologies,challenges, and applications of binary semantic segmentationin brain imaging, providing insights into the latestadvancements and hands-on Python code examples.
U-Net: a convolution neural networkAs seen previously, CNNs are the backbone of most imageprocessing tasks. In binary semantic segmentation, CNNs canbe adapted to classify each pixel in an image. U-Net, a type ofCNN designed specifically for medical image segmentation,has shown significant success in this area.

U-Net architectureU-Net’s architecture is symmetric, with a contracting path tocapture context and a symmetric expanding path for preciselocalization. This design is particularly effective for medicalimage segmentation tasks. Here are the key components:
• The U-Net model consists of four levels of blocks in the

encoding and decoding paths.
• Each block in the encoding path contains two

convolutional layers with batch-normalization and ReLUactivation (Rectified Linear Unit, an activation functionin neural networks defined as f(x) = max(0, x)), followedby a max-pooling layer.
• In the decoding path, up-convolutional layers replace

max-pooling. The number of filters increases progressivelythrough the blocks: 32, 64, 128, and 256 filters, while thebottleneck layer uses 512 filters.
• Skip connections: Link the encoding layers to theircorresponding decoding layers to preserve spatialinformation.
• The input is a 3-channel brain MRI (Magnetic

Resonance Imaging) slice representing pre-contrast,
FLAIR (Fluid-Attenuated Inversion Recovery), andpost-contrast sequences.

• The output is a single-channel probability map thatidentifies abnormal regions, which can be converted into abinary segmentation mask using a thresholding technique,as demonstrated in the following figure:

Figure 10.5: U-Net architectureThe following Python code demonstrates brain tumorsegmentation on brain MRI images (you can download theimages from the brain MRI segmentation dataset from kaggle:
https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-
segmentation) using a pretrained U-Net model from pytorch
hub, showcasing how deep learning can be applied to extracttumor regions from medical scans. Let us break down the keysteps involved:1. Loading the pretrained U-Net model:Here, the torch.hub.load() function loads a pretrained U-

Net model from a repository. The U-Net architecture iswidely used for medical image segmentation, especially fortasks like brain tumor segmentation. The parameters for

https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation

this model are:a. in_channels=3: The input consists of 3 channels,which corresponds to the RGB image.b. out_channels=1: The output will have a singlechannel, which will contain the probability map of the
tumor (regions with a higher probability correspond toabnormal tissue).c. init_features=32: This is the number of convolutional
filters used in the first layer. The number of filtersdoubles at each down-sampling stage of the U-Netmodel.d. pretrained=True: This indicates that the model hasbeen pretrained, meaning the weights have alreadybeen optimized using a relevant dataset, allowing it toproduce accurate predictions without further training.2. Preprocessing the input image: Before feeding an MRIimage into the pretrained U-Net model for brain tumorsegmentation, it is essential to preprocess the input so thatit aligns with the model’s requirements. This involvesloading, transforming, and formatting the image, explainedas follows:a. Loading the image: The MRI image is loaded fromthe file system using the PIL library and converted toan RGB format (using the function convert('RGB')),ensuring it matches the model’s expected input (3channels).b. Preprocessing: The input image is transformed into atensor using transforms.ToTensor(), which normalizespixel values to the range [0,1]. This is necessarybecause the neural network expects input images astensors with values in a normalized range.c. Batching the input: After converting the image to a

tensor, the unsqueeze(0) function adds a batchdimension. This is because models in PyTorch expectinputs in the shape [batch_size, channels, height,
width].3. Handling GPU acceleration: If a GPU is available, boththe input image tensor and the model are moved to theGPU using to('cuda'). This allows for faster computation,leveraging GPU acceleration for the forward pass during

inference.4. Performing inference (segmentation): Once the MRIslices have been preprocessed and the model is ready, wemove on to the inference step to obtain the tumorsegmentation. In this stage, the model is used to predictthe presence of tumor regions in the image withoutupdating any weights. The key steps are as follows:a. Disabling gradients: The torch.no_grad() contextensures that no gradients are computed during
inference. This reduces memory consumption andspeeds up the process since gradient calculations arenot required for prediction.b. Model prediction: The model takes the input batchand performs a forward pass, generating the output,which is a single-channel image representing a
probability map. The values in the output rangebetween 0 and 1, where higher values indicate a higher
likelihood of a tumor being present in that region of theMRI slice.5. Post-processing the output: After obtaining the rawprediction from the model, post-processing is necessary toconvert it into a usable and visually interpretable format.The following steps outline how the output is normalized,binarized, and prepared for side-by-side visualization alongwith the input image:

a. Normalizing the input image: The input image isconverted to a NumPy array and normalized by dividingall pixel values by the maximum pixel value. Thisensures that the pixel values range from 0 to 1.b. Converting the predicted mask: The model’s outputis a single-channel probability map. The function
torch.round() is used to round the output values toeither 0 or 1, converting the probability map into a
binary mask (1 indicates the tumor region, and 0represents normal tissue).c. The function.squeeze() removes unnecessarydimensions from the output tensor.d. The result is converted to a NumPy array using
.cpu().numpy(), which first moves the data back to theCPU (if it is on GPU).e. Colorizing the predicted mask: The gray2rgb()function from skimage.color converts the grayscalesingle-channel mask into a 3-channel mask for bettervisualization, where the tumor region can be displayedwith distinct colors.6. Storing results: Finally, the normalized input image andthe predicted binary mask are stored in the inputs and

pred_masks lists, respectively. These lists are used tostore results for all images in the directory
images/brain_mri/*.tif, allowing batch processing ofmultiple MRI slices.
import torch
import numpy as np
from PIL import Image
from torchvision import transforms
from glob import glob
from skimage.color import gray2rgb
model=torch.hub.load('mateuszbuda/brain-segmentation-pytorch', \ 'unet', in_channels=3, out_channels=1, \ init_features=32, pretrained=True)

inputs, pred_masks = [], []
for f in glob('images/brain_mri/*.tif'): input_image = Image.open(f).convert('RGB') preprocess = transforms.Compose([transforms.ToTensor(), transforms.Normalize,]) input_tensor = preprocess(input_image) input_batch = input_tensor.unsqueeze(0) if torch.cuda.is_available(): input_batch = input_batch.to('cuda') model = model.to('cuda') with torch.no_grad(): output = model(input_batch) in_img = np.array(input_image) in_img = in_img / in_img.max() pred_mask = gray2rgb(torch.round(output[0]).squeeze()\ .cpu().numpy()) inputs.append(in_img) pred_masks.append(pred_mask)7. Iterate over the lists of input images and predicted masksobtained here, display the images (4 of them) along withthe predicted (binary) tumor masks, using the followingcode snippet, to obtain a figure like Figure 10.6:
import matplotlib.pylab as plt
plt.figure(figsize=(10,5))
for i in range(len(inputs)): plt.subplot(2,4,i+1), plt.imshow(inputs[i]), plt.axis('off') plt.subplot(2,4,i+5), plt.imshow(pred_masks[i]), plt.axis('off')plt.suptitle('brain images and predicted tumor masks', size=15)plt.tight_layout()plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 10.6: Predicting brain tumor masks with the pretrained U-Net model

Computer vision and image processing
in remote sensingRemote sensing, which involves gathering information aboutthe Earth’s surface through satellite or aerial imagery, hasbecome a critical tool for environmental monitoring (forexample, deforestation, desertification, and the effects ofclimate change on glaciers and ice caps), agriculture (such as,crop monitoring, soil properties analysis, and management ofwater resources), urban planning (for example, by providingdetailed land use and land cover maps, monitoring urbansprawl, and assessing infrastructure development), disastermanagement (that is, early warning systems, damageassessment, planning recovery efforts etc.), and many otherfields. Image processing plays a pivotal role in enhancing,interpreting, and analyzing remote sensing data, enabling theextraction of valuable information for various applications.Leveraging modern computer vision and image processingtechniques has dramatically enhanced the ability to interpretand analyze remote sensing data at scale.In this section, we will explore the three key applications ofcomputer vision in remote sensing:

• Segmentation of FloodNet images using VGG-UNet
with keras_segmentation: FloodNet is a dataset focusedon flood event detection and segmentation. We will use theVGG-UNet architecture, combining VGG16 as a featureextractor with a U-Net decoder to perform pixel-levelsegmentation of flood-affected areas.

• Landcover classification with Fastai ResNet101 using
the EuroSAT dataset: The EuroSAT dataset containssatellite images labeled by different land cover classes.Using the library Fastai, we will employ a ResNet101-based model to classify these land cover types with highaccuracy.

• Satellite image segmentation using Fastai and
Weights & Biases with the FloodNet dataset: We willperform semantic segmentation of satellite images, onceagain using the FloodNet dataset, with Fastai.Additionally, we will integrate Weights & Biases (wandb)to seamlessly track training metrics, visualize modelperformance, and monitor progress over time for improvedexperiment management.

Segmentation of FloodNet images
using VGG-UNet with the library
keras_segmentationFlood detection is a critical task in remote sensing, especiallyin disaster management, urban planning, and early warningsystems. Semantic segmentation, which involves pixel-wiseclassification of an image, plays an essential role in identifyingflood-affected regions from satellite imagery. This sectionpresents a deep learning-based approach for floodsegmentation using the VGG-UNet model and the FloodNetdataset. The model leverages a combination of VGG-16backbone (as encoder) and a U-Net-style decoder, to performaccurate flood region segmentation.

As explained earlier, semantic segmentation refers to the taskof classifying every pixel in an image into one of severalpredefined categories. Mathematically, semanticsegmentation can be formulated as a multi-class classificationproblem at the pixel level. Given an input image I∈RH×W×C,where H is the height, W is the width, and C is the number ofchannels (for example, RGB), the goal is to predict asegmentation mask M∈RH×W×K, where K is the number ofclasses (such as, flooded and non-flooded, on case of binarysegmentation).
VGG-UNet architectureVGG-UNet is a hybrid architecture (illustrated in Figure 10.7)that integrates the VGG-16 convolution neural network withthe U-Net architecture:

• VGG-16 acts as a feature extractor (encoder) by applying aseries of convolutional layers, reducing the spatialresolution while increasing the depth of features.
• The U-Net decoder uses transposed convolutions to up-

sample these features back to the original resolution,allowing pixel-wise classification. The core idea of U-Net isto enable precise localization by combining low-levelfeatures from earlier layers with high-level features fromdeeper layers. This is achieved using skip connections,which concatenate corresponding feature maps from the
encoder and decoder paths.

• The architecture is adequate for segmentation tasks,particularly for medical imaging and remote sensing. Itssuccess lies in combining semantic information from deeplayers with spatial information from shallow layers.Refer to the following figure:

Figure 10.7: Schematic diagram of semantic segmentation with VGG-UNet
encoder decoder

Source: https://www.researchgate.net/figure/Block-diagram-of-implemented-VGG-
UNet_fig1_363529612

FloodNet datasetThe FloodNet dataset comprises aerial images and theircorresponding segmentation masks, annotated with thefollowing 10 semantic classes:
• Background
• Building flooded
• Building non-flooded
• Road flooded
• Road non-flooded
• Water
• Tree
• Vehicle
• Pool
• GrassIt is designed for the EarthVision 2021 challenge and provides

https://www.researchgate.net/figure/Block-diagram-of-implemented-VGG-UNet_fig1_363529612

a unique opportunity for applying deep learning models forflood detection. The dataset is split into train and test sets,and images are resized to 512×512 pixels for the experiments.Now, let us demonstrate the segmentation of FloodNet imagesusing the VGG-UNet model with the keras_segmentationlibrary (install it with pip, if not already installed). Thefollowing code needs to be run in Google Colab; it illustratesthe entire pipeline, from dataset preparation to segmentationresults. Here are the steps you need to follow:1. First, get the publicly available dataset FloodNet
Challenge @ EARTHVISION 2021 - Track 1 from thefollowing google drive link:
https://drive.google.com/drive/folders/1sZZMJkbqJNb
HgebKvHzcXYZHJd6ss4tH (copy to your Google Drive)2. Map your Google Drive to your Google Colab environmentand access the dataset, as done earlier.3. Use the function resize_and_save() defined in thefollowing code snippet, to resize the (train and test)images (corresponding to different class labels) from theFloodNet dataset to the size 512×512, and save themlocally in Google Colab environment in the required formatfor training the model:
run in colab
import numpy as np
import matplotlib.pylab as plt
from skimage.io import imread
from skimage.color import label2rgb
import os
#!pip install keras_segmentation
from keras_segmentation.models.unet import vgg_unetRESIZE = (512,512)temp_root="/content/drive/MyDrive/FloodNet Challenge" "@ EARTHVISION 2021 - Track 1" local_root = "/content/512_Images"
def resize_and_save(path, resize=RESIZE, samples='all'):
 if len(os.listdir(os.path.join(local_root, path))) == 0: print(f"{path} --> Saving...\n") if samples == 'all':

https://drive.google.com/drive/folders/1sZZMJkbqJNbHgebKvHzcXYZHJd6ss4tH

 samples = len(os.listdir(os.path.join(temp_root, path))) for img_name in tqdm(os.listdir(os.path.join(\ temp_root, path))[:samples]): img = cv2.imread(os.path.join(temp_root, path, img_name)) img = cv2.resize(img, RESIZE) cv2.imwrite(os.path.join(local_root, path, img_name), img) else: print(f"{path} --> images are already saved")
os.makedirs("/content/512_Images/Train/Labeled/Flooded/image", \ exist_ok=True)os.makedirs("/content/512_Images/Train/Labeled/Non-Flooded/image", \ exist_ok=True)os.makedirs("/content/512_Images/Train/Labeled/Flooded/mask", \ exist_ok=True)os.makedirs("/content/512_Images/Train/Labeled/Non-Flooded/mask", \ exist_ok=True)os.makedirs("/content/512_Images/Train/Unlabeled/image", exist_ok=True)os.makedirs("/content/512_Images/Test/image", exist_ok=True)resize_and_save("Train/Labeled/Flooded/image")resize_and_save("Train/Labeled/Non-Flooded/image")resize_and_save("Train/Labeled/Flooded/mask")resize_and_save("Train/Labeled/Non-Flooded/mask")resize_and_save("Train/Unlabeled/image")resize_and_save("Test/image") 4. Initialize the VGG-UNet model with 10 classes,corresponding to different types of flooded and non-flooded regions and input image size 512×512.5. Train the model on the annotated images for 5 epochs(optionally split the training dataset into train and
validation dataset, use the validation dataset for model
evaluation while training), as shown in the following codesnippet:model = vgg_unet(n_classes=10, input_height=512, input_width=512)model.train(train_images = "512_Images/Train/Labeled/All/image", train_annotations = "512_Images/Train/Labeled/All/mask", #validate=True, #val_images = "512_Images/Val/Labeled/All/image", #val_annotations = "512_Images/Val/Labeled/All/mask", checkpoints_path = "models/vgg_unet_1", epochs=5)6. Create a folder named out to store the predictedsegmentation for the test images.

7. Use the next code snippet to iterate over the test images,generate and save predicted segmentation masks(obtained using the method predict_segmentation()) asfiles, for each image.8. Visualize the original images, predicted masks, andoverlayed images using the next code snippet, offering aclear view of how the model performs in segmentingflooded regions:folder = '512_Images/Test/image'
for f in os.listdir(folder): out = model.predict_segmentation(out_fname=os.path.join('out/', f))
for f in os.listdir(folder): test_img = imread(os.path.join('512_Images/Test/image/', f)) test_mask = imread(os.path.join('out/', f), 1) test_img = test_img / test_img.max() test_mask = test_mask / test_mask.max() if len(np.unique(mask_san)) > 1: plt.figure(figsize=(20,10)) plt.subplots_adjust(0,0,1,0.95,0.05,0.05) plt.subplot(131), plt.imshow(img_san), plt.axis('off') plt.title('input (test)', size=20) plt.subplot(132), plt.imshow(mask_san, cmap='jet') plt.axis('off') plt.title('predicted segmentation mask\n with PSP-UNet' ' (trained only for 5 epochs)', size=20) #cividis plt.subplot(133), plt.imshow(label2rgb(mask_san, img_san)) plt.axis('off'), plt.title('overlayed mask', size=20) plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 10.8: Segmenting a sample image from the FloodNet dataset using VGG-
UNetThis section showcased the use of VGG-UNet for accurateflood segmentation in satellite images, which can aid to timely

disaster management.
Landcover classification with FastaiResNet101 with EuroSAT datasetLandcover classification is crucial for understanding andmanaging Earth’s surface features, particularly in agriculture,urban planning, and environmental monitoring. Remotesensing data, such as satellite images, provides valuableinformation for these tasks. In this section, we will focus onapplying deep learning techniques for landcover classificationusing the EuroSAT dataset and the ResNet101 architecture.Deep learning, particularly CNNs, has proven highly effectivefor image classification tasks. ResNet101 is a popular CNNarchitecture that introduces residual connections to solve theproblem of vanishing gradients, allowing for the training ofdeeper networks. Ee will demonstrate landcover classificationusing the Fastai library, which simplifies the application ofstate-of-the-art deep learning techniques.We shall use ResNet101 that is pretrained on ImageNet and
fine-tune it on the EuroSAT dataset, using the Fastai library.It provides efficient tools for transfer learning, data
augmentation, and model interpretation, allowing for highperformance with minimal effort.
Residual networksThe ResNet architecture, proposed by He et al. (2016),introduces residual connections that bypass certain layers,enabling the training of deeper networks. This helps mitigatethe vanishing gradient problem by allowing gradients to flowmore easily through the network during backpropagation. Thekey idea is that each block learns a residual function F suchthat the output is computed as: output = activation(input +
F(input, W)), where F(Input, W) is the residual functionlearned by the block, and W denotes the trainable parameters.

This formulation helps in training deeper networks byallowing the model to learn only the residual (or difference)from the identity mapping. ResNet101 has 101 layers andleverages these residual connections to achieve highperformance while maintaining efficient training.
EuroSAT datasetThe EuroSAT dataset is based on Sentinel-2 satellite imagescovering 10 classes of land use and land cover. These include
residential areas, industrial areas, forests, agricultural areas,
water bodies, and more. The dataset provides RGB and multi-spectral images, with a resolution of 10 meters per pixel,making it suitable for classification tasks in remote sensing.Let us now walk through the following code demonstration,explaining each step in detail to understand theimplementation thoroughly. Again, run the code on GoogleColab (https://colab.research.google.com/). Follow thegiven steps:1. Use the magic command %reload_ext autoreload, asshown in the following code block, to ensure that if anyexternal libraries or code files are modified, they arereloaded into the session. Install Fastai with pip.2. Import the necessary libraries:a. fastai.vision: Contains tools for image classification.b. error_rate: A metric for evaluating modelperformance, defined as 1-accuracy.c. zipfile, urllib, os: Utilities for downloading andunzipping the dataset.

run in colab
!pip install fastcore==1.3.19 Fastai==2.2.5
import the required libraries %reload_ext autoreload%autoreload 2
from fastai.vision import * # import the vision module
from fastai.metrics import error_rate # import evaluation metric
import zipfile # import module to unzip the data

https://colab.research.google.com/

import urllib.request
import os # import module to access file paths3. Download the compressed EuroSAT dataset from thepublic URL provided in the next code snippet, save it as
2750.zip, and then extract the compressed file, as shownin the following code snippet:url = 'http://madm.dfki.de/files/sentinel/EuroSAT.zip'urllib.request.urlretrieve(url,"2750.zip")zf = zipfile.ZipFile("2750.zip")zf.extractall()4. Define the current working directory (data_path) and setthe path to point to the folder where the dataset islocated.5. Generate data augmentation transformations with thefunction get_transforms(). In this case, it applies random
vertical flips but disables warping (perspective distortions)to the images to create variations in the training data, ascan be seen from the next code snippet.6. The method ImageDataBunch.from_folder() loads theimages from folders. It accepts the following arguments:a. train = ".": Indicates that all images are in the samefolder, and a validation set will be created by splittingthe data.b. valid_pct=0.2: Reserves 20% of the data for

validation.c. ds_tfms = tfms: Applies the data augmentationtransformations.d. size=224: Resizes the images to 224×224 pixels.e. bs=32: Sets the batch size to 32.7. The method .normalize(imagenet_stats) normalizes theimages based on the mean and standard deviation of the
ImageNet dataset.8. The method .show_batch() displays a batch of 5x5images with their respective labels.

9. The function cnn_learner() creates a learner object(learn) using a pretrained ResNet101 model(models.resnet101), where metrics=error_rate sets theevaluation metric to error rate.10. learn.summary() prints a summary of the modelarchitecture.data_path = os.getcwd()path = datapath4file(data_path+'/2750')tfms = get_transforms(flip_vert=True, max_warp = 0.)data = ImageDataBunch.from_folder(path, train = ".", valid_pct=0.2, ds_tfms = tfms, size=224, bs = 32) .normalize(imagenet_stats)
data.show_batch(rows=5, figsize=(15,15))learn = cnn_learner(data, models.resnet101, metrics=error_rate)
print(learn.summary())11. The method learn.lr_find() runs the learning rate finderto identify an optimal learning rate.12. The Fastai library provides a learning rate finder (LR
finder), which helps determine the best learning rate fortraining deep learning models. The function
learn.recorder.plot(suggestion=True) plots thelearning rate graph and suggests a suitable learning rate,it runs an LR range test and suggests an optimal learning
rate using a method based on gradient behavior:learn.lr_find()learn.recorder.plot(suggestion=True)
#Min numerical gradient: 1.20E-03
#Min loss divided by 10: 6.92E-03Running these lines of code generates a figure as follows:

Figure 10.9: Finding the optimal learning rate with FastaiAs we can see from the preceding figure,a. Before the optimal LR: The loss remains high (toosmall LR, slow learning).b. Optimal LR: The loss drops steeply.c. After the optimal LR: The loss spikes up (unstable
training due to too high LR).13. Next, set the learning rate to the optimal value found (lr

= 1.20E-03).14. Train the model for epochs using the one-cycle policy,which adjusts the learning rate dynamically duringtraining, using the function learn.fit_one_cycle(), as canbe seen in the following code snippet:lr = 1.20E-03learn.fit_one_cycle(6, slice(lr))The next table lists the training / validation loss, error rateand time taken to run each epoch. If you run the precedingcode you will get a table like the following one:

Figure 10.10: Drop in training /validation loss with epochs

15. The function learn.freeze() freezes the weights of theearlier layers so that only the final layers are fine-tuned.16. The function learn.lr_find() runs the learning ratefinder again for fine-tuning the final layers:learn.freeze()learn.lr_find()17. ClassificationInterpretation.from_learner(learn)creates an interpretation object to analyze the model’sperformance.18. interp.top_losses() finds the samples with the highestlosses, that is, where the model performs worst:interp = ClassificationInterpretation.from_learner(learn)losses,idxs = interp.top_losses()len(data.valid_ds)==len(losses)==len(idxs)
True19. Plot a confusion matrix, which visually represents theperformance of the model by showing how many sampleswere correctly and how many are incorrectly classified foreach class:interp.plot_confusion_matrix(figsize=(6,6), dpi=100)If you run the preceding code snippet, you should obtain aconfusion matrix plot like the next one:

Figure 10.11: Confusion matrix for the multi-class classification of the EuroSAT
landcover dataset20. List the most confused class pairs, that is, where themodel makes the most mistakes in distinguishing betweentwo classes.interp.most_confused(min_val=5)

[('PermanentCrop', 'HerbaceousVegetation', 11),
('River', 'Highway', 9),
('AnnualCrop', 'PermanentCrop', 8),
('PermanentCrop', 'AnnualCrop', 5)]21. learn.export() exports the trained model for later use.22. learn.show_results() displays a sample images fromthe validation set along with the predicted and truelabels.learn.export()learn.show_results(rows=6, figsize=(15,15))Run the preceding code snippet to obtain a figure asfollows:

Figure 10.12: GT vs. predicted landcover class labels of EuroSat test dataset with
RestNet101In this section, we demonstrated the application of

ResNet101 for landcover classification using the EuroSATdataset. We utilized the library Fastai to load the data, applydata augmentation, and fine-tune the pretrained model. TheEuroSAT dataset offers a wide variety of land cover types,making it an ideal dataset for training deep learning models torecognize different surface features. Through this example,we have shown how CNNs, specifically ResNet101, caneffectively classify satellite images, which has broadapplications in remote sensing and environmental monitoring.
Satellite image segmentation using
Fastai and wandb with SN7 datasetSatellite image segmentation is a crucial task in the field ofremote sensing and geographic information systems (GIS).Segmentation helps in identifying different land cover types,such as buildings, water bodies, roads, vegetation, and so on,

which can be applied in urban planning, agriculture, andenvironmental monitoring. In this section, we will walkthrough an implementation of binary satellite imagesegmentation (that is, categorize the surface features of theEarth into two distinct classes, namely, building and land)using the SN7 dataset, the Fastai library, and Weights and
Biases (wandb) for experiment tracking.The SpaceNet 7 (SN7) dataset focuses on multi-temporalurban development, specifically on building footprintextraction from multi-spectral satellite imagery over time. Thistask is challenging due to the large variations in lighting,shadows, and resolution between satellite images.We shall use a U-Net architecture with a ResNet34 encoder,leveraging transfer learning again to fine-tune the model onour satellite data. We shall again use Google Colab for runningthe following implementation. Follow these steps:1. Let us start by importing the necessary libraries, asshown in the next code snippet:a. Fastai.vision.all contains tools for vision-related deeplearning tasks.b. wandb is to be used for experiment tracking andvisualizing metrics.c. rasterio, geopandas, and shapely handle the satelliteimage format, such as geospatial data processing andgeometries.

run in colab
import os
#!pip install rasterio geopandas shapely wandb -Uqq
from Fastai.vision.all import *
from tqdm import tqdm
from pdb import set_trace
from pprint import pprint
import wandb
from Fastai.callback.wandb import *
import rasterio
from rasterio.plot import reshape_as_image
import rasterio.mask
from rasterio.features import rasterize

import pandas as pd
import geopandas as gpd
from shapely.geometry import mapping, Point, Polygon
from shapely.ops import cascaded_unionwarnings.filterwarnings("ignore")path = Path('/content/train')Path.BASE_PATH = path2. Our data resides on AWS cloud. The next part is a setupfor downloading data from AWS. It writes AWS credentialsto a configuration file for secure access to the SN7dataset.3. You must use your own AWS credentials, that is,
aws_access_key_id and aws_secret_access_key to beable to access the dataset, refer to this article for thesame:
https://docs.aws.amazon.com/keyspaces/latest/devgui
de/access.credentials.htmltext = '''[default]aws_access_key_id = XXXXXXXXXXXXXXaws_secret_access_key = XXXXXXXXXXXXXXXXX'''path = "/content/config/awscli.ini"
with open(path, 'w') as f: f.write(text)!cat /content/config/awscli.ini
!export AWS_SHARED_CREDENTIALS_FILE=/content/drive/My\ Drive/config/awscli.inipath = "/content/config/awscli.ini"os.environ['AWS_SHARED_CREDENTIALS_FILE'] = pathprint(os.environ['AWS_SHARED_CREDENTIALS_FILE'])4. First, install the Python library corresponding to AWS
CLI in Colab (with pip)5. The next AWS CLI commands download and extract the
SN 7 dataset from an AWS S3 bucket:!pip install awscli!aws s3 cp s3://spacenet-dataset/spacenet/SN7_buildings/tarballs/SN7_buildings_train.tar.gz .!aws s3 cp s3://spacenet-dataset/spacenet/SN7_buildings/tarballs/SN7_buildings_train_csvs.tar.gz . !aws s3 cp s3://spacenet-dataset/spacenet/SN7_buildings/tarballs/SN7_buildings_test_public.tar.gz .

!mv SN7_buildings_train.tar.gz drive/MyDrive!tar xvf SN7_buildings_train.tar.gz!tar xvf SN7_buildings_train_csvs.tar.gz!tar xvf SN7_buildings_test_public.tar.gz6. Use GPU runtime for faster execution in Colab. Verify if
pytorch can execute on GPU, using the next code snippet:
try: print(torch.cuda.get_device_properties(0))
except: print("No CUDA device available.")7. Next, define several key hyperparameters, using thefollowing code snippet:a. BATCH_SIZE: The number of images processed ineach training batch.b. TILES_PER_SCENE: Number of image tiles per scene.c. ARCHITECTURE: The architecture used for the

encoder (ResNet34).d. EPOCHS: The number of training epochs.e. CLASS_WEIGHTS: Weights assigned to each class forhandling class-imbalance. Buildings are given moreweight since there are fewer building pixels comparedto land pixels.f. LR_MAX: The maximum learning rate used in thetraining loop.g. ENCODER_FACTOR: This factor scales down thelearning rate for the encoder.BATCH_SIZE = 12 # 3 for xresnet50, 12 for xresnet34 -Tesla P100 (16GB)TILES_PER_SCENE = 16ARCHITECTURE = xresnet34EPOCHS = 40CLASS_WEIGHTS = [0.25,0.75]LR_MAX = 3e-4ENCODER_FACTOR = 10CODES = ['Land','Building']
Weights and Biases configconfig_dictionary = dict(bs=BATCH_SIZE, tiles_per_scene=TILES_PER_SCENE,

 architecture = str(ARCHITECTURE), epochs = EPOCHS, class_weights = CLASS_WEIGHTS, lr_max = LR_MAX, encoder_factor = ENCODER_FACTOR)8. Define the function generate_mask() in the followingcode snippet, to generate a binary mask from a shapefile,vector file (shp or geojson) and the corresponding rastersatellite image.a. rasterio.open(raster_path): Reads the satelliteimage.b. gpd.read_file(shape_path): Reads the buildingfootprint shapefile.c. poly_from_utm(): This function converts buildingpolygons to the image’s coordinate system.d. rasterize: Converts vector geometries (polygons) into
rasterized masks (pixel-wise classification).9. The save_masks() function iterates through all thesatellite images in each scene directory and invokes the

generate_mask() function to generate binary masks foreach image. These masks represent the presence ofbuildings or other objects of interest in the image. If themask already exists, the function skips that image;otherwise, it creates the mask and saves it in a
binary_mask folder within the same scene. The binarymasks are crucial for training the segmentation model, asthey serve as the ground-truth labels for each satelliteimage.
def generate_mask(raster_path, shape_path, output_path=None, \ file_name=None): #load raster with rasterio.open(raster_path, "r") as src: raster_img = src.read() raster_meta = src.meta #load o shapefile Json train_df = gpd.read_file(shape_path) #Verify crs

 if train_df.crs != src.crs: print(" Raster crs : {}, Vector crs : {}." "\n Convert vector and raster to the same CRS." \ .format(src.crs,train_df.crs)) #Function that generates the mask def poly_from_utm(polygon, transform): poly_pts = [] poly = cascaded_union(polygon) for i in np.array(poly.exterior.coords): poly_pts.append(~transform * tuple(i)) new_poly = Polygon(poly_pts) return new_poly poly_shp = [] im_size = (src.meta['height'], src.meta['width']) for num, row in train_df.iterrows(): if row['geometry'].geom_type == 'Polygon': poly = poly_from_utm(row['geometry'], src.meta['transform']) poly_shp.append(poly) else: for p in row['geometry']: poly = poly_from_utm(p, src.meta['transform']) poly_shp.append(poly) if len(poly_shp) > 0: mask = rasterize(shapes=poly_shp, out_shape=im_size) else: mask = np.zeros(im_size) # Save or show mask mask = mask.astype("uint8") bin_mask_meta = src.meta.copy() bin_mask_meta.update({'count': 1}) if (output_path != None and file_name != None): os.chdir(output_path) with rasterio.open(file_name, 'w', **bin_mask_meta) as dst: dst.write(mask * 255, 1) else: return mask
def save_masks(): for scene in tqdm(path.ls().sorted()): for img in (scene/'images_masked').ls(): shapes = scene/'labels_match'/(img.name[:-4]+\ '_Buildings.geojson') if not os.path.exists(scene/'binary_mask'/img.name): if not os.path.exists(scene/'binary_mask'): os.makedirs(scene/'binary_mask') generate_mask(img, shapes, scene/'binary_mask', img.name) save_masks()

10. The function get_masked_images() retrieves a list ofsatellite images from a specified directory (Path) thatcontain both the satellite image and the corresponding
mask (labeled data). It returns the first n pictures fromevery scene. These images will later be used to train thesegmentation model.
def get_masked_images(path:Path, n=1)->list: files = [] for folder in path.ls(): files.extend(get_image_files(path=folder, \ folders='images_masked')[:n]) return files
masked_images = get_masked_images(path, 1)sample_scene = (path/'L15-0683E-1006N_2732_4164_13')If you plot the preceding sample scene, along with its
ground-truth mask side-by-side, you should get a figure asfollows:

Figure 10.13: A sample training image from SN7 dataset and the corresponding
GT segmentation mask

11. The next function cut_tiles() splits large images into
smaller tiles, which makes training more efficient andhelps the model focus on localized regions:

def cut_tiles(tile_size:int): "Cuts large images & masks into equal tiles & saves them to disk" masked_images = get_masked_images(path, 5) for fn in tqdm(masked_images): scene = fn.parent.parent if not os.path.exists(scene/'img_tiles'): os.makedirs(scene/'img_tiles') if not os.path.exists(scene/'mask_tiles'): os.makedirs(scene/'mask_tiles') # Create mask for current image img = np.array(PILImage.create(fn)) msk_fn = str(fn).replace('images_masked', 'binary_mask') msk = np.array(PILMask.create(msk_fn)) x, y, _ = img.shape # Cut tiles and save them for i in range(x//tile_size): for j in range(y//tile_size): img_tile = img[i*tile_size:(i+1)*tile_size, j*tile_size:(j+1)*tile_size] msk_tile = msk[i*tile_size:(i+1)*tile_size, j*tile_size:(j+1)*tile_size] Image.fromarray(img_tile) .save(f'{scene}/img_tiles/{fn.name[:-4]}_{i}_{j}.png') Image.fromarray(msk_tile) .save(f'{scene}/mask_tiles/{fn.name[:-4]}_{i}_{j}.png') TILE_SIZE = 255cut_tiles(TILE_SIZE)If you run the given code, you should obtain smaller tilescut from the scenes, as shown:

Figure 10.14: Prediction mask for a sample tile cut from an original scene

12. Define the DataBlock object, which organizes thedataset for training, defines how images and theirsegmentation masks are processed, with the followingarguments:a. ImageBlock() defines input images, and MaskBlockdefines the binary segmentation masks.b. get_items specifies how to get input images.

c. get_y specifies how to get the corresponding mask foreach image.d. splitter defines how to split the dataset into trainingand validation sets.e. batch_tfms applies batch-level transformations like
normalization and augmentation.f. The augmentation applied (as the list tfms) uses thefollowing classes:i. Dihedral for random horizontal and vertical flips,ii. Rotate for rotations up to 180 degrees,iii. Brightness for adjusting brightness by ±20%,iv. Contrast for modifying contrast by ±20%,v. Saturation for changing saturation by ±20%, andvi. Normalize.from_stats to normalize the data using

ImageNet statistics.These transformations help improve the model’srobustness to variations in orientation, lighting, and colorduring training.13. Next, configure the data loading pipeline for trainingand validation:a. Build DataLoaders from the tiles DataBlock, byloading the image and mask pairs, applying necessarytransformations, and batching the data for modeltraining.b. The vocab attribute specifies the categories (land,
building) that the model should predict in thesegmentation task. This setup is crucial for handling thetraining data pipeline efficiently, which is key fortraining a segmentation model.tfms = [Dihedral(0.5), # Horizontal and vertical flip Rotate(max_deg=180, p=0.9), # Rotation in any direction Brightness(0.2, p=0.75),

 Contrast(0.2), Saturation(0.2), Normalize.from_stats(*imagenet_stats)]
Independent variable is Image, dependent variable is Masktiles = DataBlock(\ blocks = (ImageBlock(), MaskBlock(codes=CODES)), get_items=get_undersampled_tiles, # Collect undersampled tiles get_y=get_y, # Get dependent variable: mask splitter=FuncSplitter(valid_split), # Split into train / valid batch_tfms=tfms # Transforms (GPU): augmentation,normalization) dls = tiles.dataloaders(path, bs=BATCH_SIZE)dls.vocab = CODESThe next code block sets up the learning configuration fora U-Net model using the library Fastai. It sets up a U-Netsegmentation model with weighted cross-entropy loss tohandle class-imbalance, using the Adam optimizer andspecific metrics for evaluation. It also includesfunctionality to save the best model during training basedon the Dice coefficient.14. weights = Tensor(CLASS_WEIGHTS).cuda():Converts the CLASS_WEIGHTS (which is a list of weightsfor each class) into a pytorch tensor and moves it to theGPU (if available), using .cuda(). These weights will beused to give different importance to classes duringtraining, which can be particularly useful in cases of class-imbalance (for example, when one class is much moreprevalent than another).15. loss_func = CrossEntropyLossFlat(axis=1,
weight=weights): Creates a loss function using cross-
entropy loss.a. axis=1: Indicates that the class dimension is thesecond dimension (that is, the model outputs

probabilities for each class across pixels).b. weight=weights: Applies the class weights definedearlier to adjust the loss calculation for each classbased on its importance. This loss function will help the

model learn to prioritize (give more importance to) the
underrepresented class (e.g., building) during training.16. learn = unet_learner(dls, ...): Initializes a U-Netmodel learner with the provided configurations, along withthe following parameters:a. dls: The DataLoaders object containing the trainingand validation datasets.b. ARCHITECTURE: Specifies the model architecture touse (in this case, xResNet34).c. loss_func: Sets the custom weighted cross-entropyloss function created earlier.d. opt_func=Adam: Specifies the optimizer to use fortraining (Adam optimizer).e. metrics=[Dice(), foreground_acc]: Defines customevaluation metrics to monitor during training.f. Dice(): Measures the Dice coefficient, a metric forevaluating the overlap between predicted and truesegmentation masks. It ranges from 0 (no overlap) to 1(perfect match), making it a useful metric to evaluatesegmentation accuracy.Mathematically, the Dice coefficient is computed as, where A is the set of predicted pixels, B is the setof ground-truth pixels, and ∣⋅∣ denotes the number ofpixels in the set.g. foreground_acc: It is a custom metric to evaluate themodel’s performance by calculating the accuracy onlyon the foreground (non-background) pixels (the
building class in this case).h. self_attention=False: Indicates that self-attentionlayers are not used in this model.i. cbs=[SaveModelCallback(...)]: Includes callbacks for

model training, such as saving the best model based onthe Dice metric.weights = Tensor(CLASS_WEIGHTS).cuda()loss_func = CrossEntropyLossFlat(axis=1, weight=weights)
learn = unet_learner(dls, # DataLoaders ARCHITECTURE, # xResNet34 loss_func=loss_func, # Weighted cross entropy loss opt_func = Adam, # Adam optimizer metrics = [Dice(), foreground_acc], # Custom metrics self_attention = False, cbs = [SaveModelCallback(monitor='dice', comp=np.greater, fname='best-model')])The next code snippet integrates Weights & Biases(W&B) for experiment tracking and logging during thetraining of a deep learning model. Follow these steps (17-22):17. First install the wandb library with pip in Colab.18. wandb.login(): Prompts to log in to a W&B account.This is necessary to authenticate and enable logging oftraining metrics, configurations, and results to the W&Bdashboard.19. wandb.init(project="spacenet7",
config=config_dictionary): Initializes a new W&B run fortracking, it accepts the following parameters:a. project="spacenet7": Names the project in which thecurrent run will be logged. This helps organize differentexperiments under the same project.b. config=config_dictionary: Passes a configurationdictionary containing hyperparameters and settings forthe experiment. This information is logged to W&B forreference.20. learn.unfreeze(): Unfreezes the layers of the model,allowing all parameters to be updated during training. This

is usually done after initial training with frozen layers to
fine-tune the model further.21. learn.fit_one_cycle(...): Starts the training of the modelusing the one-cycle training policy, with the followingparameters:a. EPOCHS: Number of training epochs.b. lr_max=slice(lr_max/ENCODER_FACTOR, lr_max):Specifies the learning rate schedule. It uses a slice togradually increase the learning rate up to a maximumvalue (lr_max) and then decrease it, optimizing trainingstability and performance.c. cbs=[WandbCallback()]: Includes the W&B callbackto log metrics and other training information to the

W&B dashboard during training.22. wandb.finish(): Finalizes the current W&B run. Thiscommand stops the logging and uploads any remainingmetrics or results to the W&B server.
#!pip install wandb --upgrade
Log in to your W&B accountwandb.login()wandb.init(project="spacenet7", config=config_dictionary)learn.unfreeze()learn.fit_one_cycle(EPOCHS, lr_max=slice(lr_max/ENCODER_FACTOR, lr_max), cbs=[WandbCallback()])wandb.finish()23. Retrieve the predicted probabilities (probs), ground
truth targets (targets), predicted classes (preds), and
associated losses (losses) for the validation dataset(dls.valid), while decoding the predictions and includingthe loss in the output, using the next line of code:probs,targets,preds,losses = learn.get_preds(dl=dls.valid, \ with_loss=True, with_decoded=True, \act=None)If you plot the original image and the Fastai-predicted

segmentation masks side-by-side for the sample imagegiven here, you should obtain a figure as follows:

Figure 10.15: Segmenting a sample image from SN7 dataset with Fastai/U-Net

ConclusionThis chapter explores the diverse applications of imageprocessing in medical imaging and remote sensing, focusingon key challenges and solutions in both domains. Deeplearning models like XceptionNet and Covid-Net for diseasedetection, are examined. The chapter also covers prostatesegmentation using nnUNet and brain tumor detection with
U-Net, highlighting the impact of these technologies onimproving diagnostic accuracy.In remote sensing, the chapter explores the segmentation of
FloodNet images using VGG- U-Net, landcover classificationwith Fastai’s ResNet101 on the EuroSAT dataset, andsatellite image segmentation using Fastai and wandb withthe FloodNet dataset. These techniques demonstrate thepower of image processing for environmental monitoring andresource management, offering valuable insights into bothhealthcare and remote sensing applications.

Key termsU-Net, Covid-Net, VGG-Unet, Fastai, nnUNet, FloodNet,Resnet101
Questions1. Understand how the optimal learning rate finder works inFastai (refer to the arxiv paper [17]). Can you implement iton your own, to find the best learning rate for a deeplearning model on a given training dataset?2. Brain tumor detection using transfer learning withMask R-CNN with Medical Decathlon dataset: Downloadthe dataset Task01_BrainTumour.tar from the GoogleDrive from http://medicaldecathlon.com/. In thisexercise problem, you will learn how to perform custom

object detection and instance segmentation using transfer
learning with the Mask R-CNN model. Start by randomlyselecting 2000 images from the training dataset along withthe labels and create annotation jsons from the labels (forexample, define a function to create annotations and
bounding boxes) You should obtain annotated images asshown:

Figure 10.16: Brain tumor detection using transfer learning with Mask R-CNN

http://medicaldecathlon.com/

Partition the annotated images into two sets: training and
validation. Define a function load_image_dataset() to loadthe train and validation images along with annotations.There should be only 1 class corresponding to tumor, thatwe want to detect. Define a functiondisplay_image_samples() to display images withannotations, you should obtain a figure as follows:

Figure 10.17: Displaying an annotated brain tumor image

Train the model (for example, for 10 epochs) on theannotated images, by freezing all the layers except the
head layers. After training is over, use the model for
inference, to predict the tumor region (along with the
bounding box) of a test image (from the held-out dataset),and overlay on top the actual label (use the color_spalsh()function from Chapter 8, Object Detection and
Recognition). You should obtain a figure as follows, for thegiven test image:

Figure 10.18: Overlaying GT annotation/prediction mask for tumor with Mask R-
CNN

3. Implement a function to compute the Intersection over
Union (IoU) of the model on the test images, from the

previous question, to evaluate the model. Remember thatthe IoU measures the overlap between the predictedbounding box and the ground truth bounding box. It isdefined as the area of overlap divided by the area of unionbetween the predicted and ground truth boxes.
References1. https://github.com/mateuszbuda/brain-

segmentation-pytorch/tree/master2. https://arxiv.org/pdf/2003.098713. https://arxiv.org/pdf/1610.023914. https://www.nature.com/articles/s41592-020-01008-z5. https://link.springer.com/chapter/10.1007/978-3-
319-24574-4_286. http://medicaldecathlon.com/7. https://ieeexplore.ieee.org/document/80996788. https://github.com/chrieke/awesome-satellite-
imagery-datasets9. https://www.youtube.com/shorts/UWFxyZYHIio10. https://www.youtube.com/watch?v=pFKARAl-wzA11. https://www.youtube.com/watch?v=AwjAp_6K95812. https://www.youtube.com/watch?v=J87VNteZ6RI13. https://www.youtube.com/watch?v=X3uuRQ7UolI14. https://www.youtube.com/watch?v=XBAB7m_ckuY15. https://www.youtube.com/watch?v=Uji-tBivDeo16. https://www.youtube.com/watch?v=eW6LWmkigrc17. https://arxiv.org/pdf/1506.01186

Join our Discord space
Join our Discord workspace for latest updates, offers, tech
happenings around the world, new releases, and sessions with

https://github.com/mateuszbuda/brain-segmentation-pytorch/tree/master
https://arxiv.org/pdf/2003.09871
https://arxiv.org/pdf/1610.02391
https://www.nature.com/articles/s41592-020-01008-z
https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28
http://medicaldecathlon.com/
https://ieeexplore.ieee.org/document/8099678
https://github.com/chrieke/awesome-satellite-imagery-datasets
https://www.youtube.com/shorts/UWFxyZYHIio
https://www.youtube.com/watch?v=pFKARAl-wzA
https://www.youtube.com/watch?v=AwjAp_6K958
https://www.youtube.com/watch?v=J87VNteZ6RI
https://www.youtube.com/watch?v=X3uuRQ7UolI
https://www.youtube.com/watch?v=XBAB7m_ckuY
https://www.youtube.com/watch?v=Uji-tBivDeo
https://www.youtube.com/watch?v=eW6LWmkigrc
https://arxiv.org/pdf/1506.01186

the authors:
https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 11
Miscellaneous Problems in

Image Processing and
Computer Vision

IntroductionIn the previous chapters, we have explored a wide range ofimage processing and computer vision problems, includingimage restoration, segmentation, feature extraction,classification, and object detection, and their applicationsacross various domains. In this chapter, we turn our attentionto a diverse set of miscellaneous yet fascinating problems inimage processing and computer vision. Our focus will extendto cutting-edge deep learning techniques applied to creativeand analytical tasks such as deep generative art (e.g., deepdreaming and style transfer), pseudo-colorization of black-and-white images, and visualization of image features usingdimensionality reduction methods. We will also delve into therealm of 3D computer vision, learning how to generate pointclouds from images. Additionally, this chapter will guide youthrough implementing a basic virtual reality (VR) applicationusing a webcam, and demonstrate techniques to embed videosinto images, as well as add subtitles to videos using Python

libraries. Finally, we will explore the exciting domain of imagesynthesis from text using generative AI, leveraging OpenAI’sDALL-E model to transform natural language descriptions intovivid, realistic images. We will also examine how generative AItechniques can be used to seamlessly blend multiple clonedobjects into an image, completing our journey through theseengaging and unconventional image processing challenges.
StructureThis chapter covers the following topics:

• Deep dreaming with pytorch
• Neural style transfer with perceptual losses
• Image colorization with pretrained pytorch models
• Visualizing VGG16 features in 2D with t-SNE andclassifying with SVM
• Creating point cloud from images
• Augmented reality with opencv-python
• Embedding and playing video clips with moviepy
• Generating images from text with GAN-CLS
• Image editing with seamless cloning
• Image generation and editing with Dall-E

ObjectivesBy the end of the chapter, you should be able to apply deeplearning techniques for creative image transformations usingdeep dreaming and neural style transfer, perform imagecolorization with pretrained PyTorch models, and visualizehigh-dimensional image features using t-SNE for classificationwith SVM. You will also learn to generate 3D point cloudsfrom 2D images, build basic augmented reality applicationswith OpenCV, and manipulate video content by embedding

clips or adding subtitles using MoviePy. Additionally, you willbe equipped to synthesize images from text using models likeGAN-CLS and DALL-E, and perform seamless image editingthrough advanced cloning techniques.
Deep dreaming with pytorchDeep Dream is a computer vision program (created by
Google) that uses a convolutional neural network to find andenhance (amplify) patterns in images with algorithmicpareidolia, creating a dreamlike hallucinogenic appearance inthe deliberately over-processed images.However, after enough reiterations, even imagery initiallydevoid of the sought features will be adjusted enough that aform of pareidolia results, by which psychedelic and surrealimages are generated algorithmically. Deep Dream usesgradient ascent optimization —similar to the reverse ofbackpropagation— not to train the model, but to modify theinput image so that certain neuron activations are maximized.The network weights remain fixed throughout; only the pixelvalues of the input image are updated, making this processmore akin to feature visualization than training.Deep Dream’s CNN must first be trained. The training processis based on repetition and analysis. For example, in order forDeep Dream to understand and identify cats, the neuralnetwork must be fed examples of millions of cat images. Inthis section, we shall use a VGG16 deep neural net model (thearchitecture shown in the following figure), pre-trained on the
ImageNet dataset.

Figure 11.1: VGG16 architectureDeep dreaming is a gradient ascent process that tries tomaximize the norm of activations of a particular Deep
Neural Net (DNN) layer. Mathematically, the objective is tooptimize the input image to maximize the activation ofa particular layer l in the network. The most commonobjective function is:
This is done using gradient ascent, where the image isupdated iteratively as:
Where we have:

• is the input image at iteration ,
• η is the learning rate (step size),
• are the activations at layer given the image

• is the gradient with respect to the input image.Here are a few simple practical tricks that can be useful forgetting visually appealing output images:
• Jitter: Offset image by a random jitter (a small randomshift to the image) before computing gradients.
• Gradient normalization: Normalize the magnitude ofgradient before applying updates to prevent explodingupdates.
• Octave scaling: Apply the optimization across multiplescales (octaves).

Guided Deep Dream is a variant of Deep Dream that directsthe image modification process using a separate guide
image, also referred to as a control image. Instead of merelyamplifying features in the original image, it adjusts the inputso that its neural activations at a chosen layer resemble thoseof the guide, effectively maximizing the filters activated by theguide. This is achieved through gradient ascent on the inputimage, allowing the output to blend stylistic or structuralelements from both images. Here, the difference between thetwo activations is minimized using gradient ascent on thesource image: . Additionally,
looped hallucinations can be created by iteratively feedingthe output image back as the input for the next round ofdreaming, leading to progressively intensified and evolvingvisual patterns.Now, let us proceed to implement Guided Deep Dream usingPython. To do so, carefully follow the step-by-step procedureoutlined, which will guide you through preparing the images,selecting neural network layers, and applying gradient-basedoptimization to synthesize the final dream-like output:1. Let us start by importing the required libraries.

import torch
from torchvision import transforms, models
from torch.autograd import Variable
from IPython.display import clear_output
from PIL import Image

import scipy.ndimage as ndimage
import numpy as np
import matplotlib.pylab as plt2. Use the function show_image_tensor() in the followingcode snippet to display an image tensor provided as inputto the function. Prior to plotting the image, it reshapes thetensor and de-normalizes it, converts it to a NumPy arrayand scales the pixel values in between [0,255]. Thefunction clear_output(wait=True) clears the current celloutput in jupyter notebooks, updating it smoothly after thenext output appears—useful for dynamic displays in loops.
def show_image_tensor(img): mean = np.array([0.485, 0.456, 0.406]).reshape([1, 1, 3]) std = np.array([0.229, 0.224, 0.225]).reshape([1, 1, 3]) img = img[0].transpose(1, 2, 0) img = std * img + mean img = np.clip(np.uint8(img*255), 0, 255) plt.figure(figsize=(15,15)) plt.imshow(img), plt.axis('off'), plt.title('Guided Deep Dream', size=20) plt.show() clear_output(wait=True)3. Define the function step_next() that implements a basicgradient ascent step, by applying the first two tricksdescribed previously. The function accepts the input image(img), the model (pretrained VGG16) and the controlimage (guide), as input parameters.It also accepts an objective_func, which is used tocompute the L2 distance between the activations and thefeatures extracted from the guide image, and theargument end_layer that specifies the layer in thepretrained model at which the activation maximization willbe done. Along with that, optional parameters such as
learning_rate can be passed to the function, whenrequired.4. Apply a small random cyclic shift (jitter) to the inputimage in both x and y directions (with np.roll()) toencourage spatial diversity during optimization.5. Convert the images to tensors and send them to GPU, if

available.6. Invoke the function forward() on the input and thecontrol image to run forward propagation through themodel layers up to the end_layer, generating theactivation values and guide features, respectively.7. The backpropagation needs to be performed on theimages themselves, and that is why we need to define acouple of variables with requires_grad=True, to enablegradient computation.8. Use the function objective_func() to maximize the dot-products between activations of the current image, andtheir best matching correspondences in the features fromthe guide image.9. Compute the L2 distance between the activation valuesand guide features. Run back propagation with thefunction backward().10. Perform gradient ascent: Update the input image withgradient along with a proper learning rate.11. Show the updated image at every show_every interval.Now, refer to the next code snippet:
def forward(model, x, end): layers = list(model.features.children()) last = len(layers) for index in range(min(end, last)): model = layers[index] x = model(x) return x
def objective_func(activations, guide_features): x, y = activations.data[0].cpu().numpy(), \ guide_features.data[0].cpu().numpy() ch, w, h = x.shape x, y = x.reshape(ch, -1), y.reshape(ch, -1) sim = x.T.dot(y) diff = y[:, sim.argmax(1)] diff = torch.Tensor(np.array([diff.reshape(ch, w, h)])) return diff
def step_next(img, model, guide, end_layer=30, distance=objective_func, max_jitter = 30, learning_rate = 0.05, num_iterations = 20,

 show_every = 10): mean = np.array([0.485, 0.456, 0.406]).reshape([3, 1, 1]) std = np.array([0.229, 0.224, 0.225]).reshape([3, 1, 1])
 for i in range(num_iterations): shift_x, shift_y = np.random.randint(-max_jitter, \ max_jitter + 1, 2) img = np.roll(np.roll(img, shift_x, -1), shift_y, -2) model.zero_grad() img_tensor = torch.Tensor(img) guide_tensor = torch.Tensor(guide) if torch.cuda.is_available(): img_tensor = img_tensor.cuda() guide_tensor = guide_tensor.cuda() img_variable = Variable(img_tensor, requires_grad=True) guide_variable = Variable(guide_tensor, requires_grad=True)
 act_value = forward(model, img_variable, end_layer) guide_features = forward(model, guide_variable, end_layer) diff_out = distance(act_value, guide_features) act_value.backward(diff_out) ratio = np.abs(img_variable.grad.data.cpu().numpy()).mean() learning_rate_eff = learning_rate / ratio img_variable.data.add_(img_variable.grad.data * learning_rate_eff) img = img_variable.data.cpu().numpy() # b, c, h, w img = np.roll(np.roll(img, -shift_x, -1), -shift_y, -2) img[0, :, :, :] = np.clip(img[0, :, :, :], -mean / std, \ (1 - mean) / std) if i == 0 or (i + 1) % show_every == 0: show_image_tensor(img) return img12. Finally, it is time to put the preceding implementationstogether in the function deep_dream(). Let us implementthe gradient ascent using the function step_next()through different scales called octaves.13. Load the pretrained vgg16 model from
torcvision.models and print the model structures. Notethat including the non-linear ReLU activation layers, there

are 30 layers in the network.
def deep_dream(model, base_img, end_layer=30, octave_n=6, octave_scale=1.4, control=None, distance=objective_func): octaves = [base_img] for i in range(octave_n - 1): octaves.append(ndimage.zoom(octaves[-1], (1, 1, 1.0 / octave_scale, \ 1.0 / octave_scale), order=1)) detail = np.zeros_like(octaves[-1]) for octave, octave_base in enumerate(octaves[::-1]): h, w = octave_base.shape[-2:] if octave > 0: h1, w1 = detail.shape[-2:] detail = ndimage.zoom(detail, (1, 1, 1.0 * h / h1, 1.0 * w / w1), order=1) input_oct = octave_base + detail out = step_next(input_oct, model, control, end_layer=end_layer, distance=distance) detail = out - octave_base model = models.vgg16(pretrained=True)
model # print the model structure14. Use torchvision.transforms module to compose thetransforms to the image, first converting the images to
pytorch tensors and then normalizing the tensors, with
transforms.Normalize() function, which accepts themean and the standard deviation of the RGB colorchannels to be used for normalization.15. Read the input and guide images with PIL library’s
Image.open() method and apply the composedtransformation.16. Note that by default, the image data format is batches,
channel, height, width (BCHW) dimensions of the inputimage, respectively. The function unsqueeze() creates anadditional dimension for batch as the first (0th) dimension.img_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])input_img = np.array(Image.open('images/bbt.jpg'))guide_img = np.array(Image.open('images/cat.jpg'))

input_tensor = img_transform(input_img).unsqueeze(0)guide_tensor = img_transform(guide_img).unsqueeze(0)The following figure shows the input image (from the TVshow The Big Bang Theory) and the control (guide) image(of a cat) that we are going to use:

Figure 11.2: Input and guide images for guided deep dreaming with pytorch17. Use GPU if available (check availability with the function
torch.cuda.is_available()).18. The function model.cuda() by default sends the modelto the current device (GPU, for example, if available).19. We want to update the image but do not want to changethe model parameters (keep them fixed). That is what isdone by having param.requires_grad = False in the nextcode snippet:
if torch.cuda.is_available(): model = model.cuda()
for param in model.parameters(): param.requires_grad = False20. Now, we are all set to invoke the deep_dream()function implemented previously, with the loaded model,the input and the control image, along with the layerwhere the activation maximization will happen. Thecomplexity of the details generated in the output depends

on which layer’s activations we try to maximize. Higherlayers produce complex features, while lower onesenhance edges and textures, giving the image animpressionist feeling.21. The following line of code first uses one of the initiallayers of VGG16 (the layer 8), leading to produce edge-likefeatures in the output, and then it uses one of the deeplayers of VGG16 (the layer 26), leading to producecomplex features from the guide image (for example, eyesof cat) in the output, as shown in the following figure.22. Use GPU (for example, run on Google Colab) to speed upthe execution of the code.deep_dream(model, input_tensor.numpy(), 8, control=guide_tensor.numpy())
layer 8deep_dream(model, input_tensor.numpy(), 26, control=guide_tensor.numpy())
layer 26If you run the preceding code, you should obtain a figure asfollows:

Figure 11.3: Guided deep dream with pytorch

Neural style transfer with perceptual
losses
Neural style transfer (NST) is a deep learning techniquethat applies the artistic style of one image to another while

preserving its content structure. Unlike traditional methodsthat rely on pixel-wise loss, NST uses perceptual lossescomputed from high-level feature maps of a pre-trainedconvolutional neural network, such as VGG19. The keycomponents of the SNT loss function include content loss,which measures the difference between high-level featuremaps of the content image and the stylized image, and style
loss, which uses Gram matrices of deep feature maps tocapture texture and style patterns from the style image.Additionally, total variation loss is sometimes used toencourage spatial smoothness and remove noise.Perceptual losses are preferred over traditional pixel-wiselosses because they better capture high-level semantics,ensuring that the generated image maintains both meaningfulcontent and style structure. This approach, introduced by
Gatys et al. (2016), has been further improved for real-timeapplications using feed-forward neural networks andadvanced loss functions.
Using pre-trained pytorch modelIn this section, we will discuss how to implement NST usingdeep learning. The goal is to blend the content of one imagewith the style of another, producing a new image that inheritsthe structural elements of the content image and the aestheticqualities of the style image. Before diving into the deeplearning model, let’s clarify the following key concepts:

• NST works by combining a content image (C) and a styleimage (S).
• The algorithm generates a third image G that merges thecontent of C with the style of S. Unlike most deep learningapplications that train a model by adjusting weights, NSToptimizes the image pixels directly to minimize acomposite loss function.
• NST typically uses a pre-trained CNN (e.g., VGG16 or

VGG19) for feature extraction—a classic example of
transfer learning, where a model trained on one task(e.g., image classification) is repurposed for a differenttask (style transfer).

• Loss functions in NST: NST relies on a meta-loss
function composed of the following components:o Content loss: The earlier layers of a CNN detect low-level features (e.g., edges), while the deeper layerscapture high-level features. The middle layers areideal for capturing image content, making them agood choice for measuring content similarity. Tocompute content loss, we compare the featureactivations of the content image and the generatedimage at a chosen hidden layer:

Here, , and are width, height, and number ofchannels in the chosen hidden layer, respectively. Thecontent loss measures how different and are.Minimizing this loss ensures that G retains the contentstructure of C.o Style loss: To capture style, we first need to computethe Gram matrix , by computing the matrix of dotproducts from the unrolled features, and measures the
correlation between different filter responses,effectively capturing texture and stylistic patterns. Thestyle loss for the hidden layer can be represented asthe following:

We want to minimize the distance between the Grammatrices for the images and . The overall weightedstyle loss (which we want to minimize) is represented asshown in the preceding formula, by summing the styleloss across the layers . Here, represents the weightsfor layer . Bear the following in mind:
฀ The style of an image can be represented using theGram matrix of a hidden layer’s activations. However,we get even better results combining thisrepresentation from multiple different layers. This isin contrast to the content representation, whereusually using just a single hidden layer is sufficient.
฀ Minimizing the style cost will cause the image G tofollow the style S of the image.

• Overall loss (Perceptual loss): A cost function thatminimizes both the style and the content cost is thefollowing:

This loss function is also called perceptual loss function[3], and it depends on high-level features from a pretrainedloss network and not on low-level per-pixel loss.Sometimes, to encourage spatial smoothness in the outputimage , a total variation regularizer is also added tothe RHS convex combination of perceptual loss. The nextfigure shows the architecture of the neural net and how itis typically trained:o Here, the loss network () is a pre-trained VGG16 on

the ImageNet dataset.o The content representation is taken from the layer
relu3_3.o The style representations are taken from layers
relu1_2, relu2_2, relu3_3 and relu4_3.

Figure 11.4: Image transformation network for NST
Source: https://cs.stanford.edu/people/jcjohns/papers/eccv16/JohnsonECCV16.pdfIn this section, however, we shall not use transfer learning (itwill be particularly slow, if we use a content and a style imageand run backpropagation to obtain the stylized image withiterative updates by bringing the perceptual loss down).Instead, we shall use a few pretrained PyTorch models, eachtrained to apply a specific style image, for example, candy,wave, and so on.Since each neural net model is already trained and dedicatedto a particular style image, we shall no longer need the style

https://cs.stanford.edu/people/jcjohns/papers/eccv16/JohnsonECCV16.pdf

images. We just need to provide a content image input to thepretrained neural net (with the specific style) and runinference for the particular style transfer (which will be fast).This approach enables real-time artistic style transfer usingdeep learning. Now, follow the next steps:1. Let us start by importing the additional required libraries,modules, functions and classes, using the following codesnippet:
import cv2
import torch.nn.functional as F
import torchnet as tnt
import torchfile
from skimage.io import imread
import os, time2. The function forward() in the next code snippet applies aforward pass through the pretrained model, given thepreprocessed input image x and the model parameters
params.3. The inner function g() extracts the weight and bias valuescorresponding to a layer from the pretrained model, by thename of the network layer.4. The function stylize() preprocesses the input image withthe transform tr and runs forward pass on the pretrainedmodel with the image as input. We have a pretrainedmodel corresponding to each style. Hence, runningforward pass with the corresponding pretrained modelwith the input image will output a stylized image with thecorresponding style.5. The function tnt.transform.compose() creates a seriesof transformations (for example, rescaling, transposing,creating a tensor, adding new dimension etc.) to beapplied on the input image.6. The function load_params() loads the pretrained torchmodel from disk as a Python dictionary and converts thevalues to torch tensors to torch variables.Now, refer to the next code snippet:

def forward(x, params): def g(f, y, name, stride=1, padding=0): return f(y, params['%s.weight'%name], params['%s.bias'%name], \ stride, padding) x = F.relu(g(F.conv2d, x, 'c1', 1, 4)) x = F.relu(g(F.conv2d, x, 'c2', 2, 1)) x = F.relu(g(F.conv2d, x, 'c3', 2, 1)) for i in range(1, 6): x += g(F.conv2d, F.relu(g(F.conv2d, x, 'r%d.c1'%i, padding=1)), \ 'r%d.c2'%i, padding=1) x = F.relu(g(F.conv_transpose2d, x, 'd1', 2, 1)) x = F.relu(g(F.conv_transpose2d, x, 'd2', 2, 1)) return g(F.conv2d, x, 'd3', 1, 4).clamp(0,255)
tr = tnt.transform.compose([lambda x: cv2.resize(x, (0,0), fx=0.5, fy=0.5), lambda x: x.transpose(2, 0, 1).astype(np.float32), torch.from_numpy, lambda x: x.contiguous().unsqueeze(0),])
def stylize(im, params): return forward(Variable(tr(im)), params)
def load_params(filename, verbose=False): params = torch.load(filename) for k,v in sorted(params.items()): params[k] = Variable(v) return params7. Next, initialize the styles array ('candy', 'wave' and soon) and the corresponding pre-trained models.8. Load the input image using the function imread() fromthe module skimage.io.9. For each of the pre-trained models do the followinga. Load the parameters using load_params() function.b. Run a forward pass through the model using the

stylize() function.c. Use the transformation to convert the stylized outputobtained to a NumPy array as a post-processing step.d. Compute the time taken to stylize the image (how longinference took) using time.time() function.e. Finally, plot the input image and the output stylized

images.Now, refer to the next code snippet:styles = ['wave', 'candy', 'feathers']model_path = 'models/'models = ['wave.pth', 'candy.pth', 'feathers.pth']
tr_backward = tnt.transform.compose([lambda x: x.byte().numpy(), lambda x: x.transpose(1,2,0),])
im = imread('images/victoria.jpg')
def plot_image(im, title): plt.imshow(im), plt.axis('off') plt.title(title, size=20)
plt.figure(figsize=(20,15))plt.subplot(2,2,1), plot_image(im, 'Input Image')
for k in range(len(models)): params = load_params(os.path.join(model_path, models[k])) start = time.time() stylized = stylize(im, params) output = tr_backward(stylized.data[0]) end = time.time() print("Neural style transfer took {:.4f} seconds" \ .format(end - start))plt.subplot(2,2,k+2)plot_image(output, 'Neural Style Transfer Output with Style: ' + \ styles[k])plt.tight_layout() plt.show()
Neural style transfer took 1.6850 seconds
Neural style transfer took 1.6790 seconds
Neural style transfer took 1.6181 secondsIf you run the preceding code snippet, you should obtain afigure as follows:

Figure 11.5: NST with PyTorch pretrained models

Real-time style transfer with pytorch
ONNX model
Open Neural Network Exchange (ONNX) is an openstandard format for representing machine learning models.The torch.onnx module can export PyTorch models to ONNX.The model can then be consumed by any of the many runtimesthat support ONNX [7].In this section, we shall explore how to import a pretrained
onnx model using the library onnxruntime, with thefollowing code snippet. ONNX Runtime is a cross-platformaccelerator for machine learning model inference andtraining. Follow these steps to implement the real-time styletransfer:1. Use pip to install onnxruntime first, if not alreadyinstalled. Import the library.2. Load the input (content) image and preprocess it: forexample, resize with cv2.resize() (note that here the inputcontent image size needs to be 224×224), convert to

BCHW format, by prepending the batch dimension and soon, in order to make it ready to be consumed by the model

as input.3. Load the pre-trained onnx model to apply the mosaicstyle, by running prediction (a forward pass) on thenetwork with the input content image.4. Finally, post-process the output obtained from the neuralnet obtain the final stylized image.Now, refer to the next code snippet:
#!pip install onnxruntime
import onnxruntime
content_image = plt.imread('images/me.jpg')x = cv2.resize(content_image, (224,224))x = np.array(x).astype('float32')x = np.transpose(x, [2, 0, 1])x = np.expand_dims(x, axis=0)ort_session = onnxruntime.InferenceSession('models/mosaic-9.onnx')ort_inputs = {ort_session.get_inputs()[0].name: x}ort_outs = ort_session.run(None, ort_inputs)img_out_y = ort_outs[0].squeeze()result = np.clip(img_out_y, 0, 255)result = result.transpose(1,2,0).astype("uint8")stylized_image = Image.fromarray(result)If you plot the input content and the output stylized imagesside-by-side, you should get the next figure:

Figure 11.6: Real-time style transfer with pytorch onnx model

Fast style transfer for arbitrary styles
with TensorFlow HubAs discussed earlier, two images are similar in content if theirhigh-level features (as extracted by an image recognition

system) are close in Euclidean distance. In contrast, twoimages are similar in style if their low-level features exhibitsimilar spatial statistics (typically measured using the Grammatrix to capture feature correlations). Here are some keypoints to consider:
• Traditional NST implementations rely on an iterativeoptimization procedure that updates a generated image tomatch a content image and a fixed style image. While thisapproach is effective, it is computationally expensive anddoes not learn a reusable representation of the paintingstyle. To address this limitation, a separate style transfernetwork T(·) is used:o Typically implemented as a CNN with an encoder–

decoder architecture.o Learns a transformation from a content image to astylized image using a fixed style image with perceptualloss objective.o The parameters of the network are trained byminimizing the objective using a corpus of photographicimages as content.o After training, the network can instantly produce astylized output , given a content image c. Thisenables real-time inference, but requires a separatemodel to be trained for each unique style.o The resulting network can artistically render an imagedramatically faster, but a separate network must belearned for each painting style (as we have seen in thelast couple of implementations).
• However, training a new network for each painting style isinefficient and wasteful because painting styles commonvisual patterns, color distributions, and compositionalsemantics.
• A trick to eliminate this waste is to build a style transfer

network as a typical encoder/decoder architecture butspecialize the conditional instance normalizationparameters specific to each painting style.
• Along with this, to perform stylizations for unseen paintingstyles (never previously observed), an additional style

prediction network is used. It takes as input anarbitrary style image s and predicts the embedding vector of normalization constants for the style transfer network, which transforms the photograph into a stylizedrepresentation.
• The content and style losses are derived from the distancein representational space of the VGG image classificationnetwork. The style prediction network largely follows the

Inception-v3 architecture. The following figure illustratesthe architecture of the model [1]:

Figure 11.7: Model architecture for fast style transfer
Source: https://arxiv.org/pdf/1705.06830.pdfIn this section, we shall use a pretrained model again, thistime from TensorFlow Hub (magenta). However, this time wecan use arbitrary style input image to the network along withthe content input image, to obtain arbitrary stylizations. Let

https://arxiv.org/pdf/1705.06830.pdf

us walk through the steps to demonstrate fast style transfer,using a pretrained neural net:1. Let us start by importing the required libraries (forexample, tensorflow2) and all relevant dependencies,using the following code snippet:
import tensorflow as tf
import tensorflow_hub as hub
print("TF Version: ", tf.__version__) # 2.8.0print("TF-Hub version: ", hub.__version__) # 0.9.0print("Eager mode enabled: ", tf.executing_eagerly()) # Trueprint("GPU available: ", tf.test.is_gpu_available()) # False2. Load the pretrained model with tensorflow_hub module,using the following code snippet:hub_handle = 'https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1256/2'hub_module = hub.load(hub_handle)3. Load and preprocess an image using the load_image()function:a. Convert the image to float32 NumPy array.b. Add batch dimension.c. Normalize to range [0,1].4. Content_image, style_image, and stylized_image allare expected to be 4-D Tensors in BHWC format, withshapes [batch_size, image_height, image_width, 3].
def load_image(image_path, image_size=(256, 256), preserve_aspect_ratio=True): img = plt.imread(image_path).astype(np.float32)[np.newaxis, ...] img = img / img.max() img = tf.image.resize(img, image_size, preserve_aspect_ratio=True) return img
content_image = load_image('images/me.jpg', (512,512))style_image = load_image('images/bharatmata.png')5. Finally, run inference and obtain the predicted stylizedimage by invoking the hub_module() function with theinput content and style images using the following codeblock:

start = time.time()outputs = hub_module(tf.constant(content_image), tf.constant(style_image))stylized_image = outputs[0]print('Time taken to run inference: {}'.format(time.time() - start))
Time taken to run inference: 5.438430309295654If you run prediction with the following given content image,along with the following two different style images (namely,

abstraction and Bharatmata), and plot the input content, styleand output stylized images, you should obtain an output figureas follows:

Figure 11.8: Fast neural style transfer with pretrained model from TensorFlow
Hub

Image colorization with pretrainedpytorch modelsIn this section, you will learn how to automatically obtain aphotorealistic color image, given a black and white (grayscale)image, using couple of different pretrained pytorch models.Typically, computer vision pipelines that employ self-
supervised learning involve performing two tasks, a pretext
task and a real (downstream) task. A self-supervised modellearns useful representations by generating its own training

labels from the input data. Image colorization fits thisapproach well, as the model can be trained to predict thecolor channels (chrominance) from the grayscale input(luminance) using full-color images during training, but onlygrayscale images at inference. Image colorization is a classicpretext task in self-supervised learning, where the objective isto reconstruct plausible color information for grayscaleimages.Since the mapping between grayscale and color is inherentlyambiguous and non-deterministic (for example, a car could bered, blue, or green), multiple valid colorizations can exist forthe same input. Therefore, the task is under-determined, andthe model must learn priors about the world to select realisticoutputs. For objects that can plausibly exhibit multiple colors,the network may average these possibilities, producing aneutral (for example, greyish) output. Recent research hasimproved diversity in results using latent variables andvariational autoencoders.
With DeOldifyFor a given image of pixels, automatic colorization can benaively seen as regression from to (involves predictingRGB values from luminance). But using a luminance-
chrominance color space (designed to extract separately, the
luminance: the intensity and chrominance: the colorinformation, encoded in the 1st component and the other twocomponents, respectively), the problem can be simplified to aregression from to There exist several different luminance-chrominance colorspaces, for example, CIELAB (Commission Internationale
de l’Éclairage Lab* – a perceptually uniform color spacewhere L* represents lightness, and a* and b* represent color-opponent dimensions), YUV (Luminance (Y) and
Chrominance (U, V) – a color space that separatesbrightness (Y) from color components (U, V) for efficient

encoding in video and image compression) and so on.Let be a gray-scale image of size . Directly derive the firstcomponent in the YUV space, and learn atransformation s.t., , where and are the estimated second and third components in the YUVspace. The under-determined structure of this problem leadsto an infinity of solutions, which models well the ambiguousfeature of the automatic colorization problem. The goal is topick a realistic solution among all possible ones. Here are afew key aspects of DeOldify:
• DeOldify builds up on the idea of linking colorization withclassification but in the context of transfer learning.
• It is an end-to-end CNN based method. The originalmethod is presented in three different versions: video,

stable and artistic.
• Uses GAN to colorize the image. The generator adds colorto grayscale input, whereas the critic (discriminator)criticizes the coloring generated and classifies as fake or

real.
• The method uses a pretrained ResNet (ResNet34 is usedfor video/stable where ResNet101 is used for artistic) as abackbone (corresponds to the encoding part) for thearchitecture of its network and the loss function used foroptimization during training involves the intermediaryfeature-maps of a pretrained VGG network.
• The loss function is inspired by the feature reconstructionloss used in style transfer.
• The whole network is a U-Net, a classical architecture forsegmentation problems.
• The generator is a pretrained U-Net that has beenmodified to include spectral normalization and self-

attention.
• The method achieves strikingly good results. Moresurprisingly, it also yields very good results on videos in

terms of temporal consistency while simply proceedingframe by frame without adding any temporal stabilizationprocess.The following figure shows the architecture of the network [4]:

Figure 11.9: Architecture of the DeOldify model
Source: https://www.ipol.im/pub/art/2022/403/article_lr.pdf

• The network predicts the normalized components U and Vfrom R, G, and B, and the unnormalization process isapplied after converting the image back to RGB (since pre-trained ResNet/VGG requires their input images in RGB).The model additionally uses the following technologies:
• Self-attention layer: Enhances the network’s ability tomodel long-range spatial dependencies by allowing anypixel to influence any other. Its residual implementationallows optional integration. Refer to the following figure:

https://www.ipol.im/pub/art/2022/403/article_lr.pdf

Figure 11.10: Schematic for a self-attention layer

• Conventional training: The loss function used fortraining is inspired by the feature reconstruction lossdefined as follows, as an loss (less sensitive to outliers):

• Progressive training: During training, the image size isprogressively increased. The underlying idea is thattraining first on small images will make the network learnlarge-scale image structures and as the resolution of thetraining images is increased, the network will learnsmaller and smaller structures.
• Spectral normalization: Added to all convolution layersexcept the convolution of the last upsampling layer tostabilize network training. It provides more stable results.
• Post-processing: During inference, the predicted colorimage is converted to YUV and only the chrominancecomponents and are kept. Then those components are

concatenated with the luminance component Y derivedfrom the original gray-scale image and the obtained imageis converted back to
• NoGAN training: Combines supervised classifier trainingwith adversarial training. A binary classifier is trained todetect real vs. generated colorizations. This discriminatoris later reused in the GAN framework. Rather than relyingon adversarial loss from the beginning, intermediategenerator models are periodically evaluated, allowingrefinement without full adversarial cycles.The GAN framework encourages the generator learn whatcolors make an image appear realistic. If it repeatedly assignsunrealistic hues (e.g., all clothes as brown), the critic catcheson. Over time, both models improve, producing increasinglyplausible colorizations. So, the simple intuition is that GANsare effectively learning the loss function for you. Now, let usexplore how to colorize a grayscale image using a pretrained

DeOldify model [6], follow the next steps:1. Start by cloning the required repository and navigating tothe required folder.!git clone https://github.com/jantic/DeOldify.git DeOldify %cd DeOldify2. Let us first set the device we want to load the pretrained(pytorch) model on, the choices for the device are CPU,GPU0, …, GPU7 (depending on the number of GPUs, if youhave any), using deoldify.device.3. Import everything from deoldify.visualize module tovisualize the output colorized model.
#!pip install ffmpeg-python
#!pip install yt_dlp
from deoldify import device
from deoldify.device_id import DeviceIddevice.set(device=DeviceId.CPU)
from deoldify.visualize import *4. Invoke the function get_image_colorizer() to obtain aninstance of the artistic version of the colorizer, with the

following line of code:colorizer = get_image_colorizer(artistic=True)5. Finally, use the get_transformed_image() method from
colorizer object to obtain the output colorized image. Themethod accepts the grayscale input image filename, alongwith the render_factor and the watermarkedparameters.a. The default value of the render_factor parameter iscarefully chosen to be and it should work okay for mostscenarios. This determines the resolution at which thecolor portion of the image is rendered.b. A lower resolution will render faster, and colors alsotend to look more vibrant. Older and lower qualityimages in particular will generally benefit by loweringthe render factor.c. Higher render factors are often better for higher-quality images, but the colors may get slightly washedout.d. The watermarked boolean parameter, selected Trueby default, places a watermark icon of a palette at thebottom left corner of the image. This is intended to be astandard way to convey to others viewing the imagethat it is colorized by AI.6. Plot the input grayscale image along with the outputcolorized image side-by-side.render_factor = 35 imfile = '../images/butterfly.jpg'out_img_deoldify = colorizer.get_transformed_image(imfile, \ render_factor=render_factor, watermarked=False)
plt.figure(figsize=(15,7))plt.gray()plt.subplots_adjust(0, 0, 1, 0.95, 0.05, 0.05)plt.subplot(121), plt.imshow(plt.imread(imfile)), plt.axis('off'), \plt.title('original', size=20)plt.subplot(122), plt.imshow(out_img_deoldify), plt.axis('off'), \

plt.title('colorized (DeOldify)', size=20)plt.rcParams.update({'font.size': 15,})plt.text(475, 20, 'render_factor: ' + str(render_factor), color='white', \ backgroundcolor='black')plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 11.11: Image colorization with DeOldify

With CIC
Colorful Image Colorization (CIC) is another fullyautomatic approach, leading to vibrant and realisticcolorizations for a grayscale image. This colorization task istreated as a powerful pretext task for self-supervised featurelearning, acting as a cross-channel encoder [2]. Let us lookover the following points:

• The colorspace used is CIELAB color space. Given an inputgrayscale image with an intensity channel , theobjective is to learn a mapping to the two associated colorchannels
• The network architecture is shown in the following figure.Each conv layer refers to a block of 2 or 3 repeated

convolution and ReLU layers, followed by a BatchNormlayer. The net has no pooling layers, only spatial down-sampling or up-sampling is used between conv blocks ifneeded.

Figure 11.12: Network architecture for CIC
Source: https://arxiv.org/pdf/1603.08511.pdf

• The naive loss is not robust to the inherent ambiguityand multimodal nature of the colorization problem (leadingto averaging effect, favoring grayish, desaturated results).Hence, multinomial classification (cross entropy) loss isused instead. The problem is treated as multinomialclassification (at the scale of the pixels).
• The output space is quantized into bins with grid size10 and values are kept, the ones that are in-gamut.For a given input , a mapping is learned as aprobability distribution over possible colors, where isthe number of quantized values and is the vectorconverted from the ground-truth color , using a soft-encoding scheme.
• The 5-nearest neighbors to in the output space areselected and weighted proportionally to their distancefrom the ground-truth using a Gaussian kernel with 5.
• The class imbalance problem is addressed by reweightingthe loss of each pixel at train time based on the pixel colorrarity.
• Finally, the probability distribution is mapped to colorvalues (in space) with function
• Class probabilities to point estimates: The mode of thepredicted distribution for each pixel (providing a vibrantbut sometimes spatially inconsistent result) or mean can

https://arxiv.org/pdf/1603.08511.pdf

be chosen (producing spatially consistent but desaturatedresults).
• The metrics perceptual realism (assessed via Amazon

Mechanical Turk or AMT, which is a crowdsourcedevaluation method where human annotators assess therealism of generated images or videos) and semantic
interpretability (with VGG classification) are used formodel evaluation. It is tested by feeding the fake colorizedimages to a VGG classifier. If the classifier performs well,that means the colorizations are accurate.

• The model often produces good colorizations with legacyblack and white photos, even though the low-level imagestatistics of the legacy photographs are quite differentfrom those of the modern-day photos.Here we shall just use a pretrained CIC model for colorizationof a grayscale image using the following code snippet. Followthe next steps, to obtain a colorized grayscale image with CIC:1. Start by cloning the required repository and navigating tothe required folder.!git clone https://github.com/richzhang/colorization.git!pip install requirements.txt%cd colorization2. Import everything from the colorizers module. Load the
eccv16() and siggraph17() colorization models, with the
pretrained weights.3. Move the models to GPU if available.4. Load and preprocess the input grayscale image and moveto GPU, if one is available, using the next code snippet:
from colorizers import *colorizer_eccv16 = eccv16(pretrained=True).eval()colorizer_siggraph17 = siggraph17(pretrained=True).eval()
if torch.cuda.is_available(): colorizer_eccv16.cuda() colorizer_siggraph17.cuda()img = load_img(imfile)[...,:3](tens_l_orig, tens_l_rs) = preprocess_img(img, HW=(256,256))
if torch.cuda.is_available():

 tens_l_rs = tens_l_rs.cuda()5. Invoke the colorizer models with the preprocessed inputs.Colorizers output 256×256 ab maps.6. Post-process, resize and concatenate to original Lchannel, move them to CPU.7. Plot the input grayscale image and the output colorizedimages, obtained using both the previous models.out_img_eccv16 = postprocess_tens(tens_l_orig, \ colorizer_eccv16(tens_l_rs).cpu())out_img_siggraph17 = postprocess_tens(tens_l_orig, \ colorizer_siggraph17(tens_l_rs).cpu())
plt.figure(figsize=(20,7))plt.subplots_adjust(0, 0, 1, 0.95, 0.05, 0.05)plt.subplot(131), plt.imshow(img), plt.axis('off')plt.title('original', size=20)plt.subplot(132), plt.imshow(out_img_eccv16), plt.axis('off') plt.title('colorized (ECCV 16)', size=20)plt.subplot(133), plt.imshow(out_img_siggraph17), plt.axis('off')plt.title('coloriz(SIGGRAPH 17)', size=20)plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 11.13: Image colorization with ECCV 16 vs. SIGGRAPH 17 pretrained CIC
models

Visualizing VGG16 features in 2D with
t-SNE and classifying with SVMIn this section, we shall learn how to extract features fromimages with a pretrained deep neural network model, VGG16,and visualize them in 2D using a dimension reductiontechnique called t-SNE. We will use the images from the dogs-

vs-cats dataset from Kaggle. We shall see the VGG16 featurespreserve the semantic similarity in between the images in thesense that the images from the same class (category) willappear nearer in 2D space, as opposed to the images fromdifferent classes, which will be further apart, in general. Nowfollow these steps for the demonstration:1. Let us start by downloading the image dataset from thefollowing link: https://www.kaggle.com/c/dogs-vs-cats.a. First you need to create a Kaggle account, if you do notalready have one.b. Login to your Kaggle account, create an API token anddownload it as JSON file.c. Use Google Colab:i. Navigate o https://colab.research.google.com/ andopen it in your browser.ii. Create a notebook, upload the Kaggle API token
JSON file.iii. You need to install the kaggle package, if notalready done.iv. Type in the following commands, and run todownload the dataset:

! pip install kaggle
! mkdir ~/.kaggle
! cp kaggle.json ~/.kaggle/
! kaggle competitions download -c dogs-vs-cats
! unzip dogs*.zip
! unzip train.zipA zip file will get downloaded, unzip it, it will createcouple of zip files train.zip and test.zip. Uncompress the
train.zip images; it will create image files with namesstarting with cat (cat*.jpg) and dog (dog*.jpg), for catsand dogs images, respectively. The training archivecontains ~25K images of dogs and cats.2. Run all of the following codes in the Colab notebook

https://www.kaggle.com/c/dogs-vs-cats
https://colab.research.google.com/

created, set the runtime type to GPU to speed upprocessing.3. Let us start by importing the libraries required, using thefollowing code snippet:
import tensorflow
import tensorflow.keras
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.imagenet_utils import \ decode_predictions, preprocess_input
from tensorflow.keras.models import Model
from tensorflow.keras.applications import VGG16
from tensorflow.keras.preprocessing import image
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import classification_report, \ confusion_matrix, ConfusionMatrixDisplay
from sklearn.manifold import TSNE
import matplotlib.pylab as plt
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
import numpy as np
import pandas as pd
from glob import glob
from random import choices4. Now let us load the VGG16 model, pretrained on the
imagenet images using the next code snippet. Here wewill use the pretrained VGG16 model, from the module
tensorflow.keras.applications. The following figureshows the architecture, the different layers of the deepneural network:

Figure 11.14: VGG-16 architecture (Keras)

a. Instantiate a VGG16 model pretrained imagenet dayusing VGG16().

b. Note the parameter include_top is set to True, whichwill include the last two fully-connected (fc) layers; weshall use the last one as feature extractor.c. Use Model() to create a keras model that takes thesame input as the original VGG16 model but outputs theactivations from the 2nd fully connected layer. Use thefunction model.get_layer() to extract the features (avector of dimension 4096) corresponding to the layer byname (fc2), as done in the following code snippet:model = VGG16(weights='imagenet', include_top=True)feat_extractor = Model(inputs=model.input, \ outputs=model.get_layer("fc2").output)
feat_extractor.summary()5. Read the image filenames by walking through the trainfolder, filtered by the file extension (for example, only jpgimages) using the function glob() from the library glob.6. Use np.random.choices() function to select n = 1024cats and n = 1024 dogs images randomly from all theimages. Store the corresponding ground-truth labels (classnames) in the variable labels. Here we are choosing only2048 ranomly sampled images for demonstration purpose.n = 1024np.random.seed(1)labels = ['cat']*n + ['dog']*nimages = np.random.choice(glob('train/cat*.jpg'), n, replace=False).tolist() + np.random.choice(glob('train/dog*.jpg'), n, replace=False).tolist()len(images)
20487. Load the images chosen using load_img() function(resized to 224×224×3, specified by the target_size).Create a batch of size 2048 and run a forward passthrough the pre-trained VGG16 network to extract thefeatures for all the images from the fc2 layer (a featurevector of length 4096 for each of 2048 images), using the
predict() function, as shown in the following code block:x = np.zeros((len(images),224,224,3))

for i in range(len(images)): x[i] = image.load_img(images[i], target_size=(224,224))feats = feat_extractor.predict(x)print(feats.shape)
(2048, 4096)8. Now, let us introduce a popular unsupervised and non-
parametric dimension-reduction algorithm called t-SNE,often used to visualize high dimensions feature vectors in2D:a. The algorithm preserves local structure(neighborhoods) and minimizes KL divergence betweenhigh and low-dimensional pairwise affinities. Theoptimization uses gradient updates, as shown in thefollowing Figure 11.15.b. Perplexity is a key hyperparameter that determines thenumber of nearest neighbors considered.c. The algorithm simulates attractive and repulsive forcesin a particle system to place similar data points neareach other.The following figure shows the mathematical model for t-
SNE:

Figure 11.15: t-SNE for non-parametric dimension reduction caption

Source:
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

9. Here, we shall use the function TSNE()from the module
sklearn.manifold for reducing the dimension of thefeature vectors from 4096 to 2 (set n_components=2),using the following code snippet. Let us use randominitialization of embedding, set perplexity to 3 (trydifferent values of this hyperparameter and see the impacton dimension reduction) and learnung_rate to auto:tsne = TSNE(n_components=2, learning_rate='auto', init='random', perplexity= .fit_transform(np.array(feats))df = pd.DataFrame({'tsne-2d-one': tsne[:,0], 'tsne-2d-two': tsne[:,1], \ 'label': labels})df.head()The following figure shows the DataFrame, with eachdata point as a 2D t-SNE representation on an image,along with the ground-truth label.

Figure 11.16: DataFrame with 2D t-SNE features and the class labelNow, let us explore whether we can classify the cats and dogscorrectly using these 2-D features using the following codesnippet. Here is a detailed explanation of the code:1. Split the sample images into train and test dataset (withthe train_test_split() function from the module
sklearn.model_selection).2. Train a support vector machine classifier (instantiate
SVC() from sklearn.svm) with linear kernel on the train

https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

dataset (with train labels).3. Use the model to predict the classes for the unseen testimages using the classifier object’s predict() method.4. Display the confusion matrix and the classification reportto evaluate the classifier.5. As can be seen, the accuracy is quite high on the smalltest samples (92%).Now, refer to the next code snippet:X = df.valuesX = X[:, :2]y = df.label.valuesX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)clf = SVC(kernel="linear").fit(X_train, y_train)y_pred = clf.predict(X_test)cm = confusion_matrix(y_test, y_pred, labels=clf.classes_)disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=clf.classes_)disp.plot()plt.show()print(classification_report(y_test, y_pred))If you run the preceding code snippet, you should obtain afigure as follows:

Figure 11.17: Add a caption

6. Finally, plot the 2D points obtained by applying t-SNE tothe VGG16 feature vectors. Use different colors for thepoints as per their class labels. Plot a few of the imagescorresponding to the 2D points on the plot using
AnnotationBbox(), as shown in the following codesnippet.7. Notice how the points are well-separated in 2D. Thepoints corresponding to the cat images lie on one side andthose corresponding to dogs lie on the other side.8. Plot the decision surface and the decision boundary usingthe SVC classifier trained (left as an exercise). You shouldobtain a figure like the following Figure 11.18.Now, refer to the following code snippet:plt.figure(figsize=(20,20))ax = plt.gca()sns.scatterplot(x="tsne-2d-one", y="tsne-2d-two", hue="label", \ palette=sns.color_palette("hls", 10), data=df, legend="full", alpha=0.7)

artists = []x, y = np.atleast_1d(df['tsne-2d-one'].values, df['tsne-2d-two'].values)
for i, row in df.iterrows(): if random() > 0.95: # plot images 5% of the times ab = AnnotationBbox(OffsetImage(\ cv2.resize(plt.imread(images[i]), (50,50)), zoom=1), \ (row['tsne-2d-one'],row['tsne-2d-two']), xycoords='data', frameon=False) artists.append(ax.add_artist(ab))ax.update_datalim(np.column_stack([x, y]))ax.autoscale()Refer to the following figure:

Figure 11.18: Decision surface/boundary for the binary cat vs. dog classifier with
SVC

Creating point cloud from imagesA point cloud is a discrete set of data points in space. Thepoints may represent a 3D shape or object. Each pointposition has its set of cartesian coordinates (x, y, z). Comparedto 2D images, 3D point cloud data provides rich geometric,shape, and scale information. It is less affected by variationsin lighting and occlusion, making it highly valuable for sceneunderstanding. 3D point cloud semantic segmentation iswidely used in applications such as autonomous driving,robotics, and augmented reality. In the context of self-driving

cars, for instance, it helps the vehicle interpret andunderstand its surrounding environment.In this section, you will learn how to create point cloud fromimages. We shall approach this in two steps:1. Create a depth map (dense prediction) RGB-D imagefrom given input RGB image.2. Generate a point cloud from the depth map.
Creating depth map with vision
transformers
Dense prediction or depth-map denotes the distance of ascene point from the camera. In this section, we will use a pre-trained vision transformer architecture, specifically
Monocular Depth Estimation (MiDaS), which is highlyeffective for generating dense depth predictions. Thisarchitecture excels at disambiguating complex visual contentand producing fine-grained depth estimates. The following
Figure 11.19 shows the architecture of the deep learningmodel [10]:

Figure 11.19: Vision transformers for dense prediction

Source: https://arxiv.org/pdf/2103.13413.pdfHere is a brief explanation of the preceding figure:

https://arxiv/

• The input image is transformed into tokens (orange) byextracting non-overlapping patches followed by a linearprojection of their flattened representation (for example,with DPT-Large).
• The image embedding is augmented with a positional

embedding and a patch-independent readout token (red) isadded.
• The tokens are passed through multiple transformerstages and are reassembled into an image-likerepresentation (feature maps) at multiple resolutions(green).
• Fusion modules (purple) progressively fuse and up samplethe representations to generate a fine-grained prediction.
• Fusion blocks combine features using residual

convolutional units and upsample the feature map.Now let us deep dive into the actual implementation, with thefollowing key steps to be followed:1. Start by importing the required libraries and modules, asusual.
import open3d as o3d
import torch
import cv2
from glob import glob
import matplotlib.pylab as plt2. MiDaS (https://pytorch.org/hub/intelisl_midas_v2/)estimates relative inverse depth from a single image. Itdepends on the library timm, so it needs to be installedfirst.3. Read the JPEG images from the folder images/pcl/inputone by one, traversing the folder using the function
glob.glob().4. Load a pretrained model (for example, MiDaS v3 -
Large, which offers higher accuracy but slower inferencespeed).5. Load and apply appropriate image transforms (for

https://pytorch.org/hub/intelisl_midas_v2/

example, resizing and normalization) depending onwhether a large or small model is used.6. Move the model and tensors to GPU, if available, forfaster processing.7. Generate the depth map prediction and resize it back tothe original image resolution.8. Save the resulting depth-map using plt.imsave().Now, refer to the following code snippet:
#! pip install timmmodel_type = "DPT_Large"
for filename in glob('images/pcl/input/*.jpg'):
 img = cv2.imread(filename) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 midas = torch.hub.load("intel-isl/MiDaS", model_type)
 device = torch.device("cuda") if torch.cuda.is_available() else \ torch.device("cpu") midas.to(device) midas.eval()
 midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
 transform = midas_transforms.dpt_transform input_batch = transform(img).to(device) with torch.no_grad(): prediction = midas(input_batch) prediction = torch.nn.functional.interpolate(prediction.unsqueeze(1), size=img.shape[:2], mode="bicubic", align_corners=False,).squeeze()
 output = prediction.cpu().numpy() img = img / img.max() output = cv2.normalize(output, None, 0, 1, norm_type=cv2.NORM_MINMAX, \ dtype=cv2.CV_32F) plt.imsave('images/pcl/col_{}'.format(filename.split('/')[-1]), img) plt.imsave('images/pcl/depth_{}'.format(filename.split('/')[-1]), output)

Creating point cloud from depth map
with Open3DLet’s now learn how to create point cloud from depth mapimages using the Open3D library. This process involvescombining color and depth data to produce a 3D spatialrepresentation of a scene. Let us go through the steps:1. The first step is to combine an RGB image and itscorresponding depth image (obtained for a given inputimage in the last section), using the function

RGBDImage.create_from_color_and_depth() from
open3d.geometry module. This creates an RGB-D imagewhere depth is encoded as an additional channel.2. Let us visualize the depth maps for a couple of RGBimages, using the following code snippet:
for imf in ['victoria', 'whale']: im = plt.imread("images/pcl/col_{}.jpg".format(imf)) color_raw = o3d.io.read_image("images/pcl/col_{}.jpg".format(imf)) depth_raw = o3d.io.read_image("images/pcl/depth_{}.jpg".format(imf)) rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(color_raw, depth_raw) plt.figure(figsize=(15,10)) plt.subplots_adjust(0,0,1,0.95,0.05,0.05) plt.subplot(121), plt.title('input color image', size=20), plt.imshow(im) plt.subplot(122) plt.title('depth-map image obtained with deep learning model', size=20) plt.imshow(rgbd_image.depth, cmap='nipy_spectral'), plt.axis('off') plt.show()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 11.20: Creating point cloud from depth map with Open3D

3. With an RGB-D image created, let us now compute the
point cloud from it. The point cloud to be computed isalso called 2.5D point cloud, since it is estimated from a2D depth image, rather than full 3D sensors like LIDAR.Here are the steps to compute the point cloud:a. Depth camera calibration: First let us calibrate(estimate the intrinsic parameters of) the depthcamera to compute the camera matrix and then use it tocompute the point cloud. Here, we shall use built-inintrinsic parameters from Open3D for common deviceslike PrimeSense. The calibration matrix M is a 3×3matrix, shown in Figure 11.21.b. Computation of the point cloud: Transforming thedepth pixel (u, v) from the depth image 2D coordinatesystem to the depth camera 3D coordinate system (x, y,

z), using the following formulae shown in Figure 11.21,where depth(x, y) is the depth value at (x, y) obtainedfrom the depth image [9]:

Figure 11.21: Computing point cloud from depth-map4. Let us print the camera intrinsic parameters obtainedusing the function
o3d.camera.PinholeCameraIntrinsic(). As can be seen,the focal length of the camera for both x and y axis is 525and the optical center is located at (319.5,239.5).camera_intrinsic = o3d.camera.PinholeCameraIntrinsic(\ o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault)print(camera_intrinsic.intrinsic_matrix)
[[525. 0. 319.5]
[0. 525. 239.5]
[0. 0. 1.]]5. Create the point cloud from the input RGBD image andthe camera intrinsic matrix, using the factory (static)method create_from_rgbd_image() from the class
o3d.geometry.PointCloud, as done in the following codesnippet. Given depth value d at (u, v) image coordinate,the corresponding 3D point (x, y, z) is computed as shownin Figure 11.21.6. Post-processing: Flip the returned point cloud (using a
reflection matrix). Otherwise, it will be upside down.7. Visualize the point cloud created from RGBD images, asshown in Figure 11.22.pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic) pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])vis = o3d.visualization.Visualizer()vis.create_window()vis.add_geometry(pcd)o3d.visualization.ViewControl.set_zoom(vis.get_view_control(), 0.5)

vis.run()If you run the preceding code snippet, you should obtain afigure as follows:

Figure 11.22: Generating point clouds with Open3D

Augmented reality with opencv-python
Augmented reality (AR) aims at integrating virtualinformation (for example, text, graphics and so on) with real-world objects, to enhance the environment. It adds value tothe user’s interaction with the real world, as opposed to asimulation, as done in case of virtual reality (VR). AR usesthe existing real-world environment and adds additionalvirtual information; in other words, it presents users withvirtual objects in their natural environment. For example,users, who are looking at their smartphone/tablet screen, willbe able to see enhanced information about the things they arelooking at using AR-enhanced apps.In this section, we will use opencv-python to create (real-time) AR-enhanced frames obtained from a webcam (forexample, laptop camera). A 3D horse model object will beadded to the video frames on top of the surface of a book (tobe used as marker image - a predefined, recognizable imageused as a reference point to place virtual objects within thecamera frame) according to the position and orientation of thebook. Here are the key steps to create an AR-enhanced
webcam environment:1. Start capturing video frames with webcam (with opencv-

python).2. Hold the front surface of the book (which corresponds tothe marker image) in front of the camera (in differentposes) so that it can be detected.3. Enhance the webcam environment by adding a projectionof a 3D object model on top of the surface of the book.Now, let us carefully go through the following detailed steps,to setup the marker image and load the 3D model object forAR:1. Start by importing the libraries required for theimplementation.

import numpy as np
import cv2
import matplotlib.pylab as plt
from IPython.display import display, Image2. Specify the marker image file (a book cover JPEG image)and the 3D object model (a Wavefront OBJ file), using thenext line of code:marker, model3d = 'images/book_cover.jpg', 'models/horse.obj' The following figure shows the image of the cover page ofthe book, to be used as marker in the video frames and the3D horse object model (to be rendered and projected ontothe frames), to be used to create the AR-enhancedenvironment:

Figure 11.23: Marker image and 3D object model to be used for AR

3. The class OBJ defined in the following code snippet loadsa Wavefront OBJ file when instantiated (the constructor
init() implements a simplified version of an OBJ fileparser).4. As can be seen from the Wavefront OBJ file format (awidely-used plain text file format that represents 3Dgeometry) shown in Figure 11.24, a 3D model OBJ filecontains different sections such as vertices (v), vertex
normals (vn), texture coordinates (vt), faces (f) and soon, that need to be processed separately and stored. Thelines starting with ‘#' indicate comments and they will beignored while parsing the OBJ file.

5. The class OBJ will be used to load the 3D horse modelobject. Part of the file’s contents are shown in thefollowing figure (it shows how the obj file looks whenopened with a text editor):

Figure 11.24: Contents of the object model fileNow, refer to the next code snippet:
class OBJ: def __init__(self, filename, swapyz=False): self.vertices = [] self.normals = [] self.texcoords = [] self.faces = [] for line in open(filename, "r"): if line.startswith('#'): continue values = line.split() if not values: continue if values[0] == 'v': v = list(map(float, values[1:4])) if swapyz: v = v[0], v[2], v[1] self.vertices.append(v) elif values[0] == 'vn': v = list(map(float, values[1:4])) if swapyz: v = v[0], v[2], v[1] self.normals.append(v) elif values[0] == 'vt': self.texcoords.append(map(float, values[1:3])) elif values[0] == 'f': face = [] texcoords = []

 norms = [] for v in values[1:]: w = v.split('/') face.append(int(w[0])) if len(w) >= 2 and len(w[1]) > 0: texcoords.append(int(w[1])) else: texcoords.append(0) if len(w) >= 3 and len(w[2]) > 0: norms.append(int(w[2])) else: norms.append(0) self.faces.append((face, norms, texcoords))Creating the AR environment consists of the following steps:a. Recognize the reference flat surface (marker image).b. Estimate the homography (to transform the surfacecoordinate system to the target frame coordinate system).c. Compute the 3D projection matrix (from the homographyand the camera parameters).d. Project the 3D model object onto the video frame (pixelspace) and draw it.Before projecting the 3D object on a video frame, we mustfind and grab the reference flat (book) surface (correspondingto the marker image) inside the video frame. We shallimplement the recognition of the target book surface usingfeature extraction and matching (using ORB rotation-invariant fast feature detector and descriptor). From thematched points, we can estimate the projective transformation
matrix. These are precisely done in the steps 6.a and 6.b,respectively, as described.Let us start implementing the preceding steps a-d, byfollowing the next steps:1. Define the function render(), which renders (projects)the loaded 3D obj model into the current video frame.a. We want to render the model in the middle of thereference surface (marker). To do so, model pointsmust be displaced by half the width and height of the

marker image.b. Since the actual size of the model with respect to therest of the frame may be unknown, we may have toscale it (using the scale_matrix, set to be identitymatrix, to start with) to have the desired size.c. The feature points (feature_pts) used to detect the
marker image inside the video frame will be highlightedin red circles.2. The 3D obj model is already loaded, just project thecorresponding points on top of the video frame with theright projection matrix (with matrix multiplication, usingthe function cv2.perspectiveTransform()).3. Once the projection is done, fill the faces of the projectedhorse model with a color (for example, use the color

cremello or palomino), using the function
cv2.fillConvexPoly(), which fills the convex polygondefined by the given input points (dst) with the given color(specified by BGR values) and draws on the input frame.Now, refer to the next code snippet:
def render(frame, obj, projection, marker, feature_pts): for pt in np.reshape(feature_pts.astype('int32'), (-1,2)): frame = cv2.circle(frame, pt, 1, (0,0,255), 2) vertices = obj.vertices scale_matrix = np.eye(3) # * 3 h, w = marker.shape
 for face in obj.faces: face_vertices = face[0] points = np.array([vertices[vertex - 1] for vertex in face_vertices]) points = np.dot(points, scale_matrix) points = np.array([[p[0] + w / 2, p[1] + h / 2, p[2]] for p in points]) dst = cv2.perspectiveTransform(points.reshape(-1, 1, 3), projection) cv2.fillConvexPoly(frame, np.int32(dst), (135,181,222))

return frame4. Define the function compute_projection_matrix()to tocompute the 3D projection matrix, given the camera

calibration matrix A (camera_parameters) and theestimated homography matrix H, as shown in the nextcode snippet. Figure 11.25 shows the math required tocompute the 3D projection matrix (we need to ensure thatthe rotation basis vectors computed for the final matrix areorthonormal):

Figure 11.25: Computing the 3D projection matrix given the camera calibration
and homography matrix

Source: https://bitesofcode.wordpress.com/2018/09/16/augmented-reality-with-
python-and-opencv-part-2/

5. The function computes the rotations along the x and yaxis, as well as the translation, and then it normalizes thevectors as shown in the preceding figure.6. Next, it computes the orthonormal basis and the 3Dprojection matrix from the reference surface (world
coordinates) to the current frame (camera
coordinates).
def compute_projection_matrix(A, H): H = H * (-1) R_t = np.dot(np.linalg.inv(A), H) R_1, R_2, R_3 = R_t[:, 0], R_t[:, 1], R_t[:, 2] l = np.sqrt(np.linalg.norm(R_1, 2) * np.linalg.norm(R_2, 2)) R_1, R_2, t = R_1 / l, R_2 / l, R_3 / l c = R_1 + R_2 p = np.cross(R_1, R_2)

https://bitesofcode.wordpress.com/2018/09/16/augmented-reality-with-python-and-opencv-part-2/

 d = np.cross(c, p) R_1 = np.dot(c / np.linalg.norm(c, 2) + d / np.linalg.norm(d, 2), 1 \ / np.sqrt(2)) R_2 = np.dot(c / np.linalg.norm(c, 2) - d / np.linalg.norm(d, 2), 1 \ / np.sqrt(2)) R_3 = np.cross(R_1, R_2) projection = np.stack((R_1, R_2, R_3, t)).T return np.dot(A, projection)Finally, the next code snippet defines the function
add_augmented_reality() which creates the AR environment(combines all the steps described previously), by adding theprojected 3D model object (model3d) on top of the referencebook surface (marker) on the webcam video frames. Here is adetailed breakdown of the code step-by-step:1. First, let us load the 3D model from .obj file using the

OBJ class constructor (specifies axis swap with
swapyz=True). Load the gray-scale marker image (of thefront page of the book - the target surface image) with
cv2.imread() function. This is the reference surface thatwill be searched for in the video stream.2. Instantiate oriented BRIEF (ORB) keypoint detectorusing the function cv2.ORB_create(). Extract features(keypoints) and compute the corresponding descriptors forthe marker image, using the method
detectAndCompute().3. Instantiate a Brute-Force descriptor matcher object basedon hamming distance, using cv2.BFMatcher().4. Start capturing video from the webcam with
cv2.VideoCapture() and read frames iteratively in real-time (until we have finished reading a total of
max_num_frames). This is the time when you need tohold the surface corresponding to the marker image (here,the front surface of the book) facing toward the camera indifferent poses.5. Read the current frame, extract the keypoints anddescriptors, and match the descriptors with the markerdescriptors computed earlier to recognize and detect the

book surface inside each frame. Sort them in the order oftheir distance (the lower the distance, the better thematch).6. If enough matches are found (number of matches must begreater than min_matches, the minimum number ofmatches needed for valid recognition, chosen to be 10here), estimate the homography matrix (for projectivetransformation from the src_pts belonging to thereference marker and the dst_pts belonging to the current
frame) using the function cv2.findHomography() withthe RANSAC algorithm, to keep the good matches (inliers)providing the correct estimation and filtering out theremaining bad matches (outliers), specified with the maskreturned.7. Compute the 3D projection matrix using the function
compute_projection_matrix() (from the homographymatrix and camera_parameters) and project the 3Dmodel object on the identified reference surface in theframe (to AR-enhance), using the function render()defined earlier. Draw keypoints corresponding to the goodmatches on the frame with red circles.8. Save the current input frame to input path("images/ar/input/") and the AR-enhanced output frame tothe output path ("images/ar/output/").9. The following camera_parameters (camera calibrationmatrix) defined in the next code block works well; it can betweaked or even can be estimated for better projection.Now, refer to the next code snippet:min_matches = 10 camera_parameters = np.array([[800, 0, 320], [0, 800, 240], [0, 0, 1]])
def add_augmented_reality(marker, model3d, max_num_frames=100): obj = OBJ(model3d, swapyz=True) marker = cv2.imread(marker, 0) orb = cv2.ORB_create() kp_marker, des_marker = orb.detectAndCompute(marker, None) bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)

 cap = cv2.VideoCapture(0) display_handle=display(None, display_id=True) num_frames = 0 try: while True: ret, frame = cap.read() if not ret: print("Unable to capture video") return in_frame = frame.copy() kp_frame, des_frame = orb.detectAndCompute(frame, None) matches = bf.match(des_marker, des_frame) matches = sorted(matches, key=lambda x: x.distance) if len(matches) > min_matches: src_pts = np.float32([kp_marker[m.queryIdx].pt \ for m in matches]).reshape(-1, 1, 2) dst_pts = np.float32([kp_frame[m.trainIdx].pt \ for m in matches]).reshape(-1, 1, 2) homography, mask = cv2.findHomography(src_pts, dst_pts, \ cv2.RANSAC, 5.0) if homography is not None: try: projection = compute_projection_matrix(\ camera_parameters, homography) frame = render(frame, obj, projection, marker, \ dst_pts[mask]) except Exception as err: print(err) pass cv2.imwrite('images/ar/input/frame_{:03d}.jpg' \ .format(num_frames), in_frame) cv2.imwrite('images/ar/output/frame_{:03d}.jpg' \ .format(num_frames), frame) out_frame = np.concatenate((in_frame, frame), axis=1) _, out_frame = cv2.imencode('.jpeg', out_frame) display_handle.update(Image(data=out_frame.tobytes())) if num_frames > max_num_frames: break num_frames += 1 else: print("Not enough matches found: {}/{}" .format(len(matches), \ min_matches)) except KeyboardInterrupt: pass finally: cap.release() display_handle.update(None)10. Invoke the function add_augmented_reality() with thereference surface image and the 3D model obj path.

11. The ORB keypoints corresponding to good matches areshown as small red dots in the output.Refer to the next line of code, that does the job:add_augmented_reality(marker, model3d)
The following figure shows an input video frame and thecorresponding AR-enhanced output frame, obtained byrunning the preceding line of code:

Figure 11.26: Matching ORB keypoints and enhancing frame with ARThe next figure shows a few AR-enhanced frames obtainedapplying the AR on a few frames from the webcam:

Figure 11.27: AR-enhanced framesSince we are using real-time videos, the performance ofsurface object (book) detection can be enhanced with objecttracking, which we are not doing here; it is left as an exercisefor the user.
Embedding and playing video with
moviepyIn this section, we will explore how to use moviepy libraryfunctions to embed video clips at different regions of an imageand create a composite video clip to display all the clipstogether. Follow the given steps to achieve the same:1. Let us start by importing the required libraries using thefollowing code snippet:

! pip install moviepy
from moviepy.editor import *
from moviepy.video.tools.segmenting import findObjects
from moviepy.video.tools.subtitles import SubtitlesClip

import cv2
import numpy as np
import matplotlib.pylab as plt
from glob import glob2. Load the image containing the regions where we want toshow the video clips. Display the image.image = "images/screen.png"plt.figure(figsize=(10,10))plt.imshow(cv2.cvtColor(cv2.imread(image), cv2.COLOR_BGR2RGB)), plt.axis('off')plt.title('Original image', size=25)plt.show()If you run the preceding code snippet, you should obtain afigure as follows. The image contains 5 regions, hence wecan embed 5 different video clips in these regions and playthem simultaneously.

Figure 11.28: Cover image to embed movie parts inside

3. Locate the regions in the image using the findObjects()function from the video.tools.segmenting module of
moviepy; it accepts an input ImageClip objectinstantiated with the input image (containing multipleregions) and returns a list of regions, each representing aseparate object on the screen (as can be seen from theoutput of the following code snippet, it found regions, asexpected).4. Let us find the path of 5 video files that we want to embedinside the 5 regions found, using the glob.glob() functionfrom the video input path.

im = ImageClip(image)regions = findObjects(im)print(len(regions), im.size)
5, (930, 773) video_files = sorted(glob('images/vid/in/V*.mp4'))[:5]

Add subtitlesWe can add subtitles to the composite video if we want to. Letus create a dummy subtitle .srt file in the output folder usingthe following function: create_subtitle_file():
def create_subtitle_file(): with open('images/vid/out/subtitles.srt', 'w') as f: for i in range(20): f.write('{}\n00:00:{:02d},000 --> 00:00:{:02d},000\nComposite video subtitle {}\n\n'.format(i+1, i, i+1, i+1)) create_subtitle_file()Now, let us deep dive into next code snippet (which actuallydoes the video embedding) and understand how it works step-by-step:1. Let us load 5 video files; the frame rate of the videos weused are different (the first couple of them is 60 fps, wherethe remaining are 20 fps).2. Let us first create 5 short video clips (by instantiating

VideoFileClip objects) of same duration (for example,first 20 seconds, using the method subclip()) and havingthe same frame rate (20 frames per second, using themethod set_fps()) from the videos, save the video clips inthe output folder, as shown in the following code snippet.3. Fit each video clip into its corresponding region obtainedearlier.4. Instantiate a SubitlesClip object from the subtitles .srtfile created earlier, so that we can add subtitle to thecomposite output video.5. Instantiate a CompositeVideoClip object and combinethe video clips with the subtitles. Scale the video down(with resize(), to speed up) and save the composite video

in the output folder.6. Append the composite video file to the list of video files.7. Note that this particular composition takes quite sometime, so be patient till it creates the output video.Now, refer to the next code snippet:frame_rate = 20n_secs = 20clips = [VideoFileClip(vf, audio=False).subclip(0, n_secs).set_fps(frame_rate) \ for vf in video_files]
comp_clips = [c.resize(r.size) .set_mask(r.mask) .set_pos(r.screenpos) for c,r in zip(clips,regions[:len(clips)])]
generator = lambda txt: TextClip(txt, font='Georgia-Regular', \ fontsize=24, color='white')subtititles = SubtitlesClip("images/vid/out/subtitles.srt", generator)
cc = CompositeVideoClip(comp_clips + [subtititles.set_pos(('center','bottom'))], size=im.size)cc.resize(0.6).write_videofile("images/vid/out/composition.mp4", fps=frame_ra
for i in range(len(clips)): clips[i].write_videofile('images/vid/out/Vid_{:02d}.mp4'.format(i)) clips[i].reader.close() video_files += ["images/vid/out/composition.mp4"] 8. We can double check whether the output video clips havethe same frame rate using the attribute .fps (=20.0), findthe duration of a clip with .duration and compute the totalnumber of frames (=400) in each of the clips created bymultiplying them (as shown in the following code block).9. The following code block finds the minimum number offrames in the clips:video_clips = sorted(glob('images/vid/out/V*.mp4'))min_len = np.inf
for c in video_clips: clip = VideoFileClip(c) num_frames = int(clip.fps * clip.duration) print(clip.fps, num_frames) # 20.0 400 min_len = min(min_len, num_frames) clip.reader.close() print(min_len)

40010. Select a random index. Use opencv-python to capturethe videos and extract the particular frame index (bycalling the .set() method with
cv2.CAP_PROP_POS_FRAMES and index argument)from the input video clips and the output composite video.11. Plot the frame at the chosen index for each of the videoclips and also the output composite video clip, and displaythem, as done in the following code block.12. Extract the frame dimension, frame rate and framecount for a video, using VideoCapture.get() methodusing arguments cv2.CAP_PROP_FRAME_WIDTH,
cv2.CAP_PROP_FPS and
cv2.CAP_PROP_FRAME_COUNT, respectively. As can beseen from the output of the next code snippet, the fps is20.0 and total number of frames is 400 for the outputcomposite video.13. The frame 230 was shown from the input and the outputcomposite video clips and as can be seen from Figure
11.29, the subtitle is added to the output clip.index = np.random.choice(min_len, 1)[0]print(index)
230plt.figure(figsize=(20,10))plt.subplots_adjust(0,0,1,0.95,0.05,0.05)i = 1
for vid in video_clips: cap = cv2.VideoCapture(vid) cap.set(cv2.CAP_PROP_POS_FRAMES, index) _, frame = cap.read() plt.subplot(2,3,i), plt.axis('off') plt.imshow(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), aspect='auto') i += 1 cap.release()plt.suptitle('Frame {} from the video clips'.format(index), size=25)plt.show()cap = cv2.VideoCapture('images/vid/out/composition.mp4')width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) fps = cap.get(cv2.CAP_PROP_FPS)total_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)

cap.set(cv2.CAP_PROP_POS_FRAMES, index)_, frame = cap.read()plt.figure(figsize=(20,15))plt.imshow(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)), plt.axis('off')plt.title('Frame {} from the composite video clip'.format(index), size=25)plt.show() If you run the preceding code snippet, you should obtain afigure as follows:

Figure 11.29: Embedding video clips with moviepy

Generating images from text with GAN-
CLSIn this section, you will learn how to generate images of birdsfrom given text descriptions using a generative deep learningmodel called Generative Adversarial Network with
Conditional Latent Space (GAN-CLS). This model is anenhanced version of Deep Convolutional Generative
Adversarial Network (DC-GAN) that incorporates textual
input instead of just class labels, allowing it to generateimages that visually match a given sentence [14]. It has beentrained on the Caltech-UCSD Birds dataset (along with fivetext descriptions per image).
GAN-CLS is an example of generative AI, a class of machinelearning models that can create new content—such as images,text, or audio—based on learned data patterns. In this case, itgenerates images that correspond to textual descriptions.The system is built around a conditional GAN framework,where both the generator and discriminator are conditionedon encoded text features. The text is processed using a hybridcharacter-level convolutional-recurrent neural network, whichconverts the sentence into a meaningful feature vector thatcaptures its visual essence. The model solves two key sub-problems:

• Learning a text feature representation that captures theessential visual details.
• Using these features to synthesize a realistic image of abird.The main distinction of this model from the conditional GANsis that this model conditions on text descriptions instead ofclass labels.

Generator Network (G)The generator starts by:
• Sampling a random noise vector z from a standard normal

distribution.
• Encoding the input text t into a feature vector using a textencoder ϕ(t).
• Compressing ϕ(t) and concatenating it with z.
• Feeding this combined input into a deconvolutional

neural network that outputs a synthetic image.
• This process is called feed-forward inference, where thegenerator learns to produce images that look like realbirds described by the input text.

Matching-Aware Discriminator (D)The discriminator is trained with three types of inputs:
• Real images paired with matching text (should beclassified as real).
• Fake images generated by G with any text (should beclassified as fake).
• Real images paired with mismatched text (should also beclassified as fake).
• By doing so, the discriminator not only checks for visualrealism but also for how well the image matches thedescription. This matching-aware mechanism helps thegenerator learn to better align images with text.

MSGAN: Preventing Mode CollapseTo address a common GAN issue called mode collapse—where the generator only learns to produce a few types ofoutputs—Mode-Seeking GAN (MSGAN) introduces aregularization term in the loss function. This encourages thegenerator to create more diverse images by exploring morepossible outputs that still match the text.The following figure shows the GAN-CLS model architecture,along with the algorithm:

Figure 11.30: GAN-CLS algorithm for text-to-image generation
Source: http://proceedings.mlr.press/v48/reed16.pdf

Imagine describing a bird in a sentence—like a small bird with
a red head and yellow belly. GAN-CLS takes this descriptionand tries to visualize it as an image, almost like a digitalartist painting what you describe. It does this through twonetworks:• The generator tries to paint the bird from yourdescription.• The discriminator critiques the painting, saying either:o This looks real and matches the description, oro This is fake, oro This image doesn’t match what was described.Over time, the generator improves its skills by trying to foolthe discriminator, learning to paint more realistic and better-matching bird images. MSGAN adds another layer of

http://proceedings.mlr.press/v48/reed16.pdf

creativity by encouraging the generator not to repeat itselfand instead produce more varied images from different textinputs.This entire system is a prime example of generative AI,where machines are not just analyzing data, but creatingentirely new content that didn’t exist before—bridging naturallanguage and visual imagination.Now, let us start the demonstration, here we shall use apretrained generator model. For faster inference, run thefollowing code on GPU (for example, on Google Colab, mountyour Google Drive first, upload the pretrained models to
gdrive and then access them from Colab). Now follow the nextsteps carefully:1. Start by importing the required libraries, modules, andfunctions for text-to-image synthesis.

import tensorflow as tfprint(tf.__version__)
2.8.0
from tensorflow.keras.utils import array_to_img
import nltk
from nltk.tokenize import word_tokenize
import gensim2. First download the word2vec pre-trained Google Newscorpus (with 3 billion running words) word vector model(3 million English word vectors with -dimensions), forexample, from the following repository:
https://github.com/mmihaltz/word2vec-GoogleNews-
vectors and unzip it to extract the .bin file (~ 3.4 GB)inside the models folder. It will be used to extract thelatent embedding vectors corresponding to the input textdescriptions that the generator model will use to generatethe corresponding image later.3. Use the function load_word2vec_format() from
gensim.models.KeyedVectors module to load the inbinary word2vec format file.4. Load the pretrained generator model (download it from

https://github.com/mmihaltz/word2vec-GoogleNews-vectors

here: https://github.com/AloneTogetherY/text-to-
image-synthesis/tree/master/trained_model) togenerate bird images from text descriptions.nltk.download('punkt')model = gensim.models.KeyedVectors.load_word2vec_format(\ 'models/GoogleNews-vectors-negative300.bin', binary=True)gen_model = tf.keras.models.load_model('models/bird_model.h5')gen_model.compile()5. The function create_sent_vector() accepts a sentence(text description) and returns the corresponding
embedding as a 300 dimensional vector, as shown in thefollowing code snippet. The embedding is computed as anaverage of the word2vec embeddings for the wordspresent in it.6. The function generate_word_vectors_from_desc()accepts a text description (text_desc) corresponding tothe image of the bird we want to generate, replicates it
n_samples times and converts them to latent embeddings.This is done because we want the generator to generate
n_sample images for the given input text.
def create_sent_vector(sent): result_array = np.empty((0, 300)) for word in word_tokenize(sent): result_array = np.append(result_array, [model[word]], axis=0) final = np.mean(result_array, axis=0).astype('float32') return final
def generate_word_vectors_from_desc(text_desc, n_samples): vectors = [] for i in range(n_samples): v = create_sent_vector(text_desc) vectors.append(v) return np.asarray(vectors), np.asarray([])7. The function generate_latent_points() defined in thefollowing code snippet accepts the latent embeddingdimension latent_dim for the generator input, and thenumber of samples n_samples the generator needs tooutput corresponding to the input text description
text_desc.

https://github.com/AloneTogetherY/text-to-image-synthesis/tree/master/trained_model

8. It creates an input x_input of size nsamples ×
latentdim, by sampling from the standard normaldistribution and also computes n_samples sentence-embedding-vectors text_captions using the function
generate_word_vectors_from_desc(). They are returnedand will be used as input to the generator model for imagesynthesis.
def generate_latent_points(latent_dim, n_samples, text_desc): x_input = tf.random.normal([n_samples, latent_dim]) text_captions, labels = generate_word_vectors_from_desc(\ text_desc, n_samples) return [x_input, text_captions]9. Generate images by conditioning on the given test_input(created from the input text descriptions) by running aforward pass with the generator model. Plot the n_sampleimages generated. Note that the generator model needs tobe run with training=False.
def generate_images(model, test_input, text_desc): plt.figure(figsize=[15, 3]) plt.subplots_adjust(0,0,1,0.925,0.05,0.05) predictions = model(test_input, training=False) for i in range(predictions.shape[0]): plt.subplot(1, 9, i+1) plt.imshow(array_to_img(predictions.numpy()[i])) plt.suptitle('Generative adversarial text to image synthesis\nText: {}' \ .format(text_desc), size=15) # Text to image synthesis with GAN plt.show()10. Finally, invoke the function generate_images() with thepretrained generator gen_model and generate latentpoints from the input text_desc. The generated outputimages (yellow birds) from the given input text are shown:desc = 'This bird is completely yellow' # 'This bird is green'
desc = 'This bird has white breast with brown feathers'
desc = 'This bird has white breast with blue feathers'generate_images(gen_model, generate_latent_points(100, 9, text_desc), \ text_desc)If you run the preceding code snippet, you should get 9bird images generated as shown in the following image,corresponding to the text description:

Figure 11.31: Text-to-image synthesis with GAN

11. This pretrained model was trained only for 960 epochs,hence mode collapse problems are likely to be visible [14].To generate images with better quality, train the GAN-CLSmodel for many more epochs [11]. This is left as an exercise.12. Also, note that you may need to remove stop-words fromthe input text; the corresponding word2vec embeddingsare not likely to be present in the pretrained word2vecmodel. You may use other word embedding models, too.
Image editing with seamless cloningIn this section, we will explore how to seamlessly clone objects—like a person or any texture patch—from one image (source)into another (target) image using Poisson blending, atechnique implemented in OpenCV. The main challenge ismaking the boundary of the source object look real andseamless on the target image, without destruction of thesource object. Poisson image editing is a gradient domainediting and blending technique that can clone an object(texture) from a source image (captured by a mask image)with a target image seamlessly. Instead of simply copyingpixel values, it focuses on copying the gradient (intensity
changes) of the source object into the masked area of thetarget image. This method ensures that:• The internal texture and shading of the source object arepreserved.• The boundary pixels align smoothly with the target image’ssurroundings.In essence, it is a guided interpolation, since the cloned valuesof the source pixels are found by interpolating the values of

the edge pixels into the target image’s masked area, with theguidance provided by the gradient of the source image. Thegradient of the source and output images in the maskedregion will be the same after seamless cloning is done.Moreover, the intensity of the target image and the outputimage at the masked region boundary will be the same .Mathematically, it is an optimization (minimization) problemof an overdetermined system (as shown in the following
Figure 11.32). The edge pixels act as constraints and theirvalues are anchored to their values in the target image, whilefor each of the masked pixels in the target image, we have tosolve two equations: setting its x and y gradients equal to thecorresponding and gradients of the source image,respectively. Minimizing the error in the solution vector is alinear regression problem that may be solved by the normalequation with pseudo-inverse. Once the solution vector ofpixels is obtained, it overwrites the masked portion of thetarget image, and the cloning process is complete.The following figure shows how a source image patch g isintegrated seamlessly with a target image f* (over the regionΩ), with a new image patch f (over the region Ω) obtained as asolution with a poisson solver [13]:

Figure 11.32: Guided interpolation
Source: https://www.cs.jhu.edu/~misha/Fall07/Papers/Perez03.pdfLet us start by importing the required libraries, note theversion of opencv-python used. The function plot_images()plots the source, destination, mask and output images side-by-side with matplotlib.pylab module’s imshow().

import cv2print(cv2.__version__) # make sure the major version of OpenCV is >= 3
4.8.0
import numpy as np
import matplotlib.pylab as plt
def plot_images(src, dst, mask, output): plt.figure(figsize=(20,10)) plt.subplot(131) plt.imshow(cv2.cvtColor(dst, cv2.COLOR_BGR2RGB), aspect='auto') plt.axis('off'), plt.title('Destination Image', size=20) plt.subplot(132), plt.imshow(cv2.cvtColor((0.6*src + 0.4*mask) \ .astype(np.uint8), cv2.COLOR_BGR2RGB), aspect='auto') plt.axis('off'), plt.title('Source Image (with mask)', size=20) plt.subplot(133), plt.imshow(cv2.cvtColor(output, cv2.COLOR_BGR2RGB), \ aspect='auto'), plt.axis('off') plt.title('Output Image with Seamless Cloning', size=20) plt.tight_layout()

https://www.cs.jhu.edu/~misha/Fall07/Papers/Perez03.pdf

 plt.show()Now follow the next steps for the demonstration of seamlesscloning:1. Here, we have a single destination image that has awaterfall, with spiderman standing in front of it. We alsohave 5 different source images, each with a maskcorresponding to the spiderman’s position in the image.2. Now, we shall iteratively blend each of the source object(the spiderman) with the destination image, guided by themasked region in the source, using seamless cloning, asshown in the following figures 11.33 and 11.34.3. We shall use cv2.seamlessClone() function, whichaccepts the source (src) and destination (dst) images,along with the src_mask and the parameter center whichspecifies where in the target image the masked objectshould be placed and blended.4. Since the object to be blended is solid in each of thecases, NORMAL_CLONE is used. Note that the roughsource masks also include backgrounds in thecorresponding sources, which is nicely blended with thebackground in the corresponding location in the targetimage, something that simple copy-paste could not havedone (try to change NORMAL_CLONE to
MIXED_CLONE and explain which one works betterhere).Now, refer to the next code snippet:

read source and destination images
from skimage.exposure import equalize_adapthistdst = cv2.imread("images/1.jpeg")centers = {2:(200,350), 3:(350,745), 4:(800,125), 5:(850,750), 6:(500,125)}
read the mask image
for i in range(2,7): src = cv2.imread(f"images/{i}.jpeg") src = equalize_adapthist(src.astype(np.uint8)) src = (255*src/src.max()).astype(np.uint8) src_mask = cv2.imread(f"images/{i}_mask.jpg") # this is where the CENTER of the airplane will be placed center = centers[i]

 # clone seamlessly. output = cv2.seamlessClone(src, dst, src_mask, center, cv2.NORMAL_CLONE) # display result plot_images(src, dst, src_mask, output) dst = outputRefer to the following figure, which shows the blended imagesobtained by applying seamless cloning of each of the sourceimages iteratively with the destination image:

Figure 11.33: Inserting object (spiderman) into an image with seamless cloningAgain, refer to the next figure that shows the destinationimage with more source images are blended (with masks) intoit, using seamless cloning:

Figure 11.34: Inserting object (spiderman) into an image with seamless cloningThe following figure shows the final output image createdafter multiple blending and seamless cloning steps:

Figure 11.35: Image editing with seamless cloning with opencv-python

Image generation and editing with
DALL-E
DALL-E is a generative AI model developed by OpenAI thatcreates and edits images from natural language prompts. Itbelongs to the class of large language models (LLMs) anduses a decoder-only transformer architecture, similar toGPT-3. The model was trained on hundreds of millions of text–
image pairs, enabling it to generate high-quality images thatcorrespond to the meaning and style described in the prompt.DALL-E is capable of combining unrelated concepts, applyingtransformations to existing images, and rendering imaginativescenes that reflect textual input. It takes in both the promptand image (if provided) as a single stream of up to 1,280tokens and learns to generate each token one by one using
maximum likelihood estimation.OpenAI introduced the original DALL-E in early 2021,

followed by DALL-E 2 in 2022, which generates more realisticand detailed images with 4× greater resolution. DALL-E 3,released in late 2023, significantly improved prompt
understanding and image quality, and is tightly integratedwith ChatGPT (GPT-4-turbo). This version supports
inpainting (editing image regions via point-and-click),offering a conversational and intuitive way to generate ormodify visual content.
Zero-shot text-to-image generationGiven an image description as prompt, DALL-E model cangenerate an image, without any additional task-specifictraining. This capability is called zero-shot reasoning. Themodel will produce a high-quality, contextually accurateimage even if it has never seen the exact phrases in theprompt before.
How to use DALL-E 2 via the OpenAI APITo use the DALL-E 2 API for programmatic image generation,follow these steps:1. Create an OpenAI account:Go to https://platform.openai.com/signup and sign upwith your email address or log in with an existing Googleor Microsoft account.2. Access the API keys:After verifying your email and logging in, visit the APIdashboard at https://platform.openai.com/account/api-

keys to generate your secret API key, which you’ll use inyour code to authenticate API calls.3. Check Free credits:OpenAI typically offers free trial credits (e.g., $5 worth)to new users for the first few months. These credits can beused across OpenAI’s models, including DALL-E 2. You can

https://platform.openai.com/signup
https://platform.openai.com/account/api-keys

view your credit balance at
https://platform.openai.com/account/usage.4. Buy credits (if needed):Once your free credits are exhausted, you can purchaseadditional credits from
https://platform.openai.com/account/billing. Pricing isusage-based and transparent.

Note: As of now, DALL-E 3 is only accessible via the ChatGPT interface,
not through the API.Now, let us use the DALL-E 2 APIs to demonstrate text-to-image-synthesis following the next steps:1. Install the library openai with pip2. Use your own API key to make the following examplework.3. Let us start by importing the required libraries andproviding your own API key.

pip install openai==0.28

import openai # OpenAI Python library to make API calls
import requests # used to download images
import os # used to access filepaths
from PIL import Image # used to print and edit images

set API keyopenai.api_key = 'XXXXXX' # use your own API key here, replace XXXXXX4. Use the API openai.Image.create() which accepts thefollowing arguments:a. The prompt text as the description of the image (be asspecific as possible) to be generated, as shown (here,we want the model to generate a photo of the VictoriaMemorial Hall in the winter season).b. n = 1, that is, the number of images to be generated.c. size, that is, the size of the image to be generated(here 1024×1024). The API allows you to generateimages with a few predefined sizes.

https://platform.openai.com/account/usage
https://platform.openai.com/account/billing

d. response_format="url" specifies that the output canbe downloaded from a url which will be returned.e. style = 'natural' specifies that we want a naturalimage (as opposed to, for example, a digital art).prompt = "Photo of Victoria Memorial Hall in the winter. \ A yellow taxi is standing in front with snows over it. \ On the right, a boy is taking selfie."
call the OpenAI APIgeneration_response = openai.Image.create(prompt=prompt, n=1, size="1024x1024", response_format="url", style = 'natural')
generated_image_name = "opeani_generated_image.png" generated_image_filepath = os.path.join('images/', generated_image_name)generated_image_url = generation_response["data"][0]["url"]
extract image URL from responsegenerated_image = requests.get(generated_image_url).content
download image

with open(generated_image_filepath, "wb") as image_file: image_file.write(generated_image) # write the image to the file
display(Image.open(generated_image_filepath))The following figure shows the output generated with the APIusing the preceding prompt:

Figure 11.36: Text-to-image generation using DALL-E OpenAI API

Editing an image with maskThis DALL-E training procedure not only allows it to generatean image from scratch, but also to regenerate specific parts orregions (defined by a mask) of an existing image, in a way thatis consistent with the text prompt. This process is called
inpainting.The DALL-E training process enables the model to understandwhich parts of an image to leave unchanged and which part toregenerate based on a mask and a new prompt. The maskimage defines the area to edit: the transparent (or black)
region in the mask is the area DALL-E will regenerate, whileeverything else in the image stays as it is.The following code snippet demonstrates how the taxi in theimage generated previously can be replaced by a cat usingappropriate mask and a re-written prompt, while keeping theother parts of the image intact.The following figure shows the mask to be used to regeneratea part of the image, with the transparent part to be

regenerated by the model. Generating such a mask from abinary one requires some effort; the task is left as an exercisefor the reader.

Figure 11.37: Creating a mask for editing an image generated with DALL-ENote the prompt now mentions a big orange cat. The API to beused for editing the image (that is, to regenerate the regioncorresponding to the transparent part in the mask) is
openai.Image.create_edit(), which accepts the input imageto be edited along with the mask (with the transparent regionto be edited) and the prompt.Let us generate one such image of size 1024×1024, using thenext code snippet, the URL of the generated image result isbeing returned. The output image is shown in Figure 11.38:prompt = "Photo of Victoria Memorial Hall in the winter. \ A big orange cat is sitting in front. \ On the right, a boy is taking selfie."

response = openai.Image.create_edit(image=open("images/openai_generated_image.png", "rb"), mask=open("images/openai_mask.png", "rb"), prompt=prompt, n=1, size="1024x1024")image_url = response.data[0].url
with open('images/openai_edited_image.png','wb') as f: f.write(requests.get(image_url).content) display(Image.open(('images/openai_edited_image.png')))The following figure shows the output generated with the APIusing the preceding prompt:

Figure 11.38: Image editing with DALL-E OpenAI API

Conclusion

In this chapter, we explored a few more advanced techniquesin computer vision and image processing, including deepgenerative art, image pseudo-colorization, text-to-imagesynthesis, and seamless cloning. Till now, we have beenmostly dealing with 2D image processing, but in this chapter,we learned a few 3D image processing / computer visiontechniques, for example, generating 3D point clouds andloading/projecting 3D objects. By now, you should also be ableto implement basic AR applications with your webcam. Youalso learned how to use advanced GAN models for imagesynthesis from the text, as well as NLP methods (with the
gensim library), such as how to create sentence embeddingsfrom text sentences, which is a crucial part of solving the text-to-image synthesis problem. Along with opencv-python, welearned how to use other libraries such as moviepy (which isan important library for video/movie editing). Finally, welearned how to use generative AI models for text-to-imagetranslation and for image editing using the cutting-edge
DALL-E 2 model from OpenAI.
Key termsArtistic style transfer, DeOldify, CIC, Deep Dream, Poissonblending, Augmented reality, Vision transformer, GAN-CLS,MSGAN
Questions1. Controlled vs. uncontrolled deep dream: Modify thedeep dream code with PyTorch to work without any control(guide) image, that is, just maximizing the activation at thespecific layer of the VGG16 pretrained network(pretrained on ImageNet).Show that with the following input image of Disneycartoons (Mickey & Donald) the unguided vs. guided deep

dream output will be like the ones shown in the followingfigure, when you use the following flower image as thecontrol image (for the guided deep dream), VGG16pretrained weights and maximize the activation for layer26. Try changing the activation layer to be considered forgradient ascent and observe the impact on the output, forexample, what happens when shallower vs. deep layer ischosen?

Figure 11.39: Guided vs. unguided deep-dreaming with VGG-16

2. Deep Dream with GoogleNet (Inception V3): Instantiate

the inception_v3 class torch-vision.models with pre-trainedweights and modify the deep dream code to useinception_v3 instead of Vgg16 (the base architectureshown in the following figure).

Figure 11.40: Inception V3 model architecturePerform deep-dreaming at the layers Inception A, B, C, D,E (you may need to use pytorch hooks). You may use thefollowing code snippet to obtain the corresponding layernumbers:model = models.inception_v3(pretrained=True)l = list(model.modules())
for x in [248, 229, 190, 159, 128, 97, 84, 62, 40]: print(x, l[x]._get_name())
248 InceptionE
229 InceptionD
190 InceptionC
159 InceptionC
128 InceptionC
97 InceptionC
84 InceptionB
62 InceptionA
40 InceptionAYou should obtain an output like the following figure, withan input image of a sky:

Figure 11.41: Deep dreaming with GoogleNet3. Compare and show the output of the colored imagesobtained using different colorization algorithms for thesame grayscale images. You should obtain a figure like thefollowing one for the given input images (hint: you maywant to implement couple of Python functionsget_deoldify_output() and get_cic_output()):

Figure 11.42: Comparing image colorization models

4. Tune the render_factor hyperparameter of the DeOldifyalgorithm (for example, change from 20 to 40) and observethe impact on the color image generated, starting from thefollowing input grayscale image given.

You should obtain a figure like the following one, fordifferent values of render_factor, in increasing order:

Figure 11.43: Hyperparameter tuning with image colorization model DeOldifyCompare the colorized output images obtained usingdifferent versions (artistic, stable and so on) the DeOldifycolorizer outputs. Extract frames from a black-and-white(grayscale) video and colorize with different versions.Now, start with a color image (ground-truth). Convert it toa grayscale image and automatically color the image usingthe preceding algorithms. Compute the Raw accuracy (asdefined here: https://arxiv.org/pdf/1603.08511.pdf),defined by the percentage of predicted pixel colors withina thresholder L2 distance (choose a threshold between 0 to150) of the ground truth in ab color space (convert RGB toLab).5. Use the library neural-style to obtain stylized image withNST starting with a content and a style input image. Notethat it uses iterative updates to modify the output image,so you should run on GPU, otherwise it will be very slow.(hint: use the following commands to setup the library anddownload the models)
#!pip install neural-style
#!neural-style -download_models models/!neural-style -style_image starry_night.jpg -content_image metro.png -output_image output.png -model_file nin_imagenet.pth -gpu 0 -backend cudnn -num_iterations 1000 -seed 123

https://arxiv.org/pdf/1603.08511.pdf

 -content_layers relu0,relu3,relu7,relu12 -style_layers relu0,relu3,relu7,relu12 -content_weight 10 -style_weight 500 -image_size 512 -optimizer adamYou should obtain an output as shown in the followingfigure with the given content (metro rail) and style (Van
Gogh’s starry night) image. Note the command linearguments used, many of them are hyperparameters to themodel (for example, content_weight, style_weight,optimizer), tweak them to observe the impact on thegenerated image. Refer to the following figure:

Figure 11.44: NST with the library neural-styleNext, use it to combine multiple style images with acontent image, and you should obtain a figure like thefollowing, once you start with the inputs shown:

Figure 11.45: NST - combining multiple styles with neural-style

Refer to this paper https://arxiv.org/pdf/1703.06953.pdf(that introduces a CoMatch Layer which learns to matchthe second order feature statistics with the target styles)and this pytorch implementation
https://github.com/zhanghang1989/PyTorch-Multi-
Style-Transfer to implement MSGNet. Start with animage of a train as content and the candy style image toobtain the following output image with artistic styletransfer, shown in the next figure:

Figure 11.46: Artistic style transfer with MSGNet

https://arxiv.org/pdf/1703.06953.pdf
https://github.com/zhanghang1989/PyTorch-Multi-Style-Transfer

Finally, use MSGNet for much faster inference and better-quality stylized output image, with multiple style images.6. Image-to-Video Generation Using a Diffusion Model:Implement a pipeline that transforms a single static imageinto a short video using a pretrained diffusion model. Usethe 🤗 Hugging Face diffusers library and the StableVideo Diffusion (SVD) model from Stability AI. Yourimplementation should do the following:• Load a pretrained SVD model suitable for convertingstill images into videos.• Preprocess a sample image (e.g., a photo of your choiceor a classic image like Lena).• Generate a sequence of frames using the model.• Export the resulting frames as a video file (e.g., .mp4).
Hints:• Use the DiffusionPipeline class from diffusers to loadthe model.• The model accepts 16-bit float tensors and is designedto run on CUDA-enabled devices.• Use utility functions like load_image() andexport_to_video() to streamline your pipeline.

Optional challenges:• Try different image resolutions and observe how itaffects the output.• Vary the number of output frames and frame rate (fps)to create different video lengths and speeds.• Replace the image with a custom input and adjustresizing appropriately.
References1. https://arxiv.org/pdf/1705.06830.pdf2. https://arxiv.org/pdf/1603.08511.pdf

https://arxiv.org/pdf/1705.06830.pdf
https://arxiv.org/pdf/1603.08511.pdf

3.
https://cs.stanford.edu/people/jcjohns/papers/eccv16/
JohnsonECCV16.pdf4. https://www.ipol.im/pub/art/2022/403/article_lr.pdf5.
https://www.researchgate.net/publication/329610370
_Hands-on_Image_Processing_in_Python6. https://github.com/jantic/DeOldify7.
https://github.com/onnx/models/tree/main/vision/styl
e_transfer/fast_neural_style8.
https://www.jmlr.org/papers/volume9/vandermaaten0
8a/vandermaaten08a.pdf9. https://cs.gmu.edu/~xzhou10/doc/kinect-study.pdf10. https://arxiv.org/pdf/2103.13413.pdf11. https://github.com/AloneTogetherY/text-to-image-
synthesis12.
https://bitesofcode.wordpress.com/2018/09/16/augme
nted-reality-with-python-and-opencv-part-2/13.
https://www.cs.jhu.edu/~misha/Fall07/Papers/Perez03
.pdf14. http://proceedings.mlr.press/v48/reed16.pdf15. https://arxiv.org/pdf/1903.05628.pdf16. https://www.youtube.com/watch?v=cwe0nBqkDWk17. https://www.youtube.com/watch?v=98ZYF9M-4Js18. https://www.youtube.com/shorts/hpaaT5yaaeE19. https://www.youtube.com/watch?v=bxzuCmcHlO420. https://www.youtube.com/watch?v=d2CSrDKs6Jw21. https://www.youtube.com/watch?v=XBTaE32-wL4

https://cs.stanford.edu/people/jcjohns/papers/eccv16/JohnsonECCV16.pdf
https://www.ipol.im/pub/art/2022/403/article_lr.pdf
https://www.researchgate.net/publication/329610370_Hands-on_Image_Processing_in_Python
https://github.com/jantic/DeOldify
https://github.com/onnx/models/tree/main/vision/style_transfer/fast_neural_style
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://cs.gmu.edu/~xzhou10/doc/kinect-study.pdf
https://arxiv.org/pdf/2103.13413.pdf
https://github.com/AloneTogetherY/text-to-image-synthesis
https://bitesofcode.wordpress.com/2018/09/16/augmented-reality-with-python-and-opencv-part-2/
https://www.cs.jhu.edu/~misha/Fall07/Papers/Perez03.pdf
http://proceedings.mlr.press/v48/reed16.pdf
https://arxiv.org/pdf/1903.05628.pdf
https://www.youtube.com/watch?v=cwe0nBqkDWk
https://www.youtube.com/watch?v=98ZYF9M-4Js
https://www.youtube.com/shorts/hpaaT5yaaeE
https://www.youtube.com/watch?v=bxzuCmcHlO4
https://www.youtube.com/watch?v=d2CSrDKs6Jw
https://www.youtube.com/watch?v=XBTaE32-wL4

22. https://www.youtube.com/watch?v=eL33bEyy88o23. https://www.youtube.com/watch?v=4-_Fc5S4rNE24. https://www.youtube.com/watch?v=qdDlW4g9Yik25. https://www.youtube.com/watch?v=QFml23buJqQ26. https://www.youtube.com/watch?v=23nHljrSh3I27. https://www.youtube.com/watch?v=8mWaFrCFdCw28. https://arxiv.org/abs/2102.12092

Join our Discord space
Join our Discord workspace for latest updates, offers, tech
happenings around the world, new releases, and sessions with
the authors:
https://discord.bpbonline.com

https://www.youtube.com/watch?v=eL33bEyy88o
https://www.youtube.com/watch?v=4-_Fc5S4rNE
https://www.youtube.com/watch?v=qdDlW4g9Yik
https://www.youtube.com/watch?v=QFml23buJqQ
https://www.youtube.com/watch?v=23nHljrSh3I
https://www.youtube.com/watch?v=8mWaFrCFdCw
https://arxiv.org/abs/2102.12092
https://discord.bpbonline.com/

Index
A

Adaptive Thresholding 132
Adaptive Thresholding, implementing 132, 133
Adaptive Thresholding, methods 132
Anisotropic Diffusion 98
Anisotropic Diffusion, features 99
Anisotropic Diffusion, implementing 100, 101
Anisotropic Diffusion, steps 101, 102
AR, architecture 544
AR, breakdown 549-551
AR, implementing 544, 545
AR, preventing 546-548
AR, steps 546
Augmented Reality (AR) 543
Autoencoder 66

B
Background Subtraction 181
Background Subtraction, steps 181, 182
Bar/QR Codes, aspects 393
Bar/QR Codes, differences 392
Bilateral Filter 49
Bilateral Filter, configuring 49
Bilateral Filter, libraries

Opencv-Python 51
SimpleITK 49

Binary Semantic Segmentation 477
Bitplane Slicing 124
Bitplane Slicing, implementing 124, 125
Bokeh Blur 18
Bokeh Blur, configuring 18, 19
Brain MRI 435
Brain MRI, approach 436
Brain MRI, steps 436-442

C
Chambolle 33

CIC, points 530, 531
CIC, steps 531, 532
Cityscapes 186
Cityscapes, terms

Benchmarking 187
Content 186
Image 186
Labels 186
Practitioners/Researchers 186

Clustering 133
Clustering, criteria

Heterogeneity 134
Homogeneity 134

Clustering, types
K-Means 138
Mahalanobis Distance 134

CNN, concepts
Activation Function 320
Backpropagation 322
Backward Pass 321
Convolution Operation 319
Dropout Layer 320
Forward Pass 320
Fully Connected Layers 320
Loss Function 323
Pooling Layer 320

CNN, implementing 324-326
CNN, purpose 323
CNN, steps 327, 328
Color Channel Alignment 236
Color Channel Alignment, steps 236, 237
Colorful Image Colorization (CIC) 529
Computed Tomography (CT) 432
Computer Vision 482
Computer Vision, applications 482
Conditional GAN (cGAN) 84
Connected Component 178
Connected Component, algorithms

Two-Pass 178
Union-Find 179

Connected Component, steps 179, 180
Convolution Neural Networks (CNN) 319
Corner Detectors 217
Corner Detectors, methods

Harris Corner Detector 217
Shi-Tomasi 221

SubPixed Accuracy 220
COVID-Net 464
COVID-Net, ensuring 466-472
COVID-Net, steps 465
CT, architecture 433
CT, steps 433, 434

D
DALL-E 566
DALL-E, architecture 566
DALL-E, demonstrating 567, 568
DALL-E, implementing 569, 570
DALL-E, steps 567
DCGAN 107
DCGAN, guidelines 107
DCGAN, implementing 108, 109
DCGAN, steps 110-113
DeblurGAN 83
DeblurGAN, configuring 85, 86
DeblurGAN, implementing 86-88
DeblurGAN, points 89, 90
Deconvolution 9
Deconvolution, points

Bokeh Blur 18
Gaussian Blur Kernel 12
Inverse Filter 9
Richardson-Lucy Algorithm 24
Unsupervised Wiener 23
Wiener Filter 19

Deep Dream 508
Deep Dream, architecture 510
Deep Dream, configuring 508, 509
Deep Dream, implementing 510-514
DeepFace 383
DeepLabV3 198
DeepLabV3+ 184
DeepLabV3+, components 184
DeepLabV3, approach

Blurring 198
Combine Frames 198
Identify Background 198
Object Segmentation 198

DeepLabV3, implementing 198, 199
DeepLabV3, steps 199, 200
Denoising Autoencoder 67

DeOldify 525
DeOldify, aspects 526
DeOldify, preventing 528, 529
DeOldify, technologies 527, 528
DICOM 409
DICOM, features 409
DICOM, implementing 410-412
Discrete Wavelet Transform (DWT) 38
DISK (DIScrete Keypoints) 232
DISK, steps 233-236
DISK, terms 232
DWT, demonstrating 38-41
DWT, terms

Pywt 41, 42
Scikit-Image 44

E
Efficient Neural Network (ENet) 191
ENet, features

CNN Architecture 191
Efficiency 191
Multi-Scale, processing 191
PReLU 191
Skip Connections 191
Spatial Dropout 191

ENet, implementing 192-194
EuroSAT Dataset 487
EuroSAT Dataset, steps 487-491

F
Face Recognition 271
Face Recognition, steps 271, 272
Face Recognition, terms

Classification 273
Feature Extraction 273
Neighbor Classification 273

Face Verification 383
Face Verification, implementing 384-389
Face Verification/Recognition, difference 383
Fashion-MNIST 298
Fashion-MNIST, architecture 299
Fashion-MNIST, steps

Data Downloading 300
Data Loading/Preprocessing 300, 301
Visualization 302, 303

Fast Marching Method (FMM) 159
Feature Description 215
Feature Detector 214
Feature Detector, types 215
Flood Detection 482
FloodNet, classes 484
FloodNet, implementing 484-486
FMM, architecture 160
FMM, determining 161, 162
FMM, steps 160, 161

G
Gabor Features 281
Gabor Features, steps 282-284
Gabor Features, terms

2-NN Classifier 285
Ensemble Classifier 284

Gabor Filter 279
Gabor Filter, characteristics

OpenCV-Python 280, 281
Scikit-Image 279

Gabor Filter, illustrating 279
GAN-CLS 557
GAN-CLS, configuring 557
GAN-CLS, ensuring 558, 559
GAN-CLS, steps 559-561
GAN, ensuring 83, 84
Gaussian Blur Kernel 12
Gaussian Blur Kernel, breakdown 13, 14
Gaussian Blur Kernel, implementing 14, 15
GCANet 77
GCANet, configuring 77, 78
GCANet, illustrating 81, 82
GCANet, implementing 78-81
Generative Adversarial Network (GAN) 83
Global Threasholding 126
Global Threasholding, algorithms

ISODATA 127
Li/Yen 127
Mean 127
Minimum 127
Otsu 127

Global Threasholding, architecture 127
Global Threasholding, steps 127
GrabCut 153

GrabCut, arguments 155, 156
GrabCut Segmentation 154
GrabCut Segmentation, implementing 154, 155
GrabCut, techniques

GrabCut Segmentation 154
Graph Cut Segmentation 153

Gradient Filter 423
Gradient Filter, breakdown 423, 424
Graph Cut Segmentation 153
Graph Cut Segmentation, configuring 153
Gray Level Slicing 120
Gray Level Slicing, approaches

With Background 121
Without Background 121

Gray Level Slicing, implementing 121-123
Guassian Naive Bayes 305
Guassian Naive Bayes, configuring 305
Guassian Naive Bayes, implementing 306, 307
Guassian Naive Bayes, preventing 308, 309

H
H2O 202
H2O, implementing 202-204
HAAR Cascade 290
HAAR Cascade, architecture 291
HAAR Cascade, demonstrating 291
HAAR Cascade/HOG-SVM, preventing 291-293
Harris Corner Detector 217
Harris Corner Detector, configuring 217, 218
Harris Corner Detector, determining 218, 219
Histogram of Oriented Gradients (HOG) 286
HOG, configuring 286, 287
HOG, implementing 287, 288
HOG, steps 286
Human Skin Segmentation 172
Human Skin Segmentation, steps 173-177

I
Image Alignment 222
Image Alignment, approaches

Intensity Based 223
Landmark 223
Segmentation Based 223

Image Alignment, demonstrating 226-228
Image Alignment, steps 225, 226

Image Inpainting 91
Image Inpainting, methods

k-Nearest Neighbor (kNN) 96
OpenCV-Python 91

Image Registration 246
Image Registration, implementing 247
Image Registration With CNN, preventing 247-251
Image Restoration 3
Image Stitching 260
Image Stitching, components 260
Image Stitching, demonstrating 262, 263
Image Stitching, steps 261, 262
Image Thresholding 126
Image Thresholding, algorithms

Global Threasholding 126
Local Thresholding 129

Inverse Filter 9
Inverse Filter, implementing 9-12
Inverse Problems 3
Inverse Problems, configuring 4-6

K
Keras 103
Keras, implementing 103-106
Keras, modules 103
Kernel PCA (kPCA) 57
K-Means 138
K-Means, process

Assignment 138
Centroids, updating 138
Initialization 138
Repeat 138

K-Means, steps 139
k-Nearest Neighbor (kNN) 96
kNN, implementing 97, 98
kNN, steps 96
kPCA, configuring 57-59

L
Landcover Classification 487
Landcover Classification, terms

EuroSAT Dataset 487
Residual Network 487

Local Binary Patterns Histogram (LPPH) 271
Local Thresholding 129

Local Thresholding, implementing 129, 130
LPPH, implementing 274-277

M
Machine Learning Models 304
Machine Learning Models, phases

Evaluation 304
Training 304

Machine Learning Models, terms
Guassian Naive Bayes 305
Random Forest 313
SGDClassifier 309

Mahalanobis Distance 134
Mahalanobis Distance, implementing 135-137
Mahalanobis Distance, outline 134, 135
MAP, libraries

Final Output, retrieving 56
Gradient Functions 54, 55
L-BFGS-B, minimizing 56
Noisy Image 55
Quantitative Evaluation 57

MAP, probabilistic 53
Mask R-CNN 376
Mask R-CNN, components 376, 377
Mask R-CNN, implementing 377-382
Matplotlib 417
Matplotlib, steps 417-419
Max-Entropy Thresholding 130
Max-Entropy Thresholding, architecture 131
Max-Entropy Thresholding, implementing 131, 132
Maximum A Posteriori (MAP) 53
MeanShift Clustering 144
MeanShift Clustering, steps 144, 145
MeanShift Filtering 142
MeanShift Filtering, implementing 143, 144
MeanShift Filtering, parameters 142, 143
MeanShift Segmentation 141, 142
MeanShift Segmentation, functions

MeanShift Clustering 144
MeanShift Filtering 142

Median Filter 6
Median Filter, configuring 7
Median Filter, steps 7, 8
Medical Image Processing 406, 407
Medical Image Processing, architecture 408

Medical Image Processing, libraries
DICOM 409
Metalmage 415
NIfTI 412

Medical Image Processing, sections 407, 408
Medical Image Processing, terms

nibabel 409
pydicom 409
SimpleITK 409

Metalmage 415
Metalmage, implementing 415, 416
MobileNet-SSD 354
MobileNet-SSD, components

MobileNet 355
MobileNet-SSD 355
SSD 355

MobileNet-SSD, implementing 356, 357
Morphological Filtering 428
Morphological Filtering, implementing 428-432
Morphological Filtering, operations 428
Morphological Watershed 150, 151
Morphological Watershed, implementing 151, 152
Motion Blur Kernel 15
Motion Blur Kernel, configuring 15-17
Motion Blur Kernel, steps 16
Moviepy 552
Moviepy, implementing 554, 555
Moviepy, steps 552, 553
MRI Image, libraries

Matplotlib 417
Vedo 421
Visvis 420

N
NCut, architecture 163
NCut, configuring 164
NCut, demonstrating 164, 165
Neural Style Transfer (NST) 515
NIfTI 412
NIfTI, steps 412-414
NMF 267
NMF, implementing 268-271
NMF, steps

Component Selection 268
Data Normalization 268

Data Preparation 267
Feature Extraction 268
Feature Selection 268
Final Normalization 268

Normalized Cut (NCut) 163
NST, implementing 515-517
NST, steps 518, 519

O
Object Detection 352
Object Detection, features 353
Object Detection, fundamentals

Classification 353
Localization 353

Object Detection, models
Faster R-CNN 353
SSD 353
YOLO 353

ONNX, steps 521
Opencv-Python 46
OpenCV-Python 91
OpenCV-Python, algorithm 91, 92
Opencv-Python, configuring 51, 52
Opencv-Python, implementing 47, 48
OpenCV-Python, implementing 93-95
OpenCV-Python, metrics

PSNR 92
SSIM 93

Open Neural Network Exchange (ONNX) 521
ORB, algorithms 223
ORB, demonstrating 224
ORB With Scikit-Image, utilizing 229
Oriented FAST Rotated BRIEF (ORB) 223
Overlay Filters 426
Overlay Filters, breakdown 426, 427

P
Panoptic Segmentation 195
Panoptic Segmentation, demonstrating 196, 197
Pedestrian Detection 286
Pneumonia 442
Pneumonia, demonstrating 452-454
Pneumonia, flow

Entry 450
Exit 450

Middle 450
Pneumonia, implementing 442-449
Pneumonia, preventing 451
Pre-trained Models 329
Pre-trained Models, demonstrating 330-333
Pre-trained Models, states 330
Prostate 473
Prostate, implementing 474-476
PSF 26
PSF Algorithm, assuming 27
PSF Algorithm, implementing 27-30
PSF, illustrating 26, 27
PyElastix 238
PyElastix, steps 238, 239
Pytorch, models

Colorful Image Colorization (CIC) 529
DeOldify 525

Q
QR Codes, demonstrating 394-396
QR Codes, implementing 396-398
QR Codes, libraries 393, 394
QR Codes, types

Bar Codes 392
QR Codes 392

Quick Response (QR) Codes 391

R
RAG Merging 165, 166
RAG Merging, implementing 166, 167
RAG Merging, outlines 166
Random Forest 313
Random Forest, evaluating 316, 317
Random Forest, steps 314-316
Random Forest, terms

Bootstrap Aggregating 314
Feature Randomization 314
Prediction Aggregation 314
Tree Training 314
Voting/Averaging 314

RandomWalk Segmentation 157
RandomWalk Segmentation, arguments 157, 158
RandomWalk Segmentation, implementing 158, 159
RED-Net 73
RED-Net, implementing 73, 74

RED-Net, steps 75, 76
Region Of Interest (ROI) 123
ResNet-18 Model 336
ResNet-18 Model, implementing 336-342
Richardson-Lucy Algorithm 24
Richardson-Lucy Algorithm, implementing 25
ROFA, configuring 31-33
ROI, ensuring 123, 124
Rudin-Osher Fatemi Algorithm (ROFA) 30

S
Satellite Image Segmentation 492, 493
Satellite Image Segmentation, implementing 493-499
Scikit-Image 44
Scikit-Image, arguments 45
Scikit-Image, implementing 45, 46
Seamless Cloning 561, 562
Seamless Cloning, configuring 562
Seamless Cloning, demonstrating 563-565
Semantic Segmentation 183, 184
Semantic Segmentation, models

DeepLabV3+ 184
XceptonNet 184

Semantic Segmentation, steps 187-190
SGDClassifier 309
SGDClassifier, concepts

Linear Model 309
Regularization 310
SGD 310

SGDClassifier, implementing 310-312
Shi-Tomasi 221
Shi-Tomasi, parameters 221, 222
Sigmoid Filter 424
Sigmoid Filter, breakdown 425
SimpleITK 49, 240
SimpleITK, implementing 50, 51
SimpleITK, methods

B-Splines 241, 243
Demons 243

SLIC Segmentation 162
SLIC Segmentation, architecture 162, 163
SLIC Segmentation, process

Cluster Centers 163
Compactness Constraint 163
Initialization 163

Interation 163
Super Pixels 163

Sparse Autoencoder 67
Sparse Autoencoder, configuring 67-69
Sparse Autoencoder, implementing 69
Sparse Autoencoder, steps 70, 71
Spectral Clustering 139
Spectral Clustering, concepts 140
Spectral Clustering, implementing 140, 141
Split Bregman 34
Split Bregman, features 34
Split Bregman, implementing 35, 36
SubPixed Accuracy 220
SubPixed Accuracy, implementing 220, 221
SURF 230
SURF, implementing 231
SURF, parameters 230, 231

T
TensorFlow Hub 522
TensorFlow Hub, demonstrating 523, 524
TensorFlow Hub, points 522, 523
Total Variation (TV) Denoising 30
Transfer Learning 334
Transfer Learning, merits

Data Requirements 335
Efficiency 335

Transfer Learning, steps 335
Feature Extraction 335
Fine-Tuning 335

TV Denoising, functions
Chambolle 33
Rudin-Osher Fatemi Algorithm (ROFA) 30

U
U-Net 477
U-Net, architecture 477
U-Net, components 477
U-Net, implementing 478-481
Unsupervised Wiener 23
Unsupervised Wiener, implementing 23

V
Vedo 421

Vedo, implementing 422
VGG16 532
VGG16, implementing 532-535
VGG16, preventing 536, 537
VGG-UNet 483
VGG-UNet, configuring 483
Video Stitching 264
Video Stitching, approach 264
Video Stitching, steps 264, 265
Video Stitching, terms

Compensation Over Time 267
Failure Handling 267
Motion Estimation 267
Multi-Camera Synchronization 267
Temporal Consistency 267

Visvis 420
Visvis, implementing 420, 421

W
Watershed Segmentation 147
Watershed Segmentation, demonstrating 148, 150
Watershed Segmentation, steps 148
Watershed Segmentation, terms

Catchment Basins 147
Gradient Computation 147
Intensity Marking 147
Label Propagation 147
Segmentation Results 147

Wavelets 36
Wavelets, architecture 37
Wavelets, concepts

Dyadic Scales 37
Scaling 37
Shifting 37

Wavelets, implementing 37
Wiener Filter, implementing 19-21

X
XceptonNet 184
XceptonNet, components

Depthwise Separable Convolutions 186
Entry Flow 185
Exit Flow 185
Middle Flow 185
Skip Connections 186

Y
Yolov3 359
Yolov3, advantages

High Accuracy 360
Single-Stage Detection 360
Speed 360

Yolov3, architecture 359
Yolov3, implementing 359
Yolov3, preventing 361, 362
Yolov3, roles

GluonCV 361
MXNet 360

YOLOv4 368
YOLOv4, ensuring 368-370
YOLOv4, preventing 373-376
YOLOv4, steps 371-373
YOLOv8 363
YOLOv8, advantages 364
YOLOv8, architecture 363
YOLOv8, implementing 364-367
YOLOv8, model 364
YOLOv8, terms

Accuracy 363
Flexibility 363
Speed 363

	Cover
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	Acknowledgement
	Preface
	Table of Contents
	1. Image Restoration and Inverse Problems in Image Processing
	Introduction
	Structure
	Objectives
	Mathematical model for image restoration
	Inverse problems in image processing
	Denoising with weighted median filtering
	Non-blind deconvolution for image restoration
	Image deconvolution with inverse filter
	Gaussian blur kernel
	Simulating the bokeh blur
	Wiener deconvolution with opencv-python
	Deconvolution with unsupervised Weiner filter with scikit-image
	Non-blind deconvolution with Richardson-Lucy algorithm

	Blind deconvolution with Richardson-Lucy algorithm
	Mathematical foundation
	Algorithm overview
	Code implementation

	Total variation denoising
	TV denoising with Rudin-Osher-Fatemi algorithm
	TV denoising with Chambolle vs. Bregman
	Difficulty
	How the Split Bregman method helps

	Image denoising with wavelets
	Discrete wavelet transform
	Wavelet-denoising with pywt
	Wavelet-denoising with scikit-image

	Denoising using non-local means with opencv-python
	Denoising with bilateral filter
	Using SimpleITK
	Using opencv-python

	Denoising with MAP Bayesian with an MRF prior
	Optimizing with gradient-based solver
	Define prior and gradient functions
	Define objective and gradient for optimization
	Apply optimization to restore the noisy image
	Minimize using L-BFGS-B
	Retrieve final output
	Visual and quantitative evaluation

	Denoising images with Kernel PCA
	Conclusion
	Key terms
	Questions
	References

	2. More Image Restoration and Image Inpainting
	Introduction
	Structure
	Objectives
	Denoising with autoencoders
	Sparse denoising autoencoder
	Denoising with convolution autoencoder with skip connection
	Deraining with GCANet

	Blind deblurring with DeblurGAN
	Image inpainting
	Inpainting with opencv-python
	Inpainting with scikit-learn k-NN regression model

	Image denoising with anisotropic diffusion with opencv-python
	Sketch with anisotropic diffusion

	Simple deep image painting with keras
	Semantic image inpainting with DCGAN
	Conclusion
	Key terms
	Questions
	References

	3. Image Segmentation
	Introduction
	Structure
	Objectives
	Gray level and bitplane slicing
	Gray level slicing
	Increasing contrast within ROI
	Bitplane slicing

	Binarizing an image with thresholding
	Thresholding with scikit-image
	Global thresholding
	Local thresholding

	Max-entropy thresholding with SimpleITK
	Adaptive thresholding with opencv-python

	Segmentation using clustering
	Clustering with Mahalanobis distance
	K-means vs. spectral clustering

	MeanShift segmentation with opencv-python and scikit-learn
	MeanShift filtering with opencv-python
	Segmentation with MeanShift clustering in lab space with scikit-learn

	Watershed segmentation with opencv-python and SimpleITK
	Watershed with opencv-python
	Morphological watershed with SimpleITK

	GrabCut segmentation with opencv-python
	RandomWalk segmentation with scikit-image
	Fast marching segmentation with SimpleITK
	Segmentation using SLIC/NCut with scikit-image
	SLIC segmentation
	Normalized cut
	RAG merging

	Conclusion
	Key terms
	Questions
	References

	4. More Image Segmentation
	Introduction
	Structure
	Objectives
	Human skin segmentation with binary classifiers with scikit-learn
	Segmentation by labelling connected components with scikit-image
	Foreground-background separation in a video using GMM with opencv-python
	Semantic segmentation with DeepLabV3+ and ENet
	Using pretrained DeepLabV3+ XCeptionNet model with TensorFlow
	With opencv-python and pretrained Caffe ENet model

	Panoptic segmentation with the deep learning model Detectron2
	Blurring and changing background in image and video using DeepLabV3
	Outlier detection using autoencoder with H2O
	Conclusion
	Key terms
	Questions
	References

	5. Image Feature Extraction and Its Applications: Image Registration
	Introduction
	Structure
	Objectives
	Different types of feature detectors and descriptors
	Corner detectors with opencv-python
	Harris Corner detector
	Corner with subpixel accuracy
	Shi-Tomasi Corner detector

	Image alignment/matching: Image registration
	Feature or landmark based image alignment
	With ORB features with opencv-python
	With ORB features using scikit-image
	With SURF features with opencv-python
	With DISK features with kornia

	Image color channel alignment using image registration with pystackreg
	Deformable image registration with pyelastix
	Image registration with SimpleITK
	With B-Splines
	With Demons

	Deep deformable image registration with VoxelMorph with tensorflow/keras
	Training a CNN for registration
	Prediction with the trained CNN

	Conclusion
	Key terms
	Questions
	References

	6. Applications of Image Feature Extraction
	Introduction
	Structure
	Objectives
	Panorama with opencv-python
	Image stitching
	Video stitching

	NMF for extracting face features with Nimfa
	Face recognition using LBPH with opencv-python
	Face recognition
	Adaptability

	Face feature extraction and recognition using Gabor filter banks
	Feature extraction with Gabor filter bank
	With scikit-image
	With opencv-python

	Face recognition with Gabor features with opencv-python and scikit-learn
	With random forest ensemble classifier
	With 2-NN classifier

	Pedestrian detection with HOG vs HAAR Cascade features with opencv-python
	Extracting HOG features
	Pedestrian detection with HOG NMS
	Classification with the SVM model
	Computing Bounding-Boxes with HOG-SVM
	HAAR-like features for HAAR Cascade classifier
	Computing Bounding Boxes with HAAR-Cascade classifier
	HAAR-cascade vs. HOG-SVM in pedestrian detection

	Conclusion
	Key terms
	Questions
	References

	7. Image Classification
	Introduction
	Structure
	Objectives
	Classifying Fashion-MNIST images using machine learning models with scikit-learn
	Understanding the Fashion-MNIST dataset
	Classification with machine learning models
	Gaussian Naive Bayes model
	Linear classifier with SGD training
	Random forest ensemble classifier

	Classifying Fashion-MNIST images using deep learning models with tensorflow/keras
	Image classification with pretrained models with tf.keras
	Popular pre-trained models in tf.keras
	Using pretrained models for image classification

	Image classification with custom classes using transfer learning with pytorch
	Understanding transfer learning
	Setting up the environment

	Conclusion
	Key terms
	Questions
	References

	8. Object Detection and Recognition
	Introduction
	Structure
	Objectives
	Object detection with pretrained deep learning models
	With MobileNet-SSD using opencv-python
	MobileNet-SSD architecture

	With Yolov3 using gluoncv and mxnet
	YOLOv3 architecture
	Advantages of YOLOv3
	Object detection with YOLOv3 with gluoncv

	With YOLOv8 using ultralytics
	YOLOv8 architecture
	Ultralytics YOLOv8 model types
	Advantages of YOLOv8
	Object detection using YOLOv8 with python

	Custom object detection with transfer learning using YOLOv4 DarkNet
	Loading pre-trained weights for transfer learning
	Configuring YOLOv4 for custom training

	Selective coloring with Mask R-CNN
	Face verification with DeepFace
	Face embeddings
	Similarity metrics

	Barcode and QR code detection with Python
	Understanding barcode and QR code
	Encoding, detection, decoding using Python libraries
	Adding barcode/QR code to an image
	Detect barcode or QR code

	Conclusion
	Key terms
	Questions
	References

	9. Application of Image Processing and Computer Vision in Medical Imaging
	Introduction
	Structure
	Objectives
	Medical image processing
	Loading and displaying medical images of different formats and modalities with python libraries
	DICOM format
	NIfTI format
	RAW or MetaImage format

	3D visualization of a head MRI image with matplotlib, vedo and visvis
	With matplotlib
	With the library visvis
	With the library vedo

	Applying filters with medpy and itk
	Applying gradient filter with scipy and medpy
	Applying sigmoid filter with ITK
	Applying overlay filter with ITK and opencv-python

	Morphological filtering with the library ITK
	Computed tomography reconstruction with inverse Radon transform using scikit-image
	Segmentation of brain MRI images with graph cut algorithms with medpy
	Pneumonia classification from chest X-ray using XceptionNet with tensorflow

	Conclusion
	Questions
	References

	10. Application of Image Processing and Computer Vision in Medical Imaging and Remote Sensing
	Introduction
	Structure
	Objectives
	Medical image processing
	COVID-19 detection from radiographs with Covid-Net with tensorflow
	Prostate image segmentation with nnUNet with Medical Decathlon dataset
	Binary semantic segmentation of brain tumors using U-Net with pytorch
	U-Net: a convolution neural network

	Computer vision and image processing in remote sensing
	Segmentation of FloodNet images using VGG-UNet with the library keras_segmentation
	VGG-UNet architecture
	FloodNet dataset

	Landcover classification with Fastai ResNet101 with EuroSAT dataset
	Residual networks
	EuroSAT dataset

	Satellite image segmentation using Fastai and wandb with SN7 dataset

	Conclusion
	Key terms
	Questions
	References

	11. Miscellaneous Problems in Image Processing and Computer Vision
	Introduction
	Structure
	Objectives
	Deep dreaming with pytorch
	Neural style transfer with perceptual losses
	Using pre-trained pytorch model
	Real-time style transfer with pytorch ONNX model
	Fast style transfer for arbitrary styles with TensorFlow Hub

	Image colorization with pretrained pytorch models
	With DeOldify
	With CIC

	Visualizing VGG16 features in 2D with t-SNE and classifying with SVM
	Creating point cloud from images
	Creating depth map with vision transformers
	Creating point cloud from depth map with Open3D

	Augmented reality with opencv-python
	Embedding and playing video with moviepy
	Add subtitles

	Generating images from text with GAN-CLS
	Image editing with seamless cloning
	Image generation and editing with DALL-E
	Zero-shot text-to-image generation
	How to use DALL-E 2 via the OpenAI API

	Editing an image with mask

	Conclusion
	Key terms
	Questions
	References

	Index

